
Innovations in Incidence Geometry
Volume 15 (2017), Pages 169–186

ISSN 1781-6475

From semifield flocks to the generalized

translation dual of a semifield

Guglielmo Lunardon∗

Abstract

The goal of this article is to present developments of Thas’ relation-

ship between translation geneneralized quadrangles and symplectic semi-
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1 Introduction

If F is a semifeld flock, the point-line dual of the associated generalized quad-

rangle Q(F) is a translation quadrangle. In [33] J.A. Thas proved that the

translation dual of the point-line dual of Q(F) has subquadrangles isomorphic

to Q(4, q). Hence, one can construct an ovoid of Q(4, q) via the general theory of

generalized quadrangles. Such an ovoid defines, via the Klein correspondence,

a symplectic semifield spread of PG(3, q).

After Thas’ result, there was a renewned interest in finite semifield spreads

from different points of view and his seminal ideas and constructions were gen-

eralized in different ways. Many new results have been obtained but, unfortu-

nately, neither new semifields flocks nor the proof that new ones do not exist!

In this paper we present some developments of Thas’ ideas and we discuss

some open problems.

∗The author is partially supported by MIUR and GNSAGA of INdAM.
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2 Thas’ results

2.1 Ovoids of orthogonal polar spaces

Denote by P either the polar space Q(2n, q) (n ≥ 2) associated with a non-

singular parabolic quadric of PG(2n, q) or the polar space Q+(2n+ 1, q) associ-

ated with a non-singular hyperbolic quadric of PG(2n+ 1, q).

An ovoid O of P is a set of qn + 1 points no two collinear in P. Two ovoids

O1 and O2 of P are called isomorphic if there is an automorphism τ of P which

maps O1 onto O2.

For n > 2 ovoids of P are rare objects. Examples of ovoids of Q+(7, q) are

known for q even, for q ≡ 2 (mod 3) and for q an odd prime (see [10, 31,

4, 27]). For n > 3, only some non-existence conditions are known (see [2]).

Ovoids of Q(2n, q) do not exist if n > 3 (see [9]) and Q(6, 2e) has no ovoids

(see [31]). The only two known ovoids of Q(6, q) are the unitary ovoid of

Q(6, 3e) and the Ree ovoid of Q(6, 32e+1) (see [10, 31]), which are also ovoids

of the generalized hexagon H(q) of order q associated with Q(6, q).

We say that O is a translation ovoid with respect to a point x ∈ O if there is a

collineation group of P fixing the point x linewise and acting sharply transitively

on O \ {x}.

Using a non-classical model of P, the following theorem has been proved

in [23].

Theorem 2.1 (Lunardon, Polverino [23]). There exists a translation ovoid of the

orthogonal space P if and only if P is one of Q+(3, q), Q(4, q), Q+(5, q).

We recall that a generalized quadrangle is a polar space of rank 2, and that

Q(4, q) is the classical generalized quadrangle associated with a non-singular

parabolic quadric of PG(4, q).

2.2 Semifield flocks

Let K be a quadratic cone of PG(3, q) with vertex v. A flock F of K is a partition

of K\{v} into q conics. If all planes containing the elements of the flock F share

a common line, then F is called linear. Two flocks F1 and F2 are isomorphic if

there is a collineation τ of PG(3, q) which fixes K and maps F1 onto F2.

Let F be a flock of the quadratic cone K of PG(3, q) with equation x2
2−x0x1 =

0. Then there are two functions f and g of Fq to itself such that F = {K ∩ πt |
t ∈ Fq} where πt is the plane with equation tx0 − f(t)x1 + g(t)x2 + x3 = 0 . We
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will write F = F(f, g) and we will say that πt is a plane of the flock. We can

suppose f(0) = g(0) = 0 (see [8]).

We say that F = F(f, g) is a semifield flock if f, g are additive maps. It has

been proved by N. L. Johnson in [15] that when q is even, the linear flock is the

only semifield flock.

By using some constructions of S.E. Payne [28] and W.M Kantor [11] of

generalized quadrangles as coset geometries, the following theorem had been

proved

Theorem 2.2 (J.A. Thas [32]). Given a flock F of a quadratic cone of PG(3, q),

then there is a standard construction of a generalized quadrangle Q(F) associated

with F .

The generalized quadrangle associated with a flock has a non-abelian colli-

neation group fixing a distinguished point (∞) linewise and acting sharply tran-

sitively on the points not collinear with (∞). Moreover Q(F) is isomorphic to

the classical generalized quadrangle H(3, q2) if and only if F is linear.

