# Unitary subspaces of unitary Grassmannians 

Bruce N. Cooperstein


#### Abstract

The purpose of this article is to characterize those subspaces of a unitary Grassmannian which are isomorphic to a unitary Grassmannian.


Keywords: incidence geometry, Grassmannian
MSC 2010: 05B25, 51A45, 51B24

## 1 Introduction and basic concepts

We assume the reader is familiar with the concepts of a partial linear rank two incidence geometry $\Gamma=(\mathcal{P}, \mathcal{L})$ (also called a point-line geometry) and the Lie incidence geometries. For the former we refer to [3] and for the latter see the paper [4].

The collinearity graph of $\Gamma$ is the graph $(\mathcal{P}, \Delta)$ where $\Delta$ consists of all pairs of points belonging to a common line. For a point $x \in \mathcal{P}$ we will denote by $\Delta(x)$ the collection of all points collinear with $x$. For points $x, y \in \mathcal{P}$ and a positive integer $t$ a path of length $t$ from $x$ to $y$ is a sequence $x_{0}=x, x_{1}, \ldots, x_{t}=y$ such that $\left\{x_{i}, x_{i+1}\right\} \in \Delta$ for each $i=0,1, \ldots, t-1$. The distance from $x$ to $y$, denoted by $d(x, y)$, is defined to be the length of a shortest path from $x$ to $y$ if some path exists and otherwise is $+\infty$.

By a subspace of $\Gamma$ we mean a subset $S$ of $\mathcal{P}$ such that if $l \in \mathcal{L}$ and $l \cap S$ contains at least two points, then $l \subset S .(\mathcal{P}, \mathcal{L})$ is said to be a Gamma space if, for every $x \in \mathcal{P},\{x\} \cup \Delta(x)$ is a subspace. A subspace $S$ is singular provided each pair of points in $S$ is collinear, that is, $S$ is a clique in the collinearity graph of $\Gamma$. For a Lie incidence geometry with respect to a "good node" every singular subspace, together with the lines it contains, is isomorphic to a projective space, see [4]. Clearly the intersection of subspaces is a subspace and, consequently, it is natural to define the subspace generated by a subset $X$ of $\mathcal{P},\langle X\rangle_{\Gamma}$, to be
the intersection of all subspaces of $\Gamma$ which contain $X$. Note that if $(\mathcal{P}, \mathcal{L})$ is a Gamma space and $X$ is a clique then $\langle X\rangle_{\Gamma}$ will be a singular subspace.

A polar space is an incidence geometry $(\mathcal{P}, \mathcal{L})$ which satisfies: (i) For any point $x$ and line $l$ either $x$ is collinear with every point of $l$ or a unique point of $l$; and (ii) For each point $x$ there exists a point $y$ such that $x$ and $y$ are non-collinear. A polar space in which lines are maximal singular subspaces is a generalized quadrangle.

### 1.1 Ordinary Grassmannians

Let $\mathbb{F}$ be a field and $W$ be a vector space of dimension $m$ over $\mathbb{F}$. For $1 \leq i \leq$ $m-1$, let $L_{i}(W)$ be the collection of all $i$-dimensional subspaces of $W$. Now fix $j, 2 \leq j \leq m-2$ and set $\mathcal{P}=L_{j}(W)$.

For pairs $(C, A)$ of incident subspaces of $W$ with $\operatorname{dim}(A)=a, \operatorname{dim}(C)=c$, let $S(C, A)$ consist of all the $j$-subspaces $B$ of $W$ such that $A \subset B \subset C$.

Finally, let $\mathcal{L}$ consist of all the sets $S(C, A)$ where $\operatorname{dim} A=j-1, \operatorname{dim} C=j+1$ and $A \subset C$. The rank two incidence geometry $(\mathcal{P}, \mathcal{L})$ is the incidence geometry of $j$-Grassmannian of $W$, denoted by $\mathcal{G}_{j}(W)$. We also use the notation $\mathcal{G}_{m, j}(\mathbb{F})$ for the isomorphism type of this geometry and sometimes $A_{m-1, j}(\mathbb{F})$.

We note that the incidence geometry $\mathcal{G}_{4,2}(\mathbb{F})$ is a polar space which is isomorphic to the incidence geometry of singular one-spaces and totally singular two-spaces on a hyperbolic orthogonal space in a vector space of dimension six, $D_{3,1}(\mathbb{F}) \cong Q^{+}(6, \mathbb{F})$.

### 1.2 The unitary Grassmannians

Let $\mathbb{E} \subset \mathbb{F}$ be a Galois extension of fields of degree two and let $\sigma$ be the generator of the Galois group $\operatorname{Gal}(\mathbb{F} / \mathbb{E})$. We will often denote the image of an element $a \in \mathbb{F}$ under $\sigma$ by $\bar{a}$. Let $V$ be a space of dimension $n$ over the field $\mathbb{F}$ and $f$ be a non-degenerate $\sigma$-Hermitian form.

For $X \subset V$ let $X^{\perp}=\{\mathbf{v} \in V: f(\mathbf{x}, \mathbf{v})=\mathbf{0}, \forall \mathbf{x} \in X\}$. Recall that a subspace $U$ of $V$ is totally isotropic if $U \subset U^{\perp}$. The Witt index of $(V, f)$ is the dimension of a maximal totally isotropic subspace of $V$. This is an invariant of $f$. Because $(V, f)$ is non-degenerate the dimension of a totally isotropic subspace is at most $\left\lfloor\frac{n}{2}\right\rfloor$. We will say that $(V, f)$ has maximal Witt index if there are totally isotropic subspaces of dimension $\left\lfloor\frac{n}{2}\right\rfloor$. Hereafter we assume $(V, f)$ is non-degenerate of dimension $n$ with Witt index equal to $n^{\prime}=\left\lfloor\frac{n}{2}\right\rfloor$.

