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Abstract

Whereas for a substantial part, “Finite Geometry” during the past 50

years has focussed on geometries over finite fields, geometries over finite

rings that are not division rings have got less attention. Nevertheless, sev-

eral important classes of finite rings give rise to interesting geometries.

In this paper we bring together some results, scattered over the litera-

ture, concerning finite rings and plane projective geometry over such rings.

The paper does not contain new material, but by collecting information in

one place, we hope to stimulate further research in this area for at least

another 50 years of Finite Geometry.
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1 Introduction

Geometries over rings that are not division rings have been studied for a long

time. The first systematic study was done by Dan Barbilian [11], besides a

mathematician also one of the greatest Romanian poets (with pseudonym Ion

Barbu). He introduced plane projective geometries over a class of associative

rings with unit, called Z-rings (abbreviation for Zweiseitig singuläre Ringe) which

today are also known as Dedekind-finite rings. These are rings with the property

that ab = 1 implies ba = 1 and they include of course all commutative rings but

also all finite rings (even non-commutative).

Wilhelm Klingenberg introduced in [52] projective planes and 3-spaces over

local rings. A ring R is local if it possesses a unique maximal right ideal (which
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turns out to be the Jacobson radical J(R)). For a local ring R the quotient ring

R/J(R) is a division ring (= skewfield or field) and the natural homomorphism

of R onto K = R/J(R) induces an epimorphism of the plane P2(R) over R onto

the ordinary desarguesian projective plane PG(2,K). Nowadays planes over

local rings are called (desarguesian) Klingenberg planes (see also [7]). In the

finite case such planes have the finite projective plane PG(2, q) over the Galois

field GF(q) as epimorphic image.

In three other papers [49, 50, 51], Klingenberg studied projective planes over

local rings with some additional properties, called H-rings (short for Hjelmslev

rings). In these rings the left and right ideals form a chain and the maximal

ideal contains only zero divisors. If one drops that last condition, one gets chain

rings. In the finite case any chain ring is an H-ring. Planes over H-rings are now

called (desarguesian) Hjelmslev planes after the Danish mathematician Johannes

Hjelmslev (born as Johannes Petersen) who was the first one to consider plane

geometries in which two distinct lines may have more than one point in common

[41]. Among the finite H-rings are the Galois rings GR(pnr, pn) of cardinality

pnr and characteristic pn which are natural generalizations of Galois fields.

In the early seventies another class of rings came under the attention: full

matrix rings over fields. Strongly inspired by the work of the italian “father of

Galois geometry” Beniamino Segre on geometries over finite fields (e.g. [77]),

J.A. Thas defined projective planes (and higher dimensional spaces) over full

matrix rings with elements in a field and investigated combinatorial properties

in the finite planes over the matrix rings Mn(GF(q)) of n × n-matrices over

Galois fields [80]. We will refer to these planes further as Thas planes.

In the eighties F.D. Veldkamp was very productive in the area of projective

ring planes and their generalizations. He gave in [84, 86] an axiomatic descrip-

tion of projective planes and higher dimensional geometries over the large class

of rings of stable rank 2, a notion coming from algebraic K-theory.

A ring R has stable rank 2 if for any a, b ∈ R with Ra + Rb = R there exists

r ∈ R such that a + rb is a unit. The class of rings of stable rank 2 includes

the class of semilocal rings (hence also all finite rings, local rings, chain rings,

H-rings and matrix rings over a division ring) and a ring of stable rank 2 is

always Dedekind-finite (hence a Z-ring in the sense of Barbilian). Projective

planes over rings of stable rank 2 are called (desarguesian) Veldkamp planes.

Among these are Klingenberg planes, Hjelmslev planes, Thas planes and also

the projective planes over semiprimary rings (i.e. rings with nilpotent Jacobson

radical and with R/J(R) semisimple) treated by Bingen in [13].

In almost all papers on projective geometry over rings no special attention

is paid to the finite case. Mostly, theorems deal with rings in general (with no

specification for finite or infinite). In this paper we restrict ourselves to the
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finite case. First we bring together some results on finite rings with special

attention for local rings. Then we have a closer look at projective plane geome-

tries over finite rings. In the last section we deal with some generalizations of

rings (semirings, nearrings and alternative rings) and projective plane geome-

tries over such algebraic structures.

2 Finite rings

In this section the word “ring” always refers to an associative ring with unit

1 6= 0, but with multiplication not necessarily commutative.

Finite fields or Galois fields are well-known algebraic structures. Finite fields

of order q only exist if q is a prime power (q = pr) and for each such q their is

a unique (up to isomorphism) field of that order which is denoted by Fq or by

GF(q). The prime number p is the characteristic of the field.

It is natural to look at generalizations of finite fields to finite rings, but the

situation is much more complicated. First there exist finite non-commutative

rings unlike the situation in finite division rings where the famous theorem of

Wedderburn forces any finite skewfield to be a field. Also the order of a finite

ring does not uniquely determine that ring (for example there are four non-

isomorphic rings of order four, including one field). A complete classification

of finite rings seems to be a “mission impossible” (even if one restricts to the

commutative case).