When F is a semifield flock, then there are a line [∞] incident with the special

point (∞) and an elementary abelian group of collineations of Q(F) of order

q2 fixing [∞] pointwise and acting sharply transitively on the lines of Q(F) at

distance 4 from [∞] (Johnson [15]). This implies that, for q odd, Q(F) is very

close to be a classical quadrangle (see [36] for more details).

2.3 Translation ovoids of Q(4, q) and semifield flocks

In this section we always suppose q odd because, for q even, semifield flocks are

linear.

Let C be a non-singular conic of π = PG(2, q). Embed π as a plane in

PG(3, q). Define an incidence structure T2(C) as follows. Points are (i) the

points of PG(3, q) \ π, (ii) the planes α of PG(3, q) for which |α ∩ C| = 1, and

(iii) a new symbol (∞). Lines are (a) the lines of PG(3, q) which are not con-

tained in π and meet C (necessarily in a unique point), and (b) the points of C.

Incidence is defined as follows. A point of type (i) is incident only with lines of

type (a); here the incidence is that of PG(3, q). A point of type (ii) is incident

with all lines of type (a) contained in it and with the unique element of C in it.

The point (∞) is incident with no line of type (a) and all lines of type (b). It is

an easy exercise to show that the so defined incidence structure is a generalized

quadrangle (see [29, §5.3]).

Denote by Q(4, q) the generalized quadrangle associated with the non-singular

quadric of PG(4, q) with equation x0x4 + x1x3 + x2
2 = 0. If π is the plane of
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PG(4, q) with equations x0 = x4 = 0, then C = π ∩ Q(4, q) is a non-singular

conic of π.

If PG(3, q) is the hyperplane of PG(4, q) with equation x4 = 0, then π is

a plane of PG(3, q) and we can consider the generalized quadrangle T2(C) as

before.

Let ⊥ be the polarity defined by Q(4, q). If l and m are lines of Q(4, q) and y

is a point of Q(4, q), then the map θ defined by

θ :































x = (0, 0, 0, 0, 1) 7→ (∞),

l 7→ l ∩ π, for x ∈ l ⊂ x⊥,

y ∈ x⊥ \ {x} 7→ y⊥ ∩ PG(3, q),

m 6∈ x⊥ 7→ 〈m, (0, 0, 0, 0, 1)〉 ∩ PG(3, q),

(1, a, b, c,−b2 − ac) 7→ (1, a, b, c, 0),

is an isomorphism from Q(4, q) onto T2(C) as generalized quadrangles.

Denote by [a, b, c, d] the plane of PG(3, q) with equation ax0 + bx1 + cx2 +

dx3 = 0. Let δ be the polarity of PG(3, q) defined by the map (a, b, c, d) 7→
[a, b, c, d]. Dualizing by δ, the vertex (0, 0, 0, 1) of the cone K with equation

x2
2 = x0x1 is mapped to the plane π with equation x3 = 0. The q + 1 lines of K

are mapped to the tangent lines of the conic C of π with equations 4x0x1−x2
2 =

0 = x3. The plane πt of the flock F(f, g) is mapped to the point (t,−f(t), g(t), 1)

which does not belong to π. As we suppose that q is odd, F(f, g) is a flock if

and only if the line of PG(3, q) joining (t,−f(t), g(t), 1) and (u,−f(u), g(u), 1),

with t 6= u, intersects π in an internal point of C. The set of points L(F) =

{(t,−f(t), g(t), 0) | t ∈ Fq} is called the dual flock of F .

Let F = F(f, g) be a semifield flock, and let Fs be a subfield of Fq for which f

and g are Fs-linear maps of Fq to itself. If q = sn, denote by f̄ and ḡ the adjoint

maps of f and g (respectively) with respect to the Fs-bilinear form defined by

〈x, y〉 = TrFs
(xy) for all x, y ∈ Fq. Let

Ω =

{(

f̄(x)− ḡ(y)

2
, x, y, 0

)

∣

∣ x, y ∈ Fq

}

.

If ⊥ is the polarity of PG(3n− 1, s) defined by the bilinear form

b((x0, x1, x2), (y0, y1, y2)) = TrFs
(2x0y1 + 2x1y0 + x2y2),

then, by field reduction, L(F) defines an (n−1)-subspace U of PG(3n−1, s) and

Ω defines a (2n− 1)-subspace T of PG(3n− 1, s) such that T = U⊥. Therefore,

as all points of L(F) are internal points of C, Ω is disjoint from C.
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Denote by T2(C) the model of Q(4, q) from C. If

T (F) = {(−f̄(x)− ḡ(y), x, y, 1) | x, y ∈ Fq} ∪ {(∞)},

then any line of PG(3, q) joining two points of T (F) is disjoint from C, i.e. it is

not a line of T2(C). As T (F) contains q2 + 1 points of T2(C), it is an ovoid of

T2(C) ([34]). As T2(C) is isomorphic to Q(4, q), we have the following theorem.