For $1 \leq k \leq n^{\prime}=\left\lfloor\frac{n}{2}\right\rfloor$, let $\mathcal{I}_{k}(V)$ consist of all totally isotropic $k$-dimensional subspaces of $V$. More generally, if $W$ is a subspace of $V$ then we will denote by
$\mathcal{I}_{k}(W)$ the set of all elements of $\mathcal{I}_{k}(V)$ which are contained in $W$. We will set $P=\mathcal{I}_{1}(V)$, the collection of all one-dimensional subspaces of $V$ and $L=\mathcal{I}_{2}(V)$, the collection of totally isotropic two-spaces (projective lines). The incidence geometry $(P, L)$ is the unitary polar space of rank $n^{\prime}$ over the field $\mathbb{F}$, which we will denote by ${ }^{2} A_{n-1,1}(\mathbb{F})$.

Now fix $l$ with $2 \leq l \leq n^{\prime}-1$ and set $\mathcal{P}=\mathcal{I}_{l}$. For a pair of subspaces $C \subset D \subset C^{\perp}$ (so $C$ is totally isotropic) where $\operatorname{dim}(C)=c<l<d=\operatorname{dim}(D)$ let $T_{l}(D, C)$ consist of all the $l$-dimensional totally isotropic subspaces $U$ such that $C \subset U \subset D$. When $c=l-1, d=l+1$ we set $\lambda(D, C)=T_{l}(D, C)$ and $\mathcal{L}=\left\{\lambda(D, C): C \subset D \subset C^{\perp}, \operatorname{dim} C=l-1, \operatorname{dim} D=l+1\right\}$. In this way we obtain a rank 2 incidence geometry $\Gamma=(\mathcal{P}, \mathcal{L})$ which we refer to as the unitary $l$-Grassmannian of $V$. We denote the isomorphism type of this geometry by ${ }^{2} A_{n-1, l}(\mathbb{F})$. Note that two totally isotropic $l$-subspaces, when viewed as points of $\Gamma$, are on a line if and only if they span a totally isotropic $(l+1)$-dimensional subspace. We remark that the automorphism group of the geometry $(\mathcal{P}, \mathcal{L})$ is isomorphic to $P U_{n}(\mathbb{F})$.

When the subspace $C$ has dimension $l-k$ and $D$ is totally isotropic and has dimension $l+m-k$ then $T_{l}(D, C)$ is an ordinary Grassmannian isomorphic to $\mathcal{G}_{m, k}(\mathbb{F})$. Subspaces arising this way are said to be parabolic since their stabilzers in $\operatorname{Aut}(\Gamma) \cong U_{n}(\mathbb{F})$ are parabolic subgroups. In [1] we classified subspaces of ${ }^{2} A_{n-1, l}(\mathbb{F})$ which are isomorphic to $\mathcal{G}_{m, k}(\mathbb{F})$ and proved that they are all parabolic.

Assume $\operatorname{dim}(V)=n=2 n^{\prime}$. By a hyperbolic basis of the unitary space $(V, f)$ we will mean a vector space basis $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n^{\prime}}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{n^{\prime}}\right)$ such that each vector $\mathbf{x}_{i}, \mathbf{y}_{i}$ is isotropic, $f\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)=1$ and $f\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=f\left(\mathbf{x}_{i}, \mathbf{y}_{j}\right)=f\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)=0$ for all $i \neq j$. The existence of a hyperbolic basis can be shown by an easy induction on the Witt index $m$ of $f$.

If $\operatorname{dim}(V)=n=2 n^{\prime}+1$ then by a "near" hyperbolic basis of the unitary space ( $V, f$ ) we will mean a vector space basis ( $\left.\mathbf{x}_{1}, \ldots, \mathbf{x}_{n^{\prime}}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{n^{\prime}}, \mathbf{z}\right)$ such that each vector $\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{z}$ is isotropic, $f\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)=1, f\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=f\left(\mathbf{x}_{i}, \mathbf{y}_{j}\right)=$ $f\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)=0$, and $f\left(\mathbf{x}_{i}, \mathbf{z}\right)=f\left(\mathbf{y}_{i}, \mathbf{z}\right)=0$ for all $i<n^{\prime}$. The existence of a near hyperbolic basis can also be shown by an easy induction on the Witt index $n^{\prime}$ of $f$.

### 1.3 Subspaces of unitary Grassmannians

We continue with the notation from section 1.2 so that $(V, f)$ is a non-degenerate unitary space of dimension $n$ and $1 \leq l \leq n^{\prime}-1$. Assume $\Gamma=(\mathcal{P}, \mathcal{L})$ is isomorphic to ${ }^{2} A_{n-1, l}(\mathbb{F})$ with $\mathcal{P}=\mathcal{I}_{l}(V)$. Suppose $X$ is a subset of $\mathcal{P}$. We will denote by $\Sigma(X)$ the vector subspace of $V$ that is spanned by all $\mathbf{x} \in X$ and by $I(X)$ the
intersection of all $\mathbf{x} \in X$.
Let $A \in \mathcal{I}_{l-k}$ with $k \geq 1$ and $B$ a subspace of $A^{\perp}$ with $A \subset B$ and such that the quotient space $B / A$ is non-degenerate of dimension $q$. In this situation the collection of isotropic subspaces $T_{l}(B, A)$ is a subspace of the incidence geometry $(\mathcal{P}, \mathcal{L})$ and is isomorphic to a unitary Grassmannian space ${ }^{2} A_{q-1, k}(\mathbb{F})$. In our main result we show that these "natural" examples are the only subspaces of $(\mathcal{P}, \mathcal{L})$ which are isomorphic to a unitary Grassmannian.