The paper of Raghavendran [72] on rings of prime power order was the starting

point for the study of the structure of finite rings. Also the work of Wilson

[88, 89] was of great importance. A recent survey on results obtained so far

with an extensive bibliography can be found in Nechaev [68].

Local rings, first defined by Krull in [56], play a central role in the structure

theory of (finite) rings. Recall that a ring R is called local if it possesses a

unique maximal right ideal (or equivalently a unique maximal left ideal). This

is stronger than asking that R has a unique maximal two-sided ideal (e.g. the

ring Mn(Zpn) of n × n-matrices over Z/pnZ has a unique maximal two-sided

ideal but is not local). The unique maximal right or left ideal in a local ring

turns out to be the Jacobson radical J(R). Other characterizations of local rings

are possible. E.g. R is local if and only if the set of non-units forms a right (or

left) proper ideal in R. Also R is local if and only if for all r ∈ R either r or 1− r

is invertible. Finally R is local if and only if R/J(R) is a division ring. Other

characterizations in terms of zero divisors are given in [76]. In the finite case

one can say even more: R is local if and only if R \ J(R) is the set of units of R

or equivalently J(R) is the set of nilpotent elements of R.
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The following theorem gives parameters for finite local rings.

Theorem 2.1 (Raghavendran [72]). Let R be a finite local ring. Then there exist

unique numbers p, n, r and k such that |R| = pnr, |J(R)| = p(n−1)r and the

characteristic of R is pk with 1 ≤ k ≤ n. The number pr is the order of the Galois

field R/J(R) and the number n is the index of nilpotency of J(R). If k = n then

R is commutative.

There is also a more recent result which conversely characterizes local rings

among finite rings just by a couple of parameters.

Theorem 2.2 (Behboodi and Beyranvand [12], González [36]). Let R be a finite

ring and let Z(R) be the set of zero-divisors of R. Then R is local if and only if

|R| = pm and |Z(R)| = pn for some prime number p and integers 1 ≤ n < m.

Moreover, when R is local with these parameters, then the order of R/J(R) =

R/Z(R) is pr with r = m− n.

The structure of commutative finite local rings was first studied by Ganske

and McDonald [33]. Classification theorems are proved for fixed orders or fixed

characteristic in [16, 17, 24, 72]. In the non-commutative case Wirt [90] has

contributed to the theory.

By the following important structure theorem the classification problem of

commutative finite rings can be reduced to that of finite local rings.

Theorem 2.3 (McDonald [67]). Let R be a finite commutative ring. Then R

decomposes (up to order of summands) uniquely as a direct sum of finite local

rings.

Another decomposition theorem, also valid in the non-commutative case,

shows once more the importance of finite local rings.

Theorem 2.4 (McDonald [67] and Wirt [90]). Let R be a finite ring. Then R

decomposes as S+N with S a direct sum of full matrix rings over finite local rings

and N a subring of the Jacobson radical J(R).

Next we look at principal ideal rings. A ring is called a right principal ideal

ring if any right ideal I is right principal, i.e. generated by one element (I =

aR). There is a similar definition for a left principal ideal ring. If a ring is

a left and right principal ideal ring, it is called a principal ideal ring (PIR). A

right principal ideal ring is always a right noetherian ring, since any right ideal

is finitely generated. It is also a right Bézout ring since any finitely generated

right ideal is principal. In fact the right PIR’s are just the rings which are both

right noetherian and right Bézout. Similar results are true for left principal ideal
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rings and PIR’s.

The structure of finite principal ideal rings was first studied by Fisher in [32].

For finite rings the notions of left PIR, right PIR and PIR are equivalent (see [68]).

Another important class of rings are the chain rings. A ring is called a right

chain ring if for any a and b in R either a ∈ bR or b ∈ aR. For a right chain ring

the lattice of right ideals is totally ordered by inclusion and it follows that R is

a local ring. Analogous definitions and results for left chain rings. A ring which

is a left and right chain ring is called a chain ring. In the infinite case there are

examples of right chain rings which are not chain rings (see [63, 79, 15]), but

in the finite case there is a left-right equivalence. Every ideal of a chain ring

is a power of the unique maximal ideal. A (left or right) chain ring with the

additional property that any non-unit is a two-sided zero divisor is called a (left

or right) H-ring or affine Hjelmslev ring (two-sided chain rings are also known

as projective Hjelmslev rings). Finite chain rings are always left and right H-

rings. For a comprehensive study of H-rings linked to the behaviour of ideals,

we refer to [81].

The following theorem shows that finite chain rings are nothing but finite

local principal ideal rings!

Theorem 2.5 (Clarke and Drake [18] and Lorimer [62]). Let R be a finite ring.

Then the following conditions are equivalent:

(a) R is a local PIR;

(b) R is a local ring with principal maximal ideal;

(c) R is a left chain ring;

(d) R is a right chain ring;

(e) R is a chain ring.