Theorem 2.3 (J.A. Thas [33, 34]). T (F) is an ovoid of Q(4, q).

Let f(γ) = bγ and g(γ) = aγ where X2 + aX + b is irreducible over Fq,

q any prime power. Then F = F(f, g) is the linear flock, and T (F) is an elliptic

quadric.

Let f(γ) = nγσ and g(γ) = 0 where σ ∈ AutFq, σ 6= id, and n is a non

square in Fq. Then F = F(f, g) is the Kantor flock (see [11, 8]), and T (F) is

the Kantor–Knuth ovoid.

Let q = 3r (r ≥ 3) and let f(γ) = nγ9 + n−1γ and g(γ) = γ3. Then F =

F(f, g) is the Ganley semifield flock ([7, 8]) and the ovoid T (F) is not isomor-

phic to an elliptic quadric nor to the Kantor–Knuth ovoid (Payne–Thas [35]).

Analyzing the Thas’ construction of T (F) we can prove the following theo-

rem.

Theorem 2.4 (Lunardon [18]). If F is a semifield flock, then T (F) is a transla-

tion ovoid of Q(4, q).

If O is a translation ovoid of Q(4, q) then there is a semifield flock F such that

O = T (F).

If F1 and F2 are semifield flocks of K, then F1 is isomorphic to F2 if and only

if T (F1) and T (F2) are isomorphic.

The correspondence between semifield flocks and translation ovoids was

used by Bader, Lunardon and Pinneri in [1] to construct the sporadic semifield

flock F of order 243 starting from the translation ovoid O of Q(4, 35) found by

Penttila and Williams in [30]. The sporadic semifield flock F is not isomorphic

to any of the previously known semifield flocks and it has been proved in [1]

that F = F(f, g) where f(γ) = γ9 and g(γ) = γ27.

No more semifield flocks are known.
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3 A step further

3.1 Spreads

A spread of PG(2n − 1, q) is a partition S of the point-set of PG(2n − 1, q) into

(n − 1)-dimensional subspaces. With any spread S is associated a translation

plane A(S). A spread S of PG(2n − 1, q) is said to be Desarguesian if A(S) is

isomorphic to AG(2, qn) (see, e.g., [5, §5.1] or [16]).

Two spreads S and S ′ are isomorphic if there is a collineation τ of PG(2n −
1, q) such that S ′ = Sτ . Isomorphic spreads define isomorphic translation pla-

nes.

We say that the spread S is symplectic if there is a symplectic polarity of

PG(2n−1, q) such that all elements of S are totally isotropic with respect to the

polarity.

A spread S is a semifield spread (with respect to a fixed element A of S) if

there is a group of collineations of PG(2n − 1, q) fixing A pointwise and acting

sharply transitively on S \ {A}. This is equivalent to saying that the plane A(S)
belongs to the Lenz–Barlotti class V.

3.2 Ovoids of Q+(5, q) and spreads of PG(3, q)

Let x0x5 + x1x4 + x2x3 = 0 be the equation of the Klein quadric Q+(5, q)

of PG(5, q). If l is the line of PG(3, q) joining the points (x0, x1, x2, x3) and

(y0, y1, y2, y3), we set pij = xiyj − xjyi. Then the line l is mapped to the point

k(l) = (p01, p02, p03, p21, p13, p32) of Q+(5, q). The map k : l 7→ k(l) from the

lineset of PG(3, q) to the pointset of Q+(5, q) is known as the Klein correspon-

dence. We note that the point (1, a, b, c, d,−ad − bc) is the image of the line

l = 〈(1, 0, c,−d), (0, 1, a, b)〉 of PG(3, q).

We recall that an ovoid of Q+(5, q) is a set O of q2 + 1 points of Q+(5, q) no

two collinear on Q+(5, q).

It is well known (see, e.g., [13]) that:

• a set S of lines of PG(3, q) is a spread if and only if O = k(S) is an ovoid

of Q+(5, q);

• the spread S is symplectic if and only if there is a hyperplane H of PG(5, q)

containing O = k(S), i.e. O is an ovoid of Q(4, q) = H ∩Q+(5, q);

• a set R of q + 1 lines of PG(3, q) is a regulus (i.e. a ruling of a hyperbolic

quadric of PG(3, q)) if and only if k(R) is a conic intersection of Q+(5, q)

with a plane;
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• a spread S is Desarguesian if and only if O = k(S) is an elliptic quadric

contained in a 3-dimensional subspace T of PG(5, q), i.e. O = T∩Q+(5, q).