Main theorem. Let $S$ be a subspace of ${ }^{2} A_{n-1, l}(\mathbb{F})$ isomorphic to ${ }^{2} A_{n^{\prime}-1, l^{\prime}}(\mathbb{F})$. Then there exists a totally isotropic subspace $A$ of dimension $l-l^{\prime}$ and a subspace $B$ with $A \subset B \subset A^{\perp}$ with $B / A$ non-degenerate of dimension $n^{\prime}$ and such that $S=T_{l}(B, A)$.

It may be possible that a result like this can be obtained more generally by relaxing the condition that the unitary space have maximal Witt index but we have chosen not to do so because of the many technical obstacles that would have to be overcome. In any case, the result is applicable whenever the field is finite.

The proof will be very much in the spirit of [5] where we proved a similar result for symplectic Grassmanians. Before proceeding to the proof we introduce some notation:

Notation 1.1. Since we will generate all kinds of subspaces, of the unitary space $V$, of the geometry $\Gamma=(\mathcal{P}, \mathcal{L})$, etc., we need to distinguish between these. When $X$ is some collection of subspaces or vectors from $V$ we will denote the subspace of $V$ spanned by $X$ by $\langle X\rangle_{\mathbb{F}}$. When $X$ is a subset of $\mathcal{P}$ we will denote the subspace of $\Gamma=(\mathcal{P}, \mathcal{L})$ generated by $X$ by $\langle X\rangle_{\Gamma}$.

For a point $p \in \mathcal{P}$ we will denote by $\Delta^{\Gamma}(p)$ the collection of all points of $\mathcal{P}$ which are collinear with $p$ in $(\mathcal{P}, \mathcal{L})$ (including $p$ ).

## 2 Properties of unitary Grassmannians

In this short section we review some properties of unitary Grassmannians. We omit the proofs of most because these propositions are either well known or easy to prove.

Lemma 2.1. Let $(V, f)$ be a non-degenerate unitary space of dimension $n$ and maximal Witt index $m$. Then the following hold:
(i) The unitary Grassmannian space ${ }^{2} A_{l}(V)$, which is isomorphic to ${ }^{2} A_{n-1, l}(\mathbb{F})$, has two classes of maximal singular subspaces with representatives $T_{l}(B, 0)$ where $B$ is a totally isotropic subspace of $V, \operatorname{dim} B=l+1$, and $T_{l}(C, A)$
where $A$ and $C$ are totally isotropic subspaces of $V$ with $A \subset B$ and where $\operatorname{dim}(A)=l-1, \operatorname{dim}(C)=m$. In the former case $T_{l}(B, 0) \cong \mathbb{P} \mathbb{G}_{l}(\mathbb{F})$ and in the latter $T_{l}(C, A) \cong \mathbb{P G}_{m-l}(\mathbb{F})$. We refer to the first class as type one maximal singular subspaces and the latter as type two singular subspaces.
(ii) If $M_{1}$ and $M_{2}$ are maximal singular subspaces of different types then either $M_{1} \cap M_{2}$ is empty, a point, or a line.
(iii) If $M_{1}$ and $M_{2}$ are distinct maximal singular subspaces of the same type then $M_{1} \cap M_{2}$ is either empty or a point.

Definition 2.2. A $\operatorname{symp}$ of $(\mathcal{P}, \mathcal{L})$ is a maximal geodesically closed subspace which is isomorphic to a polar space.

Lemma 2.3. There are two classes of symps in $(\mathcal{P}, \mathcal{L})$. One class has representative $T_{l}(E, D)$ where $D \subset E$ are totally isotropic subspaces, $\operatorname{dim} D=l-2, \operatorname{dim} E=$ $l+2$. In this case $T_{l}(E, D) \cong D_{3,1}(\mathbb{F})$ the polar space of a non-degenerate six dimensional orthogonal space with maximal Witt index. The second class has representative $T_{l}\left(C^{\perp}, C\right)$ where $C$ is a totally isotropic subspace, $\operatorname{dim} C=l-1$. In this case $T_{l}\left(C^{\perp}, C\right)$ is isomorphic to the polar space of a non-degenerate unitary space of dimension $n-2(l-1)$.
Definition 2.4. We refer to a member of the first class of symps in Lemma 2.3 as a type one symp and and a member of the second class as a type two symp.

Lemma 2.5. There are three classes of points at distance two in $\Gamma=(\mathcal{P}, \mathcal{L})$ :
(i) The pairs $\{x, y\}$ which satisfy $\operatorname{dim}(x \cap y)=l-2$ and $x \perp y$. Such a pair $\{x, y\}$ lies in a unique symp which is $T_{l}(x+y, x \cap y)$. Note this only occurs if the Witt index of the unitary space is greater than or equal to four.
(ii) The pairs $\{x, y\}$ that satisfy $\operatorname{dim}(x \cap y)=l-1$ and $(x+y) /(x \cap y)$ is a non-degenerate two-space. This pair belongs to a unique symp which is $T_{l}\left((x \cap y)^{\perp}, x \cap y\right)$.
(iii) The pairs $\{x, y\}$ which satisfy $\operatorname{dim}(x \cap y)=l-2$ and $\operatorname{dim}\left([x+y] \cap[x+y]^{\perp}\right)=$ l. There is a unique point (of the geometry $(\mathcal{P}, \mathcal{L})$ ) collinear with both $x$ and $y$, namely $[x+y] \cap[x+y]^{\perp}$.