A valuation ring in a division ring D is a proper subring R with the property

that x or x−1 ∈ R for each nonzero x ∈ D. A ring is a valuation ring if and only

if it is a left and right chain domain (i.e. a chain ring without zero divisors);

for a proof, see [60]. Since any finite domain is a finite field, there do not exist

finite valuation rings.

A ring R is called an E-ring if and only if it possesses an ideal I so that all

ideals of R are of the form In. In the infinite case E-rings can be characterized

as H-rings with nilpotent radical and also as proper homomorphic images of

discrete valuation rings (see [4, 5, 60, 61]). In the finite case the notions of

H-ring and E-ring coincide.

The simplest and most investigated finite chain rings are the Galois rings,

first defined by Krull [56] as “Grundringe” and later rediscovered by Janusz
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[46] and Raghavendran [72]. A Galois ring is a commutative local PIR such

that J(R) = (p) with p = 1 + 1 + · · · + 1 (p terms) for some prime p. These

rings are very close to Galois fields. In the past ten years, finite chain rings and

in particular Galois rings got a lot of attention in connection with coding theory

(see e.g. [42, 43]).

As for Galois fields one has the following result.

Theorem 2.6 (Raghavendran [72] and McDonald [67]). For any prime p ∈ N

and for any n, r ∈ N there exists a unique (up to isomorphism) Galois ring R

consisting of qn (with q = pr) elements and with characteristic pn.

The unique Galois ring in the preceding theorem is denoted by GR(qn, pn) (or

sometimes also by GR(pn, r)). For p = q we have GR(pn, pn) = Zpn , the ring of

integers module pn, and for n = 1 we obtain the Galois field GF(q) = GR(q, p).

All Galois rings can be constructed in the form R = Zpn [x]/(f(x)) where f(x)

is a monic polynomial of degree r which is irreducible modulo p and hence

GR(qn, pn), q = pr, can be seen as Galois extensions of degree r of its subring

Zpn .

The properties of Galois rings are well known, e.g. the structure of the group

of units, the automorphism group, the possible subrings etc. Many results can

be found in [14]. The classification of all chain rings is still an open problem

but partial results are known. Galois rings occur in the construction of finite

chain rings as can be seen from next theorem.

Theorem 2.7 (Clark and Liang [19], Wirt [90], Neumaier [69]). Let R be a

finite chain ring with parameters p, n, r and k as in Theorem 2.1. Then there ex-

ist integers t and s such that R is isomorphic to S[x, σ]/(g(x), pk−1xt) with S =

GR(qk, pk) and S[x, σ] the Ore skew polynomial ring over S, i.e. with usual addi-

tion and the multiplication xa = σ(a)x for σ ∈ Aut S, and with g(x) ∈ S[x, σ] an

Eisenstein polynomial of degree s, g(x) = xs − p(a0 + a1x+ · · ·+ as−1x
s−1) with

a0 a unit in S and n = (k − 1)s+ t (1 ≤ t ≤ s ≤ n).

The integer s in the theorem above is called the ramification index of R. It is

the smallest integer such that the ideal (p) is equal to J(R)s.

For a given set of parameters p, n, r, k, s and t one could ask for the number

of non-isomorphic finite chain rings. In general this problem is still open, but

partial results are known (see e.g. [1, 3, 74, 68]). In some cases the parameters

completely determine the ring:

Theorem 2.8 (Clark and Liang [19] and Arkhipov [3]). Let R be a finite chain

ring with parameters p, n, r, k, t and s as in Theorem 2.7.
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(a) If k = 1 (hence R has minimal characteristic p), then R is uniquely determined

(up to isomorphism) and R ∼= GF(q)[x, σ]/(xn) (a truncated skew polynomial

ring);

(b) If k = n (hence R has maximal characteristic pr), then R is uniquely deter-

mined (up to isomorphism) and R ∼= GR(qn, pn) (always commutative).

Some more results are known for finite chain rings with characteristic pk

with 1 < k < n (see [44]). In [91] still another description of finite (commuta-

tive) chain rings is given as certain homomorphic images of the polynomial ring

Zpr [x, y].

An important special subclass of chain rings is the one for which the Jacobson

radical J of R has index of nilpotency 2, so J2 = 0. In this case n = 2 and the

two cases in Theorem 2.8 are the only possible ones. Finite chain rings with

J 6= 0 and J2 = 0 are called uniform. The classification of finite uniform chain

rings follows from Theorem 2.8 but was also proved directly by Cronheim.

Theorem 2.9 (Cronheim [25]). Every finite uniform chain ring with R/J ∼=
GF(q) is either a ring of (twisted) dual numbers, or a truncated Witt ring of

length 2, over the field GF(q).

Rings of (twisted) dual numbers are the rings D(q, σ) = GF(q)[x, σ]/(x2)

(twisted for σ 6= 1) (corresponding to case (a) with n = 2 in Theorem 2.8).