An ovoid O of Q+(5, q) is a translation ovoid (with respect to a point x ∈ O)

if and only if there is a subgroup G ⊂ PGL(6, q) of order q2 fixing Q+(5, q),

fixing all the lines of Q+(5, q) incident with x and acting sharply transitively on

O \ {x}.

If q = 2h is even, translation ovoids of Q(4, q) are elliptic quadrics ([3]), i.e.

the desarguesian spread is the only symplectic semifield spread of PG(3, 2h).

Associated with a flock of the quadratic cone is a spread of PG(3, q) as in-

dependently proved by M. Walker and J.A. Thas (see [37, 6]). This spread is

defined in the following way.

Let the cone K = Σ ∩ Q+(5, q), where Σ is a 3-dimensional subspace of

PG(5, q). Let F = {Ct | t ∈ Fq} be a flock of K; denote the plane of the conic

Ct by πt and let π∗
t be the polar plane of πt with respect to Q+(5, q). Hence

C∗
t = π∗

t ∩Q+(5, q) is a non-singular conic through the vertex v of the cone and

OF = ∪t∈Fq
C∗

t

is an ovoid of Q+(5, q), which is the union of q conics which share the vertex v

of K (see [37, 6]).

Note that all the planes π∗
t contain the polar line of Σ with respect to Q+(5, q),

which is tangent to C∗
t at v.

Theorem 3.1 (Gevaert, Johnson [8]). For each ovoid O of Q+(5, q), which is the

union of q conics sharing a point, there is a flock F of K such that O is isomorphic

to OF .

The flocks F1 and F2 are isomorphic if and only if the ovoids OF1
and OF2

are.

Let S(F) be the spread of PG(3, q) defined via the Klein correspondence by

the ovoid OF . As a conic of Q+(5, q) is mapped to a regulus of PG(3, q), then

we have proved the following corollary.

Corollary 3.2 (Gevaert, Johnson [8]). For any spread S of PG(3, q) there is a

flock F of K such that S is isomorphic to S(F) if and only if S is the union of q

reguli sharing a line.

Let O be the ovoid of Q+(5, q) defined (under the Klein correspondence) by

the spread S of PG(3, q). By possibly changing coordinates in PG(3, q), we can

suppose that A = {(0, 0, c, d) | c, d ∈ Fq, (c, d) 6= (0, 0)} and B = {(a, b, 0, 0) |
a, b ∈ Fq, (a, b) 6= (0, 0)} are lines of S. Hence the points k(A) = (0, 0, 0, 0, 0, 1)

and k(B) = (1, 0, 0, 0, 0, 0) belong to O.
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A point x ∈ O different from k(A) has coordinates (1, a, b, c, d,−ad− bc) and,

under the Klein correspondence, it is the image of the line

D = 〈(1, 0, c,−d), (0, 1, a, b)〉

of S. If JD =
(

c −d
a b

)

, then D = {((u, v), (u, v)JD) | u, v ∈ Fq, (u, v) 6= (0, 0)}.

The set C = {JD | D ∈ S, D 6= A} has the following properties:

(1) |C| = q2,

(2) the zero matrix O = JB belongs to C,

(3) if X and Y are different elements of C, then X − Y is non-singular.

Then each non-zero matrix of C is non-singular and C is called a spread set

associated to S with respect to A, B. We note that C is not uniquely defined.

Suppose that C is closed under addition. For each element X of C, let τX
be the collineation of PG(3, q) defined by the matrix ( I X

O I ) where O and I are

respectively the zero and the identity 2× 2 matrix. Then τX fixes all points of A

and all planes through A. As C is closed under addition, τX fixes the spread S
and {τX | X ∈ C} is a group of order q2 acting sharply transitively on S \ {A}.

As a spread is a semifield spred if and only if a corresponding spread set is closed

underthe addition (see, e.g., [5]), the following theorem has been proved.

Theorem 3.3 (Lunardon [21]). A spread S is a semifield spread if and only if

k(S) is a translation ovoid.

3.3 Linear sets

Let PG(r − 1, qt) = PG(V,GF(qt)). A set Ω of points of PG(r − 1, qt) is an

Fq-linear set of PG(r − 1, qt) if there is a subset W of V , which is an Fq-vector

subspace of V , such that a point of PG(r − 1, qt) belongs to Ω if and only if it is

defined by a vector of W .

Two Fq-linear sets Ω1 and Ω2 of PG(r − 1, qt) are equivalent if there is a

collineation ω of PG(r − 1, qt) such that Ωω
1 = Ω2.