Definition 2.6. The first class of pairs in Lemma 2.5 will be referred to as type one symp pairs, the second as type two symp pairs and the third type as special pairs. For a point $x$ we will denote by $\Delta_{(2, i)}(x)$ all the points $y$ such that the pair $x, y$ is a type $i$ symp pair and by $\Delta_{(2, s)}(x)$ the points $y$ such that $x, y$ is a special pair.
Lemma 2.7. Let $S$ be a type two symp of the incidence geometry $(\mathcal{P}, \mathcal{L}) \cong{ }^{2} A_{n-1, l}(\mathbb{F})$ and $x \in \mathcal{P} \backslash S$. Then $\Delta^{\Gamma}(x) \cap S$ is either empty or a line.

Lemma 2.8. Let $(\mathcal{P}, \mathcal{L})={ }^{2} A_{l}(V) \cong{ }^{2} A_{n-1, l}(\mathbb{F})$ and let $p \neq q \in \mathcal{I}_{1}(W)$.
(i) Assume $p \perp q$ and let $x \in T_{l}\left(p^{\perp}, p\right)$. Then one of the following occurs:
( $\alpha$ ) $q \subset x$ and $x \in T_{l}\left(q^{\perp}, q\right)$;
( $\beta$ ) $q$ is not contained in $x, x \subset q^{\perp}$ and $\Delta^{\Gamma}(x) \cap T_{l}\left(q^{\perp}, q\right)=T_{l}(x+q, q)$ is a singular subspace isomorphic to $\mathbb{P G}_{l-1}(\mathbb{F})$; or
( $\gamma$ ) $x$ is not contained in $q^{\perp}$ and $\left\langle x \cap q^{\perp}, q\right\rangle$ is the unique point in $\Delta_{(2,2)}(x) \cap$ $T_{l}\left(q^{\perp}, q\right)$.
(ii) Assume $p$ and $q$ are non-orthogonal. Then $T_{l}\left(p^{\perp}, p\right) \cap T_{l}\left(q^{\perp}, q\right)=\emptyset$. If $x \in$ $T_{l}\left(p^{\perp}, p\right)$ then $y=\left\langle x \cap q^{\perp}, q\right\rangle_{V}$ is the unique point in $T_{l}\left(q^{\perp}, q\right) \cap \Delta_{(2,2)}(x)$.

### 2.1 Properties of the geometry ${ }^{2} \boldsymbol{A}_{5,2}(\mathbb{F})$

The particular geometry ${ }^{2} A_{5,2}(\mathbb{F})$ plays a prominent role in our proof and we use several properties of this geometry which we will make explicit here for later reference. Throughout this subsection we will let $W$ be a non-degenerate six dimensional unitary space over $\mathbb{F}$ and $(\mathcal{P}, \mathcal{L})$ will be the geometry ${ }^{2} A_{2}(W) \cong$ ${ }^{2} A_{5,2}(\mathbb{F})$.

Lemma 2.9. The maximal singular subspaces of ${ }^{2} A_{2}(W)$ are projective planes. If $M_{1}, M_{2}$ are two such subspaces then $M_{1} \cap M_{2}$ is either empty or a point.

Proof. Suppose $x$ and $y$ are collinear points of ${ }^{2} A_{2}(W)$. Then $x \cap y \in \mathcal{I}_{1}(W)$ and $T_{2}\left([x \cap y]^{\perp},[x \cap y]\right)$ is a generalized quadrangle and therefore its lines are maximal singular subspaces. Therefore, if $z$ is collinear with both $x$ and $y$ but does not lie on the line $T_{2}(x+y, x \cap y)$ then $z$ must lie in the totally isotropic three space $x+y$ and $\langle x, y, z\rangle_{\Gamma}=T_{2}(x+y, 0)$ is a projective plane (dual to $T_{1}(x+y, 0)$.) We have therefore shown that the maximal singular subspaces of ${ }^{2} A_{2}(W)$ are all of the form $T_{2}(U, 0)$ for $U$ a totally isotropic subspace of $W$ of dimension three.

Now let $M_{i}=T_{2}\left(U_{i}, 0\right), i=1,2$ where $U_{i}$ are distinct maximal totally isotropic subspaces of $W$. Then $\operatorname{dim}\left(U_{1} \cap U_{2}\right) \leq 2$. If $\operatorname{dim}\left(U_{1} \cap U_{2}\right)=2$ then $U_{1} \cap U_{2}$ is the unique point in $M_{1} \cap M_{2}$. Otherwise $M_{1} \cap M_{2}=\emptyset$.

Lemma 2.10. Let $M_{i}=T_{2}\left(U_{i}, 0\right), i=1,2$ where $U_{i}$ are maximal isotropic subspaces of $W$. Assume $M_{1} \cap M_{2}=\{x\}$. For a point $y \in M_{1}, y \neq x$ we have the following:
(i) $\Delta^{\Gamma}(y) \cap M_{2}=\{x\}$.
(ii) $\left[\Delta_{(2,2)}(y) \cap M_{2}\right] \cup\{x\}$ is the line $T_{2}\left(M_{2}, x \cap y\right)$.