The ring D(q, σ) can also be represented as the subring of matrices
(

a b
0 aσ

)

in the

full matrix ring M2(q) of 2× 2-matrices with elements in GF(q).

The ring W2(q), the truncated Witt ring of length 2 over GF(q) is defined on

the set GF(q)×GF(q), q = pk, as follows:

addition: (x0, x1) + (y0, y1) =
(

x0 + y0, x1 + y1 +
xp
0 + yp0 − (x0 + y0)

p

p

)

;

multiplication: (x0, x1) · (y0, y1) = (x0y0, x
p
0y1 + x1y

p
0).

It can be proved that W2(q) is isomorphic to the Galois ring GR(q2, p2) (this is

case (b) with n = 2 in Theorem 2.8).

3 Finite ring planes

In this section we deal with geometries over finite rings and we restrict our-

selves to the case of plane projective geometries. The projective line, higher

dimensional projective geometries, affine and metric geometries, planar circle
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geometries (Benz-planes), chain geometries and polar geometries over finite

rings will not be considered here.

A big part of finite geometry, called Galois geometry, is related to finite fields,

see e.g. the work of Hirschfeld [40]. Since the pioneering work of B. Segre, the

finite desarguesian (pappian) projective plane PG(2, q) and its interesting point

sets (arcs, ovals, blocking sets, unitals, . . . ) have been studied extensively. For

planes over finite rings still a lot of work has to be done. As already mentioned

in the introductory section, plane geometries over some important classes of

rings have been defined in a suitable way, starting somewhere in 1940 by Bar-

bilian (some isolated cases over particular rings were even known longer ago).

Before we look at planes over finite rings, we first recall the definition of a

projective plane over an arbitrary ring (not necessarily finite).

Let R be an arbitrary ring (associative and with unit element). Denote the

set of twosided invertible elements of R by R⋆. Following [11, 26, 55], we can

construct a plane projective geometry PG(2, R) over R as follows:

points are the left unimodular triples (x, y, z) ∈ R × R × R up to a right scalar

in R⋆ (where (x, y, z) left unimodular means that there exist a, b, c ∈ R

such that ax+ by + cz = 1 or equivalently Rx+Ry +Rz = R);

lines are the right unimodular triples [u, v, w] ∈ R × R × R up to a left scalar

in R⋆ (where [u, v, w] right unimodular means that there exist a, b, c ∈ R

such that ua+ vb+ wc = 1 or equivalently xR+ yR+ zR = R);

incidence I (between points and lines) is defined as follows: (x, y, z) I [u, v, w]

if and only if ux+ vy + wz = 0;

neighborship ∼ (between points and lines) is defined by: (x, y, z) ∼ [u, v, w] if

and only if ux+ vy + wz ∈ R \R⋆.

It is clear that incidence always implies neighborship, so p I L implies p ∼ L for

any point p and any line L.

The incidence structure (with neighbor relation) obtained in this way is

called the right projective plane over R. In the same way one can define the left

projective plane over R which is clearly isomorphic to the right projective plane

over the opposite ring R◦. Therefore we will drop from now on the specification

“right” or “left”.

Although the denomination “projective plane” is used here, the projective

plane over a ring (which is not a division ring) is not a projective plane in the

usual sense, as two distinct points may be incident with none or with more than

one line and dually.
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In addition to the neighbor relation for point-line pairs, also a neighbor rela-

tion between points (between lines respectively) can be considered in PG(2, R):

points (x, y, z) and (x′, y′, z′) are neighboring if and only if
[ x y z

x′ y′ z′

]

cannot be

extended to an invertible 3× 3-matrix over R (and similar for lines).

Dealing with projective planes over rings it is natural to assume that non-

neighboring elements behave the same as distinct elements in an ordinary pro-

jective plane over a division ring. To get that situation, it is necessary to restrict

to the class of rings for which every one-sided unit is a two-sided unit, which

was first observed by Barbilian [11]. Indeed, assume that r is right-invertible

(with right inverse a), but not left invertible. Consider the lines [1, 0, 0] and

[r, 0, 0] (remark that [r, 0, 0] is right unimodular since r · a + 0 · b + 0 · c = 1).

These lines are distinct as otherwise there would exist a left scalar l ∈ R⋆ for

which [1, 0, 0] = l · [r, 0, 0], so 1 = l · r in contradiction with the assumption

that r has not a left inverse. Now these two distinct lines are incident with the

non-neighboring points (0, 1, 0) and (0, 0, 1).

The restriction to rings in which any left (or right) invertible element is a

two-sided unit (or equivalently a·b = 1 implies b·a = 1), the so-called Dedekind-

finite rings, only comes up when one deals with infinite rings. In the finite case

(but also for many important classes of infinite rings) invertible elements are

always two-sided invertible. In this context it is also interesting to mention that

all reversible rings (i.e. a · b = 0 implies b · a = 0) are Dedekind-finite.

Next we are interested in the connection between properties of the ring R and

the projective plane PG(2, R). Most of the following results are reformulations

for the finite case of theorems that can be found in Veldkamp [84, 85].