If W is an Fq-vector space of rank m, we say that Ω has rank m.

If we regard V as a vector space over Fq of rank rt, then PG(V,Fq) = PG(rt−
1, q). A subspace 〈x〉 of V of rank 1 over Fqt defines an Fq-subspace L(x) of rank

t of V as a vector space over Fq. Thus

S = {L(x) | 〈x〉 is a point of PG(r − 1, qt)}

defines a partition of the point-set of PG(rt − 1, q) in (t − 1)-dimensional sub-

spaces, called the Fq-linear representation of PG(r − 1, qt). The following theo-

rem has been proved.
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Theorem 3.4 (Lunardon [19, 20]). For any Fq-linear set Ω of Λ = PG(r− 1, qt)

of rank h, there is an (h − 1)-dimensional subspace U of Σ = PG(rt − 1, q) such

that Ω = {〈x〉 ∈ Λ | L(x) ∩ U 6= ∅}.

Denote by ω the polarity of PG(r − 1, qt) defined by a non-singular bilinear

form b of V . If TrFq
is the trace of Fqt over Fq, the bilinear form Tr(b(x; y))

on V , as a vector space over Fq, defines a polarity ⊥ of PG(rt− 1, q).

Let Ω be an Fq-linear set of rank h of PG(r−1, qt). If U is a (h−1)-dimensional

subspace of PG(rt−1, q) such that Ω = {〈x〉 ∈ PG(r−1, qt) | L(x)∩U 6= ∅}, and

U⊥ is the polar space of U with respect to ⊥, then Ω∗ = {〈x〉 ∈ PG(r − 1, qt) |
L(x)∩U⊥ 6= ∅} is an Fq-linear set of rank rt−h of PG(r−1, qt). We call Ω∗ the

dual of Ω. We note that Ω∗ does not depend, up to collineations, on the chosen

polarity of PG(r − 1, qt).

3.4 Translation ovoids of Q+(5, q)

As before, let Q+(5, q) be the polar space defined by the equation x0x5+x1x4+

x2x3 = 0 in PG(5, q).

Let Σ′ = PG(4, q) be the hyperplane of PG(5, q) with equation x5 = 0 and let

Σ be the 3-dimensional subspace with equations x0 = x5 = 0. Then Q+(3, q) =

Σ ∩ Q+(5, q) is a non-singular hyperbolic quadric of Σ. Define a point-line

geometry H in the following way. The points are (i) a symbol (∞), (ii) the 3-

dimensional subspaces of Σ′ which intersect Σ in a plane tangent to Q+(3, q)

and (iii) the points of Σ′ \ Σ. The lines are (I) the points of Q+(3, q) or (II) the

lines of Σ′ which intersect Σ in a point of Q+(3, q) and (III) the planes of Σ′

which intersect Σ in a line of Q+(3, q). The point (∞) is incident only with the

lines of type (I). All other incidences are inherited from Σ′.

Let ⊥ be the polarity defined by Q+(5, q). If l and m are lines of Q+(5, q) and

y is a point of Q+(5, q), then the map θ defined as

θ :











































x = (0, 0, 0, 0, 0, 1) 7→ (∞),

l 7→ l ∩ Σ, for x ∈ l ⊂ x⊥,

l 7→ l⊥ ∩ Σ′, for x 6∈ l ⊂ x⊥,

y ∈ x⊥ \ {x} 7→ y⊥ ∩ Σ′,

m 6⊂ x⊥ 7→ 〈m, (0, 0, 0, 0, 0, 1)〉 ∩ Σ′,

(1, b, c, d, e,−be− cd) 7→ (1, b, c, d, e, 0),

is an isomorphism from Q+(5, q) onto H. The group E of all elations of Σ′ with

axis Σ defines a translation group of H with base point (∞), i.e. the group of all
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collineations of H fixing the point (∞) linewise. We note that E has a canonical

structure of Fq-vector space.

Let α be a plane of Σ such that α ∩ Q+(3, q) = C is a non-singular conic. If

Λ is a hyperplane of Σ′ = PG(4, q) such that Λ ∩ Σ = α, then the point-line

geometry Hα, whose elements are either (∞) or the subspaces of Λ, which are

the intersection of elements of H with Λ, is canonically isomorphic via θ to the

polar space

Q(4, q) = Q+(5, q) ∩ 〈(0, 0, 0, 0, 0, 1),Λ〉.

We note that Hα is the generalized quadrangle T2(C) (see [29]).

As in Section 3.2, denote by k(A) the point of Q+(5, q) associated with the

line A of PG(3, q) under the Klein correspondence.