Proof. Note that $U_{1} \cap U_{2}=\{x\}$. Let $y \in M_{1}$. Then $y \cap x=p$ is a projective point of $W$. Since $U_{2}$ is a maximal totally singular subspace and $y$ is not contained in $U_{2}$ it follows that $y^{\perp} \cap U_{2}=x$ and so $\{x\}=\Delta^{\Gamma}(y) \cap M_{2}$. On the other hand, suppose $z \in M_{2}$ and $z \cap x=p$. Then $y \cap z=p$ and the pair $y, z$ is a type two symp pair. Thus, every point of the line $T_{2}\left(U_{2}, p\right)$, apart from $x$ belongs to $\Delta_{(2,2)}(y)$. Moreover, if $w \in M_{2}$ and $w \cap x=q \neq p$ then $\{y, w\}$ is a special pair. Thus, we have shown (i) and (ii).

Lemma 2.11. Let $M_{1}$ and $M_{2}$ be maximal singular subspaces of ${ }^{2} A_{2}(W)$ such that $M_{1} \cap M_{2}=\emptyset$. Then one of the following occurs:
(i) There are lines $m_{i} \subset M_{i}, i=1,2$, satisfying the following: For each point $x \in m_{1}, \Delta^{\Gamma}(x) \cap M_{2} \in m_{2}$ is a point and $m_{2} \subset \Delta^{\Gamma}(x) \cup \Delta_{(2,2)}(x)$. In particular, for every $x \in m_{1}, y \in m_{2}, \operatorname{dim}(x \cap y)=1$. Moreover, if $x_{1} \in$ $m_{1}, x_{2} \in M_{2} \backslash m_{2}$ then $\left\{x_{1}, x_{2}\right\}$ is a special pair, whereas if $x_{i} \notin m_{i}, i=1,2$ then $d\left(x_{1}, x_{2}\right)=3$.
(ii) For each point $x \in M_{1}, M_{2} \cap \Delta^{\Gamma}(x)=\emptyset$. For each $x \in M_{1}, \Delta_{(2, s)}(x) \cap M_{2}$ is a line and if $y \in M_{2}, y \notin \Delta_{(2, s)}(x) \cap M_{2}$ then $d(x, y)=3$.

Proof. (i) Let $M_{i}=T_{2}\left(U_{i}, 0\right), i=1,2$. Then we have either $U_{1} \cap U_{2}=\left\{\mathbf{0}_{W}\right\}$ or $U_{1} \cap U_{2}=\{p\}$ where $p$ is an isotropic point of $W$. Assume first that $U_{1} \cap U_{2}=\{p\}$. We show that (i) holds. Set $m_{i}=T_{2}\left(U_{i}, p\right), i=1,2$, lines of $M_{1}, M_{2}$ respectively. Suppose $x \in m_{1}$. Let $y=U_{2} \cap x^{\perp}$. Then $y \in m_{2}$ and it is the unique point of $M_{2}$ collinear with $x$. For any other point $y^{\prime} \in m_{2}, \operatorname{dim}\left(x \cap y^{\prime}\right)=1$ and therefore $\left\{x, y^{\prime}\right\}$ is a type two symp pair. On the other hand, if $z \in M_{2} \backslash m_{2}$ then $x \cap z=\left\{\mathbf{0}_{W}\right\}$. However, $p \subset$ $x^{\perp}{ }_{W} \cap z$ and therefore $\{x, z\}$ is a special pair. On the other hand, suppose $x_{i} \in M_{2}, i=1,2$ and $p$ is not contained in $x_{1} \cap x_{2}$. Then $x_{1} \cap x_{2}=\{\mathbf{0}\}$ and $x_{1} \cap x_{2}^{\perp}=\{\mathbf{0}\}$ and $d\left(x_{1}, x_{2}\right)=3$.
(ii) Now assume that $U_{1} \cap U_{2}=\left\{\mathbf{0}_{W}\right\}$. Then for each $x \in M_{1}$ and $y \in M_{2}$ we have $x \cap y=0$ and $\{x, y\}$ cannot be collinear or a type two symp pair and so either $\{x, y\}$ is special pair or $d(x, y)=3$. However, for $x \in$ $M_{1}, x^{\perp} \cap U_{2}=p$ is a projective point of $W$ and all the points of the line $T_{2}\left(U_{2}, p\right)$ are in $\Delta_{(2, s)}(x)$. This proves (ii).

Notation 2.12. If $M_{1}, M_{2}$ are maximal singular subspaces of ${ }^{2} A_{2}(W)$ we will write $M_{1} \sim M_{2}$ if $M_{1} \cap M_{2}$ is a point and $M_{1} * M_{2}$ if $M_{1}, M_{2}$ are as in Lemma 2.11 part (i).

Lemma 2.13. Let $\mathcal{M}$ be the collection of all maximal singular subspaces of ${ }^{2} A_{2}(W)$. Then
(i) The graph $(\mathcal{M}, \sim)$ is connected.
(ii) The graph $(\mathcal{M}, *)$ is connected.