In the projective plane over a Dedekind-finite ring, there is a unique line

incident with two given non-neighboring points (and dually). One might ask

whether the neighbor relation is completely determined by the incidence re-

lation in the sense that two points are non-neighboring if and only if there is

unique line incident with them (and dually for lines). This is not always the

case, but it does if every non-invertible element in R is a right and left zero-

divisor.

A (left or right) artinian ring is a ring in which any non-empty set of (left or

right) ideals that is partially ordered by inclusion, has a minimal element. In a

(left or right) artinian ring any non-invertible element is a (left or right) zero

divisor. As finite rings are always left and right artinian we get that the neighbor

relation is completely determined by the incidence relation in planes PG(2, R)

over finite rings. In [23] a proof is given of the property that in a finite ring any

left zero divisor is also a right zero divisor.

Theorem 3.1 (Veldkamp [84]). Let R be a finite ring and PG(2, R) the projective

plane over R. Then two distinct points are neighboring if and only if they are
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incident with either no or at least two lines. Two distinct lines are neighboring if

and only if they are incident with either no or at least two points.

A projective ring plane is called linearly connected (Veldkamp [84]), neighbor

cohesive (Drake and Jungnickel [27]) or punctally cohesive (Baker et al. [9]) if

any two distinct points are incident with at least one line. For planes over rings

of stable rank 2 it is proved in Veldkamp that two points are incident with at

least one line if and only if R has the following property: for any two r1, r2 ∈ R

there exists a ∈ R such that Rr1 + Rr2 = R(r2 + ar1). This is fulfilled for R

a left Bézout ring, i.e. a ring for which any finitely generated left ideal is a

principal ideal. Dually two lines are incident with at least one point if and only

if R is a right Bézout ring. For finite rings the Bézout conditions amount to the

condition that R is a principal ideal ring (recall that for a finite ring the notions

left principal, right principal and principal coincide). So we can reformulate the

theorem for finite rings as follows:

Theorem 3.2 (Veldkamp [84]). Let R be a finite ring and PG(2, R) the projective

plane over R. Then any two points are incident with at least one line (the plane is

linearly connected) and dually if and only if R is a principal ideal ring.

The possibility of more than one line incident with two neighboring points

(and dually) corresponds to the presence of zero divisors in the ring. So any

two distinct points are incident with exactly one line (and dually) if and only if

R is a Bézout domain. In the finite case this becomes: if R is a principal ideal

domain, hence if R is a finite field. Hence:

Theorem 3.3 (Veldkamp [84]). Let R be a finite ring and PG(2, R) the projective

plane over R. Then any two distinct points are incident with exactly one line and

dually if and only if R is a finite field (i.e. PG(2, R) is a pappian projective plane).

Next we look at the special case of (finite) local rings. For such rings the

definition of the projective plane PG(2, R) and his neighbor relations, can be

adapted (in an equivalent way) a little. E.g. two points (x, y, z) and (x′, y′, z′)

are neighbors if and only if (x′, y′, z′)− (x, y, z)λ ∈ J ×J ×J for some λ ∈ R\J

with J the maximal ideal of R and similarly for lines.

Theorem 3.4 (Veldkamp [84]). Let R be a (finite) ring and PG(2, R) the pro-

jective plane over R. Then the neighbor relation ≈ between points (between lines,

resp.) is transitive if and only if R is a (finite) local ring.

For local rings R there is a canonical epimorphism ϕ from R onto the divi-

sion ring K = R/J . This epimorphism induces an epimorphism π of the pro-

jective plane PG(2, R) onto the (ordinary) projective plane PG(2,K) by putting
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π(x, y, z) = (φ(x), φ(y), φ(z)) and π[u, v, w] = [φ(u), φ(v), φ(w)] and the neigh-

bor relation can be expressed by means of π : p ∼ L if and only if π(p)Iπ(L) and

similarly p ∼ q if and only if π(p) = π(q) and L ∼ M if and only if π(L) = π(M).

The projective plane over a local ring, also known as a (desarguesian) pro-

jective Klingenberg plane, therefore is strongly connected with an ordinary de-

sarguesian projective plane. One could say that the points (and lines) of an

ordinary projective plane are blown up to clusters of neighboring points (lines)

to produce a projective Klingenberg plane. In the finite case the epimorphic

image of PG(2, R) is the plane PG(2, q) over the Galois field GF(q).

Combining Theorems 3.1, 3.2 and 3.4 yields the following:

Theorem 3.5 (Veldkamp [84]). Let R be a finite ring and PG(2, R) the projective

plane over R. Then the neighbor relation ≈ between points (between lines, resp.)

is transitive and two neighboring points are incident with at least two lines and

dually, if and only if R is a finite local principal ideal ring.

From section 2 we know that finite local principal ideal rings are synonym

for finite chain rings or finite H-rings. Recall that projective planes over H-rings

are called (desarguesian) projective Hjelmslev planes.