If O is an ovoid of Q+(5, q) containing the point (0, 0, 0, 0, 0, 1), let p(O) be

the projection of Oθ from (1, 0, 0, 0, 0, 0) = k(B)θ to Σ.

If F = F(f, g) is a semifield flock, S = S(F) is the semifield spread associ-

ated with F and O = k(S), then

p(O) = {(0, t, u, u+ g(t),−f(t), 0) | t, u ∈ Fq},

i.e. p(O) is union of lines through the point (0, 0, 1, 1, 0, 0). As a first result we

can restate the characterisation of flock spreads by Gevaert and Johnson.

Theorem 3.5 (Lunardon [21]). Let O be an ovoid of H containing the point (∞).

There is a flock F such that O = OF if and only if p(O) is union of lines through

a common point.

Let O be an ovoid of Q+(5, q). If O = k(S) and C is a spread set with

respect to A, B associated with S then, changing the homogeneous coordinates

in PG(3, q) (if necessary, cf. Section 3.2) one can suppose k(A) = (0, 0, 0, 0, 0, 1),

k(B) = (1, 0, 0, 0, 0, 0). If JD =
(

c −d
a b

)

, then the line

D = 〈(1, 0, c,−d), (0, 1, a, b)〉

is represented on the Klein quadric by the point k(D) = (1, a, b, c, d,−cb − ad)

and k(D)θ = (1, a, b, c, d, 0). Hence

p(O) =

{

(0, a, b, c, d, 0)
∣

∣ JD =

(

c −d

a b

)

∈ C; JD 6= 0

}

.

If S is a semifield spread, then C is closed under summation. Therefore there is

a subfield Fs of Fq (q = sn), such that C is an Fs-vector space of rank 2n. With

the above notation, the following holds.
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Theorem 3.6 (Lunardon [21]). Let O be an ovoid of H containing the points

(1, 0, 0, 0, 0, 0) and (∞) and let S be the spread of PG(3, q) such that k(S)θ = O.

The spread S is a semifield spread if and only if Ω = p(O) is an Fs-linear set of

rank 2n disjoint from the quadric Q+(3, q) = Σ ∩Q+(5, q).

The above theorem, obtained as byproduct while studing the relationship

between semifield flocks and symplectic spreads, plays an important role in the

theory of the planes of Lenz–Barlotti class V. Indeed, it was a widespread belief

(see, e.g., [38]) that it would be possible to classify all finite planes of class V,

but using such a construction in Theorem 3.6, many new examples have been

exhibited by different authors (S. Ball, I. Cardinali, G.L. Ebert, N.L. Johnson,

M. Lavrauw, G. Marino, O. Polverino, J. Sheekey, R. Trombetti,. . . ) disproving

the above conjecture (for more details see, e.g., [22]).

If ⊥ is the polarity of PG(3, q) associated with Q+(3, q), let Ω⊥ be the dual

of Ω with respect to ⊥. Then Ω⊥ is disjoint from Q+(3, q) too, hence it defines a

new semifield spread of PG(3, q), denoted S⊥, called the translation dual of S.

Theorem 3.7 (Lunardon [21]). Two semifield spreads S1 and S2 of PG(3, q) are

isomorphic if and only if S⊥
1 and S⊥

2 are isomorphic.

As a consequence of this result we have that the translation dual operation is

“well defined”.

We note that Ω⊥ is contained in a plane if and only if Ω is contained in a

pencil of lines. Hence, by Theorem 3.5, we can restate the original result of J.A.

Thas.

Corollary 3.8. The semifield spread S is union of q reguli which share a line (i.e.

S is the spread associated with a semifield flock of the quadratic cone of PG(3, q))

if and only if S⊥ is a symplectic spread of PG(3, q).

4 Recent steps

4.1 Geometric spread sets and semifields

In the previous section, using the Klein correspondence between the lines of

PG(3, q) and the points of Q+(5, q), we studied the semifield spreads of PG(3, q)

as translation ovoids of Q+(5, q) but this point of view is not anymore possible

for semifield spreads of PG(2n− 1, q) (n > 2). Hence we have used a different

approach, more algebraic than the previous one.

A presemifield is an algebraic structure satisfying all the axioms for a skewfield

except (possibly) associativity. A presemifield is a semifield if there is an identity

element.
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Let E = End(Fqn ,Fq) be the vector space of all the endomorphisms of

Fqn as vector space over Fq. The Segre variety Sn,n of the projective space

PG(n2 − 1, q) = PG(E,Fq) is the algebraic variety defined by the elements of E

of rank 1 and the (n − 2)-secant variety M(Sn,n) (the secant variety, for short)

of Sn,n is the hypersurface of PG(n2 − 1, q) defined by the singular elements

of E.