Proof. (i) The graph $(\mathcal{M}, \sim)$ is the collinearity graph of the dual polar space ${ }^{2} A_{5,3}(\mathbb{F})=D U(6, \mathbb{F})$ which is known to be connected.
(ii) In light of (i) it suffices to prove that if $M_{1} \sim M_{2}$ then there exists a $*$ path from $M_{1}$ to $M_{2}$. Suppose $M_{i}=T_{2}\left(U_{i}, 0\right), i=1,2$ where $U_{1} \cap U_{2} \in \mathcal{I}_{2}(W)$. Let $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ be a basis for $U_{1} \cap U_{2}$. Extend this to a basis $\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ for $U_{1}$ and $\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{w}_{3}\right)$ for $U_{2}$. Now $\mathbf{v}_{3}$ and $\mathbf{w}_{3}$ are non-orthogonal. Then $\left(\mathbf{v}_{3}+\mathbf{w}_{3}\right)^{\perp}$ is a non-degenerate four dimensional subspace of $W$ which contains $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$. Extend this to a base $\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{w}_{1}, \mathbf{w}_{2}\right)$ where $\mathbf{v}_{i} \perp$ $\mathbf{w}_{j}$ for $i \neq j$ and $\mathbf{w}_{1} \perp \mathbf{w}_{2}$. Now set $M_{3}=\left\langle v_{1}, w_{2}, v_{3}+w_{3}\right\rangle_{\mathbb{F}}$. Then $M_{1} * M_{3} * M_{2}$.

## 3 Proof of the main theorem

In this section we prove our main theorem. Let $(V, f)$ be a non-degenerate unitary space of dimension $n$ over $\mathbb{F}$ and $(W, g)$ a non-degenerate unitary space of dimension $m$ over $\mathbb{F}$. When necessary, we will distinguish orthogonality in $V$ by writing $\perp_{V}$ and in $W$ by $\perp_{W}$. Before proceeding to the proof we introduce some notation: When $A, B$ are subspaces of $V$ and $l$ is an positive integer we will denote by $T_{(V, l)}(B, A)$ the collection of $l$-dimensional totally isotropic subspaces of $V$ which satisfy $A \subset C \subset B$ and in a similar fashion we define $T_{(W, k)}(E, D)$.

Fix an $l, 1 \leq l \leq n-1$ and let $\Gamma=(\mathcal{P}, \mathcal{L})$ where $\mathcal{P}=\mathcal{I}_{l}(V)$ and $\mathcal{L}$ consists of all sets $\lambda(B, A)=T_{(V, l)}(B, A)$ where $A \subset B \subset B^{\perp_{V}}$ are subspaces of $V, \operatorname{dim} A=$ $l-1$ and $\operatorname{dim} B=l+1$.

Now fix $k, 1 \leq k \leq m-1$ and set $\mathcal{P}^{\prime}=\mathcal{I}_{k}(W)$ and set $\mathcal{L}^{\prime}$ equal to the collection of all set $\lambda\left(B^{\prime}, A^{\prime}\right)=T_{(W, k)}\left(B^{\prime}, A^{\prime}\right)$ where $A^{\prime} \subset B^{\prime} \subset\left(B^{\prime}\right)^{\perp_{W}}$ are subspaces of $W, \operatorname{dim} A^{\prime}=k-1$ and $\operatorname{dim} B^{\prime}=k+1$ so that $\Gamma^{\prime}=\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}\right) \cong$ ${ }^{2} A_{m-1, k}(\mathbb{F})$. Now assume that $S$ is a subspace of $\Gamma, S=\left(\mathcal{P}_{S}, \mathcal{L}_{S}\right) \cong\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}\right)$. Let $\sigma: \Gamma^{\prime} \rightarrow S$ be an isomorphism. For a totally isotropic subspace $U \in \mathcal{I}_{t}(W), 1 \leq$ $t \leq m$, we will denote by $S_{U}$ the image under $\sigma$ of $T_{(W, k)}\left(U^{\perp_{W}}, U\right)$.

Notation 3.1. For a subset $X$ of $\mathcal{P}$ we will denote by $\Sigma(X)$ the subspace of $V$ spanned by all $U \in X$.

We will show that the conclusions of our main theorem hold in a sequence of lemmas. Our proof is by induction on $N=n+l+m+k$.

Lemma 3.2. Let $x, y \in \mathcal{P}$ be collinear and $z$ on the line $x y$. Then $x \cap y \subset z \subset x+y$.

Proof. This is an immediate consequence of the definition of collinearity in ${ }^{2} A_{n-1, l}$ and of a line.

Lemma 3.3. Let $S$ be a subspace of $\Gamma={ }^{2} A_{l}(V) \cong{ }^{2} A_{n-1, l}(\mathbb{F})$ and $X$ a generating set of $S$, that is, a subset $X$ of $S$ such that $\langle X\rangle_{\Gamma}=S$. Then $\Sigma(S)=\Sigma(X)$.

Proof. We define a sequence of sets $P_{j}(X) \subset \mathcal{P}, j \geq 0$ inductively as follows: $P_{0}(X)=X$ and

$$
P_{j+1}(X)=P_{j}(X) \cup \bigcup_{\left\{\lambda \in \mathcal{L}:\left|\lambda \cap P_{j}(X)\right| \geq 2\right\}} \lambda
$$

and set $P(X)=\cup_{j \geq 0} P_{j}(X)$. Note that $P_{j+1}(X) \supset P_{j}(X)$. We claim that $P(X)$ is a subspace of $\Gamma$. For suppose that $\lambda$ is a line and $x \neq y \in \lambda \cap P(X)$. Then there are natural numbers $s, t$ such that $x \in P_{s}(X), y \in P_{t}(X)$. If $t^{\prime}=\max \{s, t\}$ then $x, y \in P_{t^{\prime}}(X)$ and then $\lambda \subset P_{t^{\prime}+1}(X)$. This proves that $P(X)$ is a subspace.

Since $X \subset P(X)$ and $X$ generates $S$ we can conclude that $S \subset P(X)$. On the other hand, a simple induction implies that $P_{j}(X) \subset S$ for each $j \geq 0$, whence $P(X) \subset S$ and consequently, $P(X)=S$.