We now summarize the possibilities for projective planes over a finite ring.

Corollary 3.6. Let R be a finite ring and PG(2, R) the projective plane over R.

Then only four cases are possible:

(a) R has no zero divisors and hence is a field and PG(2, R) is an ordinary pap-

pian projective plane (two distinct points are incident with exactly one line

and dually);

(b) R is a local principal ideal ring (hence a chain ring = H-ring) and PG(2, R)

is a desarguesian projective Hjelmslev plane;

(c) R is local but not a principal ideal ring and PG(2, R) is a desarguesian pro-

jective Klingenberg plane (but not a Hjelmslev plane);

(d) R is semilocal (but not local) and PG(2, R) has non-transitive neighbor rela-

tions.

The fourth class (d) is the wildest as it contains all finite rings which are not

local (but necessarily semilocal due to the finiteness, i.e. with a finite number

of maximal ideals). Important examples of rings belonging to this class are the

full matrix rings Mn(q) over GF(q). Projective planes over full matrix rings were

first mentioned by Ree [73] and further studied by J.A. Thas [80] who also gave

an interpretation of PG(2,Mn(q)) in terms of the projective space PG(3n−1, q).

Other examples are the rings Zm with m 6= pr (see [29]). Of special interest

are also the rings of double numbers B(q) = GF(q) + GF(q) t with t2 = t. They
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possess exactly two maximal ideals. In [75] projective planes over B(q) are

studied.

Examples of finite local rings that are not chain rings (c) are provided by

the rings GF(q)[x, y]/〈xn, xy, yn〉 (n > 1). The corresponding planes are finite

desarguesian Klingenberg planes that are not Hjelmslev planes.

Class (b) contains many interesting examples, including the Galois rings

GR(qn, pn) (q = pr) and the rings A(pr, n) = GF(pr)[x]/xn (called quasi-Galois

rings in [14]). The rings A(pr, n) can also be interpreted as matrix rings, con-

sisting of all matrices (aij) with elements belonging to GF(q) and ai,j+i−1 = a1j
and aij = 0 for i > j. For n = 2 the ring of dual numbers D(q) over GF(q) is

included. Projective planes over dual numbers were considered yet a century

ago by Corrado Segre [78].

Class (a) finally consists of all the Galois fields GF(q) with the associated

projective planes PG(2, q).

For finite (not necessarily desarguesian) projective Klingenberg and Hjelm-

slev planes a unique set of parameters (the order) can be given (see [48, 28]):

for any flag (p, L) there are exactly t points on L neighboring with p and exactly

s points on L not neighboring with p. Moreover: the number of points = the

number of lines = s2 + st + t2, any line is incident with s + t points, any point

is incident with s + t lines, any point has t2 neighbors, any line has t2 neigh-

bors, t | s and r = s
t

is the order of the projective plane that is the canonical

epimorphic image of the Klingenberg plane, and s ≤ t2 or t = 1.

For a finite desarguesian projective Klingenberg plane this yields:

Theorem 3.7 (Drake and Jungnickel [27]). Let R be a finite local ring. Then

the projective Klingenberg plane (Hjelmslev plane in some cases) PG(2, R) has

parameters s = |R| = qn and t = |J | = qn−1 with q = pr a prime power.

To conclude this section we consider rings of order 4. This is the smallest

order for which there exist rings that are not division rings. There are four

non-isomorphic rings (with unit) of order 4. The first is the Galois ring GF(4)

that gives rise to the projective plane PG(2, 4). The second is the chain ring

Z4
∼= GR(4, 4) ∼= W2(2) with characteristic 4, the coordinate ring of a projective

Hjelmslev plane. The third is the chain ring D(2) ∼= A(2, 2) of characteristic 2

and with GF(2) as a subfield (dual numbers over GF(2)) that gives rise to an-

other projective Hjelmslev plane (it is proved in [47] that the plane over D(2) is

embeddable in PG(5, q) while the plane over Z4 is not). Finally the fourth is the

non-local ring B(2) ∼= GF(2)[t]/(t2− t) of characteristic 2 (double numbers over

GF(2)), associated to a Veldkamp plane with non-transitive neighbor relation.
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4 Finite ring-like structures and ring-like planes

Besides finite rings, even more general finite ring-like algebraic structures de-

serve a closer look in relationship to geometry. Until now, very little research

has been done in this area (except for finite field-like algebraic structures).

In the literature several generalizations of rings can be found. Among the most

important are: non-associative rings, nearrings and semirings. For all these

structures there are finite examples and a generalization of the concept “local

ring” exists, which opens perspectives for Klingenberg-like geometries associ-

ated to these generalized rings.

4.1 Semirings

A semiring is a structure (S,+, ·) with (S,+) a commutative semigroup with

identity element 0, (S, ·) a (not necessarily commutative) semigroup with iden-

tity element 1 ( 6= 0), in which the left and right distributivity of multiplication

over addition hold and in which 0 is absorbing for multiplication a ·0 = 0 ·a = 0.