The Segre variety has two rulings of (n − 1)-dimensional subspaces, say R
and R′, that satisfy the following properties:

(a) the subspaces of R (resp. R′) are mutually disjoint;

(b) if X ∈ R and X ′ ∈ R′ then X ∩X ′ is a point;

(c) each point of Sn,n belongs to a unique element of R and to a unique element

of R′.

For more details see [14, Section 25.5].

An Fs-linear set Ω of PG(n2 − 1, q) of rank nr (q = sr) is called a geometric

spread set if Ω ∩M(Sn,n) = ∅. By definition of linear set, there is an Fs-vector

subspace of rank rn, say C, of E such that Ω = {〈ϕ〉 | 0 6= ϕ ∈ C}. The map

Φ : Fqn 7→ C defined by Φb = ϕ ⇔ ϕ(1) = b is a bijection because all elements

of C different from 0 are not singular. Hence we can define a multiplication ⋆ on

Fqn by x⋆y = Φy(x) for all x, y ∈ Fqn . Then S(Ω) = (Fqn ,+, ⋆) is a presemifield

such that (λx) ⋆ y = λ(x ⋆ y), for all λ ∈ Fq, and for all x, y ∈ Fqn (for more

details see, e.g., [25]). If we put

X(∞) = {(0, y) | y ∈ Fqn},

X(b) = {(x, x ⋆ b) | x ∈ Fqn},

S(Ω) = {X(b) | b ∈ Fqn} ∪ {X(∞)},

then all the elements of S(Ω) are Fq-subspaces of Fqn × Fqn , and S(Ω) is a

semifield spread of PG(2n− 1, q) = PG(Fqn × Fqn ,Fq).

All semifield spreads of PG(2n− 1, q) can be constructed in such a way from

a geometric spread set. Isomorphic semifield spreads produce geometric spread

sets which are equivalent under the action of the subgroup of PΓL(n2, q) fixing

the rulings of Sn,n, and conversely (see [21] for n = 2 and [17] for n > 2).

4.2 Generalized translation dual of a semifield

Let R be any fixed ruling of the Segre variety Sn,n.

If X1, . . . , Xn−1 are elements of R the subspace 〈X1, . . . , Xn−1〉 has dimen-

sion ≤ n2−n−1. Let T be the set of all subspaces M = 〈X1, . . . , Xn−1〉 such that
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dimM = n2−n−1. Then M is contained in M(Sn,n) and M(Sn,n) =
⋃

M∈T
M

(see [26]).

If a = (a0, a1, . . . , an−1), denote by ϕa the element of E defined as

ϕa : x 7→ a0x+ a1x
q + · · ·+ an−1x

qn−1

and let ⊥ be the polarity of PG(n2 − 1, q) associated with the symmetric non-

singular bilinear form of E defined by 〈ϕa, ϕb〉 = TrFq
(a · b). We have the

following results.

Theorem 4.1 (Lunardon, Marino, Polverino, Trombetti [26]). An element X

belongs to R if and only if X⊥ ∈ T .

Theorem 4.2 (Lunardon, Marino, Polverino, Trombetti [26]). Let T be a (2n− 1)-

dimensional subspace of PG(n2 − 1, q) satisfying the following conditions:

(T1) T ∩ T⊥ = ∅;

(T2) T⊥ ∩ Sn,n = ∅;

(T3) 〈X,T⊥〉 ∩ T ⊂ M(Sn,n) ∀X ∈ R.

Then, for each geometric spread set Ω contained in T , the set Ω∗
T = Ω∗ ∩ T , with

Ω∗ the dual of Ω, turns out to be a geometric spread set as well.

The semifield spread associated with Ω∗
T is called the translation dual (with

respect to T ) of the semifield spread associated with Ω. Moreover we have the

following theorem.

Theorem 4.3 (Lunardon, Marino, Polverino, Trombetti [26]). Two semifield

spreads of PG(2n− 1, q) are isomorphic if and only if their translation duals are.

4.3 Examples

The classical translation dual

If n = 2, then PG(E,Fq) = PG(3, q) and the whole space satisfies Properties

(T1), (T2) and (T3) of Theorem 4.2. Also, S2,2 = Q+(3, q) is a hyperbolic quadric

and M(Sn,n) = Q+(3, q). Hence if n = 2, the construction described in Theo-

rem 4.2 returns the classical translation dual operation (see [26]).