We next claim that $\Sigma\left(P_{j}(X)\right) \subset \Sigma(X)$ for all $j \geq 0$. The proof is by induction on $j$. Since $P_{0}(X)=X$ the base case is clear.
Now assume that $\Sigma\left(P_{j}(X)\right) \subset \Sigma(X)$ and let $z \in P_{j+1}(X) \backslash P_{j}(X)$. Then there is a line $\lambda$ containing $z$ with $\left|\lambda \cap P_{j}(X)\right| \geq 2$. Let $x \neq y \in \lambda \cap P_{n}(X)$. By the inductive hypothesis, $x, y \subset \Sigma(X)$ and then by Lemma 3.2 it follows that $z \subset \Sigma(X)$.

Since $P_{j}(X) \subset P_{j+1}(X)$ it follows that $\Sigma\left(P_{j}(X)\right) \subset \Sigma\left(P_{j+1}(X)\right)$ and consequently that $\mathrm{U}_{j \geq 0} \Sigma\left(P_{j}(X)\right)$ is a subspace of $V$ and equal to $\Sigma\left(\cup_{j \geq 0} P_{j}(X)\right)$. We can then conclude that

$$
\begin{aligned}
\Sigma(X) & \supseteq \cup_{j \geq 0} \Sigma\left(P_{j}(X)\right) \\
& =\Sigma\left(\cup_{j \geq 0} P_{j}(X)\right) \\
& =\Sigma(S) .
\end{aligned}
$$

Before getting to the next result we need a lemma on the generation of unitary polar spaces of which have maximal Witt index.

Lemma 3.4. Let $\Pi=(P, L)$ be the polar space of isotropic points and totally isotropic lines of a non-degenerate unitary space $(V, f)$ of dimension $n$ and maximal Witt index $m$. Then the following occurs:
(i) Assume $n=2 m$ and the Witt index of $(V, f)$ is $m$. Then any subgraph of the collinearity graph of ( $P, L$ ) with isomorphism type $K_{2,2, \ldots, 2}$ ( $m$ 2's) generates $P$.
(ii) Assume $n=2 m+1$ and the Witt index of $(V, f)$ is $m$. Let $p_{i}, q_{i}, 1 \leq i \leq m$ and $r$ be isotropic points such that
(1) $p_{i} \perp p_{j}, p_{i} \perp q_{j}, q_{i} \perp q_{j}$ for $i \neq j, 1 \leq i, j \leq m$ whereas $p_{i} \not \perp q_{i}$ for $1 \leq i \leq m ;$
(2) $p_{i} \perp r_{j} \perp q_{i}$ for $1 \leq i \leq m-1,1 \leq j \leq 3, p_{m} \not \perp r \not \perp q_{m}$; and
(3) $p_{m}^{\perp} \cap r^{\perp} \neq q_{m}^{\perp} \cap r^{\perp}$.

Then $\left\{p_{i}, q_{i} \mid 1 \leq i \leq m\right\} \cup\{r\}$ generates $P$.
Proof. (i) This is proved by Blok and Cooperstein in [2].
(ii) Set $X=\left\{p_{i}, q_{i} \mid 1 \leq i \leq m\right\}$ and $Y=X \cup\{r\}$. Also set $U=\langle X\rangle_{\mathbb{F}}, H=$ $\langle X\rangle_{\Pi}$, and $S=\langle Y\rangle_{\Pi}$. By (i) $H=\mathcal{I}_{1}(U)$, the point set of ${ }^{2} A_{2 m-1,1}(U)$. Also, since $U$ is a linear hyperplane of $V, H$ is a geometric hyperplane of $P$. Note, by assumption (3) that $r \notin H$. Let $x \in P, x \perp r$. We claim that $x \in S$. If $x \in H$ then $x \in S$ since $H \subset S$. So assume that $x \notin H$. Let $\lambda$ be the line of $\Pi$ containing $x$ and $r$ and let $y$ be the point of $\lambda$ in $H$. Since $r, y \in S$ it follows that $\lambda \subset S$, whence $x \in S$. In a similar fashion, if $x, y \in P \backslash H$ and $x \perp y \perp r$ then $x \in S$. We now claim that $S=P$. Suppose $x \in P \backslash H$. Let $z_{1}, z_{2} \in H, z_{1} \perp r \perp z_{2}, z_{1} \not \perp z_{2}$. Let $\lambda_{i}, i=1,2$ be the line on $z_{i}$ and $r$. Of course, we can assume that $x \not \perp r_{3}$. Suppose $x \not \perp z_{1}$. Let $y$ be the point on $\lambda_{1}$ such that $x \perp y$. Then $r_{3} \perp y \perp x$ whence $x \in S$ by the above. We get a similar conclusion if $x \not \perp z_{2}$. So we may now assume that $z_{1} \perp x \perp z_{2}$. Let $\lambda_{3}$ be the line on $x$ and $z_{2}$ and choose a point $y$ on $\lambda_{1}, y \neq r, z_{1}$ and let $y^{\prime}$ be the point on $\lambda_{3}$ with $y \perp y^{\prime}$. Observe that $y^{\prime} \neq z_{2}$ since $z_{1} \not \perp z_{2}$. Now $r \perp y \perp y^{\prime}$ and therefore $y^{\prime} \in S$. Then $y^{\prime}$ and $z_{2} \in S$ from which we can conclude that $\lambda_{3} \subset S$. Thus, $x \in S$.