Hence semirings differ from rings by the fact that elements do not always have

an inverse for the addition (the additive group of a ring is replaced by a semi-

group).

Semirings were first introduced by Vandiver [83] in 1935 and in the past years

there was an enormous amount of publications on the subject (see e.g. the

work of Glazec [34] for a survey), mainly in relation to computer science and

automata theory, but they also are interesting algebraic objects on their own,

see [38, 35].

Examples of finite semirings are B(n, i) on the set {0, 1, . . . , n − 1} (n ≥ 2

and 0 ≤ i ≤ n− 1) with addition ⊕ defined by a⊕ b = a+ b if 0 ≤ a+ b < n and

a⊕ b = c if a+ b ≥ n with c the unique number such that c ≡ a+ b (mod n− i)

and 0 ≤ c ≤ n − 1. Multiplication ⊙ is defined in a similar way. In particular

B(n, 0) is the ring Zn of integers modulo n and B(2, 1) is known as the boolean

semiring B. For other values of n and i one obtains semirings that are not rings.

In semirings zero divisors and zero sums are of interest (a is a zero sum of S

if there exists an element b 6= 0 in S such that a + b = 0). In [39] it is proved

that if S is a finite commutative semiring then either every zero sum is a zero

divisor or S is a ring. As a corollary one has that a finite commutative semiring

without zero divisors (a semidomain) either is zero sum free (a+ b = 0 always

implies a = b = 0) or is a finite domain (and hence a field).

A semiring is called a semifield if (S∗, ·), with S∗ = S \ {0}, is a group (in

a semifield the multiplication need not to be commutative, so the term semi

division ring would be better). We have to warn for confusion between the
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semifields considered here and the semifields defined in the context of non-

desarguesian projective planes by e.g. Albert, Dickson, Knuth and others and

which are also known under the name division algebras or distributive quasi-

fields. Those are generalizations of division rings by dropping the need for

associativity of the multiplication, so (S,+, ·) is in that context a semifield if

(S,+) is a group (which turns out to be commutative) and (S∗, ·) is a loop and

the two distributivity laws of multiplication over addition hold (for a survey on

those semifields, see e.g. [57])

To my knowledge no research has been done yet on geometries over (finite)

semirings that are not rings. So there may be opportunities. In particular a

generalization to Klingenberg-like planes (over local semirings) seems possible

though not trivial as the concept of ideals in semirings is much more compli-

cated. As a starting point for ideals in semirings and the concept of local semi-

ring, see e.g. [6, 37].

4.2 Nearrings

A left nearring is a structure (N,+, ·) with (N,+) a (not necessarily) commu-

tative group with identity element 0, (N, ·) a (not necessarily commutative)

semigroup with identity element 1 ( 6= 0), in which the left distributivity of mul-

tiplication over addition holds: a · (b+c) = a ·b+a ·c. Similar for right nearring.

Nearrings differ from rings by the fact that addition is not necessarily commuta-

tive and there is only distributivity on one side. Nearrings which are distributive

on both sides are rings (the commutativity of the addition then follows automa-

tically). Most of the material on nearrings can be found in the work of Pilz

[70, 71].

A (left or right) nearring is called a (left or right) nearfield if (S∗, ·) is a group,

with S∗ = S\{0}. So nearfields are division rings with only distributivity on one

side. Nearfields were first discovered by Dickson in 1905 and are useful in con-

structing examples of non-desarguesian projective planes. All finite nearfields

are classified by Zassenhaus. They are either Dickson nearfields or they belong

to one of seven exceptional classes.

Little research has been done on geometry over nearrings that are not near-

fields (except for the class of planar nearrings which give rise to balanced incom-

plete block designs, but these nearrings do not possess a multiplicative identity

element and therefore are less usable in the context of projective geometry). So

another suggestion for research could be a treatment of plane projective geome-

tries over (finite) nearrings that are not rings. The special case of Klingenberg

planes (over local nearrings) and Hjelmslev planes (over H-nearrings) was al-

ready initiated in two general papers by E. Kolb, see [53, 54] and by Törner
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in [82]. Local nearrings were introduced by Maxson in [65] and partially clas-

sified in [66]. Among the results is the fact that the additive group of a finite

local nearring always is a p-group and the existence of a natural epimorphism

from a local nearring onto a local nearfield. Other results on finite nearrings

can be found in [2, 20, 21, 22, 45, 58, 59, 64, 87].

4.3 Alternative rings

Finally, we mention some results on non-associative rings. A non-associative ring

is a structure (A,+, ·) which satisfies all axioms for an (associative) ring with

multiplicative identity element, except for the associativity of the multiplication.

An alternative ring is a non-associative ring such that a·(a·b) = a2·b and (a·b)·b =

a ·b2 for all a, b ∈ A. Alternativity is a weaker condition than associativity. If any

element in an alternative ring A is a unit, then A is called an alternative division

ring. Alternative division rings are used to construct a class of non-desarguesian

projective planes, called Moufang planes. By the theorem of Artin–Zorn every

finite alternative division ring is a field, hence finite Moufang projective planes

are desarguesian (and pappian).