The symplectic dual

Let n = 3 and q odd. Let

T = {〈x ∈ Fq3 7→ ax+ bqxq + bxq2 ∈ Fq3〉 | a, b ∈ Fq3 , (a, b) 6= (0, 0)}
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be the 5-dimensional subspace of PG(End(Fq3 ,Fq),Fq) = PG(8, q) defined by

the self-adjoint maps with respect to the non-degenerate bilinear form 〈 , 〉.
Then V = T ∩ Sn,n ⊂ M(Sn,n) is a Veronesian surface of T .

Note that Ω is a geometric spread set contained in V if and only if the semi-

field spread S(Ω) is symplectic.

It is easy to verify that the properties of Theorem 4.2 are satisfied. Hence,

if Ω is a geometric spread set contained in T , then Ω∗
T is a geometric spread

set as well, and the symplectic semifield spread S(Ω∗
T ) arising from Ω∗

T is the

symplectic dual of the symplectic semifield spread S(Ω) as constructed in [24].

In [24, Theorem 4], the authors apply such a procedure to a Desarguesian

geometric spread set contained in T , proving that the symplectic dual of the

Galois field Fq3 is isotopic to a generalized twisted field. Also in [24] another

geometric spread set Ω contained in T when q = s2, is constructed with the

following properties: Ω is a Baer subgeometry of PG(5, s2) [24, Theorem 1]

and the semifield spread associated with Ω is isomorphic to its symplectic dual

S(Ω∗
T ) [24, Proposition 2].

A special case

Suppose n > 2. Let

T = {〈ϕa0,0,...,0,ah,0,...,0〉 | a0, ah ∈ Fqn , (a0, ah) 6= (0, 0)}.

Then an element ϕ of E belongs to T⊥ if and only if ϕ = ϕ0,a1,...,ah−1,0,ah+1...,an−1

where (a1, . . . , ah−1, ah+1, . . . , an−1) is different from (0, . . . , 0). Hence T ∩
T⊥ = T⊥ ∩ Sn,n = ∅.

It has been proved that 〈X,T⊥〉 ∩ T ⊂ Ω(Sn,n) for all X ∈ Ri for a given

i ∈ {1, 2} if and only if either q is even or q is odd and the integer n
gcd(n,h) is

even (see [26]).

It follows that, when q is even or when q is odd and n
gcd(n,h) is even, by apply-

ing Theorem 4.3, we can always construct the translation dual of any geometric

spread set contained in T .

5 Future steps?

5.1 A construction

As many of the reviewed constructions use a polarity, we would like to present

an unpublished construction of a commutative semifield which also uses a po-

larity.
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Let ω be the polarity of PG(r − 1, qn) defined by the bilinear form

〈(X1, X2, . . . , Xr); (Y1, Y2, . . . , Yr)〉 = X1Y1 +X2Y2 + · · ·+XrYr

and let

∆ = {(a, f2(a), . . . , fr(a)) | a ∈ Fqn}

be an Fq-linear set of rank n. Define a multiplication ◦ on Fqn by

x ◦ y = xy +
r

∑

i=2

fi(x)fi(y).

Theorem 5.1. If Pω is disjoint from ∆ for any point P in ∆, then S = Fqn(+, ◦)
is a commutative presemifield central over Fq.

Proof. It is clear that multiplication is commutative and distributive. Hence, to

prove that S is a commutative presemifield, we only have to prove that x◦y = 0

if and only if x = 0 or y = 0.

If x 6= 0, y 6= 0 and x ◦ y = 0, then the point (y, f2(y), . . . , fr(y)) of ∆ belongs

to the hyperplane Pω where P = (x, f2(x), . . . , fr(x)) ∈ ∆. As this is impossible

we have proved that S is a presemifield.

As (λx) ◦ y = λ(x ◦ y) for all λ ∈ Fq and x, y ∈ Fqn , we conclude that S is

central over Fq. �

Unfortunately, the only example we know of the above construction is the

commutative presemifield, isotopic to a field, defined by

x ◦ y = xy − cxqyq

where c has norm (over Fq) different from 1. If −c = ξ2, then the Fq-linear set

∆ = {(a, ξaq) | a ∈ Fqn} has the required properties.

5.2 Open problems

We conclude by listing some open problems:

• The original main problem in the theory of semifield flocks: construct a

new semifield flock or prove that new ones do not exist!

• Only one class of examples of commutative semifields of even order is

actually known (see [12]). Therefore it would be interesting to construct

some new commutative semifields of even order.
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• In order to construct some new examples of symplectic semifield spreads

of PG(5, q), q even, one might extend the construction of the symplectic

dual to the even case.

• In PG(8, q) classify all subspaces T of dimension 5 which satisfy the con-

ditions of Theorem 4.2.

• Determine the generalized translation dual of all known commutative

semifields.
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