Generalizations to alternative rings that are not division rings are due to

Baker, Lorimer and Lane. In [10] Moufang projective Klingenberg planes are

defined as projective Klingenberg planes that are (p, L)-transitive for all flags

and it is proved that they can be coordinatized by a local alternative ring. In [8]

several characterizations of local alternative rings are given and an analogue for

non-associative chain rings and H-rings is defined properly. In the finite case

it is proved that the concepts of alternative H-ring, left (or right) alternative

chain ring and local alternative principal ideal ring are equivalent. Moreover

the theorem of Artin–Zorn is expanded : any finite alternative chain ring (or

H-ring) is associative [9].

Leaving out the condition of being local, leads to more general alternative rings.

It is hard to define projective ring planes over such rings in a suitable way.

Faulkner has done it for alternative stable rank 2 rings in [30] (generalizing

Veldkamp’s results for associative stable rank 2 rings) and for alternative rings

in which any one-sided unit is two-sided in [31] (generalizing the planes of

Barbilian).
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[55] F. Knüppel, Projective planes over rings, Results Math. 12 (1987),

348–356.

[56] W. Krull, Algebraische theorie der Ringe I, II and III, Math. Ann. 8

(1923), 80–122, 91 (1924), 1–46 and 92 (1924), 183–213.

[57] M. Lavrauw and O. Polverino, Finite semifields and Galois geometry, in

Current research topics in Galois geometry, eds. L. Storme and J. de Beule,

Nova Science Publishers, New York, 7 (2011).

[58] S. Ligh, Near-rings with descending chain condition, Compos. Math.

21(2) (1969), 162–166.

[59] S. Ligh and J. J. Malone, Zero divisors and finite nearrings, J. Austral.

Math. Soc. 11 (1970), 374–378.

[60] J. W. Lorimer, Structure theorems for commutative Hjelmslev rings

with nilpotent radicals, C. R. Math. Acad. Sci. Soc. R. Can. 6(3) (1984),

123–127.

[61] , Affine Hjelmslev rings and planes, Annals Discr. Math. 37

(1988), 265–276.



142 D. Keppens

[62] , The classification of compact right chain rings, Forum Math. 4

(1992), 335–347.

[63] J. W. Lorimer and N. D. Lane, Desarguesian affine Hjelmslev planes, J.

Reine Angew. Math. 1 (1975), 336–352.

[64] C. Maxson, On finite nearrings with identity, Amer. Math. Monthly 74

(1967), 1228–1230.

[65] , On local near-rings, Math. Z. 106 (1968), 197–205.

[66] , Local near-rings of cardinality p2, Canad. Math. Bull. 11(4)

(1968), 555–561.

[67] B. R. McDonald, Finite rings with identity, Marcel Dekker, New York,

1974.

[68] A. A. Nechaev, Finite rings with applications, in Handbook of Algebra,

vol. 5, Elsevier (2008), 213–320.

[69] A. Neumaier, Nichtkommutative Hjelmslev-Ringe, Festband für H. Lenz,

Freie Universität Berlin (1976), 200–213.

[70] G. Pilz, Near-rings, North–Holland, Amsterdam, 2nd Edition, 1983.

[71] , Nearrings and nearfields, Handbook of Algebra, Part I, Elsevier,

Amsterdam (1996), 463–498.

[72] R. Raghavendran, Finite associative rings, Compos. Math. 21 (1969),

195–229.

[73] R. Ree, On projective geometry over full matrix rings, Trans. Amer. Math.

Soc. 6(1) (1955), 144–150.

[74] A. S. Rybkin, Finite local rings of principal ideals, Math. Notes 28 (1981),

465–472.

[75] M. Saniga and M. Planat, Projective Planes Over Galois double numbers

and a geometrical principle of complementarity, Chaos Solitons Fractals

36 (2008), 374–381.

[76] M. Satyanarayana Characterization of local rings, Tohoku Math. J. 19

(1967), 411–416.

[77] B. Segre, Le geometrie di Galois, Ann. Math. Pura e Appl. 48 (1959),

1–96.



Projective geometries over finite rings 143

[78] C. Segre, Le geometrie proiettive nei campi di numeri duali, Atti Accad.

Sci. Torino 47 (1911), 114–133 and 164–185.

[79] L. A. Skornyakov, Rings chain-like from the left (Russian), Izv. Vyssh.

Uchebn. Zaved. Mat. 4 (1966), 114–117.

[80] J. A. Thas, The m-dimensional projective space Sm(Mn(GF(q))) over the

total matrix algebra Mn(GF(q)) of the n × n-matrices with elements in

the Galois field GF(q), Rend. Mat. 4 (1971), 459–532.

[81] G. Törner, Eine klassifizierung von Hjelmslev-ringen und Hjelmslev-

Ebenen, Mitt. Math. Semin. Giessen, 107 (1974), 1–77.
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