Lemma 3.5. If $k=1$, that is, $S$ is isomorphic to ${ }^{2} A_{m-1,1}(\mathbb{F})$ with $m \geq 4$, then there exists a totally isotropic subspace $D$ of dimension $l-1$, and a subspace $E$ contained in $D^{\perp}$ and containing $D$ such that $E / D$ non-degenerate of dimension $n^{\prime}$ and $S=T_{(V, l)}(E, D)$.

Proof. The subspace $S$ is a polar space and therefore contained in one of the two types of symps because any polar space is the convex hull of any two of its points at distance two. Suppose $S$ is contained in a type two symp, $T_{(V, l)}\left(D^{\perp}, D\right)$, where $D$ is totally isotropic, $\operatorname{dim} D=l-1$. Suppose $n^{\prime}=2 s$ is even. Let $p_{i}, q_{i}, 1 \leq i \leq s$, be points of $S$ such that the pairs $\left\{p_{i}, p_{j}\right\},\left\{p_{i}, q_{j}\right\},\left\{q_{i}, q_{j}\right\}$ are collinear for $i \neq j$ and $\left\{p_{i}, q_{i}\right\}$ are not collinear for $1 \leq i \leq s$. By (i) of Lemma 3.4, $\left\langle p_{i}, q_{i} \mid 1 \leq i \leq s\right\rangle_{\Gamma}=S$. Since $p_{i}, q_{i} \in T_{(V, l)}\left(D^{\perp}, D\right)$ and $p_{i}, q_{i}$ are not collinear we must have $p_{i}^{\perp} \cap q_{i}=D, p_{i} \perp_{V} p_{j}, p_{i} \perp_{V} q_{j}$, and $q_{i} \perp_{V} q_{j}$ for $i \neq j$. Then the space $E=\sum_{i=1}^{s}\left(p_{i}+q_{i}\right)$ has dimension $2 s+(l-1)$ and $E / D$
is non-degenerate. Since $\left\{p_{i}, q_{i} \mid 1 \leq i \leq s\right\}$ generates the subspace $S$ it follows from Lemma 3.3 that $\Sigma(S)=E$. So in this case the conclusion of the theorem holds.

Suppose $m=2 s+1$. Let $p_{i}, q_{i}, 1 \leq i \leq s$ and $r$ be points of $S$ such that the pairs $\left\{p_{i}, p_{j}\right\},\left\{p_{i}, q_{j}\right\},\left\{q_{i}, q_{j}\right\}, i \neq j$, are collinear for $1 \leq i \leq s$, that $\left\{p_{i}, r\right\}$ and $\left\{q_{i}, r\right\}$ are collinear for $1 \leq s-1$ and all other pairs are non-collinear. Further, assume that $r$ is not in $\left\langle p_{i}, q_{i} \mid 1 \leq i \leq s\right\rangle_{\Gamma}$. Then by (ii) of Lemma 3.4, $S$ is generated by $\left\{p_{i}, q_{i} \mid 1 \leq s\right\} \cup\{r\}$. Note that $D$ is a subset of $p_{i}, q_{i}$ for every $i$ and $r$ since all these points are in $T_{(V, l)}\left(D^{\perp}, D\right)$. Since $p_{i}, q_{i}$ are not collinear it follows that $p_{i}^{\perp} \cap q_{i}=D$ and $p_{i} / D, q_{i} / D$ are two non-orthogonal isotropic points of $D^{\perp} / D$ as are $p_{m} / D$ and $r / D$ as well as $q_{m} / D$ and $r / D$. It then follows that the dimension of $r / D+\sum_{i=1}^{s}\left(p_{i} / D+q_{i} / D\right)$ is $2 s+1=n^{\prime}$. Consequently, if $E=r+\sum_{i=1}^{s}\left(p_{i}+q_{i}\right)$ then $\operatorname{dim}(E)=(l-1)+2 s+1=(l-1)+n^{\prime}$. Since $\left\{p_{i}, q_{i} \mid 1 \leq i \leq s\right\} \cup\{r\}$ generates $S$ it follows that $E=\Sigma(S)$. Thus, in this case the result holds.

We now show that $S$ cannot be contained in a type one symp. Suppose to the contrary that $S$ is contained in $T_{(V, l)}(B, A)$ with $A \subset B \subset A^{\perp_{V}}$, subspaces of $V$ with $\operatorname{dim}(A)=l-2$ and $\operatorname{dim}(B)=l+2$. Let $p_{1}, p_{2}, q_{1}, q_{2}$ be points in $S$ such that all pairs are collinear except $\left\{p_{1}, q_{1}\right\}$ and $\left\{p_{2}, q_{2}\right\}$. Then $\left\langle p_{1}, p_{2}, q_{1}, q_{2}\right\rangle_{\Gamma}$ is a quadrangle of $S$ isomorphic to ${ }^{2} A_{3,1}(\mathbb{F})$. However, for four such points in $T_{(V, l)}(B, A),\left\langle p_{1}, p_{2}, q_{1}, q_{2}\right\rangle_{\Gamma}$ is a grid and we have a contradiction.

We will next be treating the case that $m \geq 6, S$ is isomorphic to ${ }^{2} A_{n^{\prime}-1,2}(\mathbb{F})$ and is a subspace of ${ }^{2} A_{l}(V)$ which is isomorphic to ${ }^{2} A_{n-1, l}(\mathbb{F})$. Let $p$ be a point of $\mathcal{I}_{1}(W)$ and denote by $S_{p}$ those elements of $S$ which are the image of point $x$ of the geometry ${ }^{2} A_{2}(W)$ such that $p \subset x$. Then $S_{p}$ is isomorphic to ${ }^{2} A_{m-3,1}(\mathbb{F})$. By Lemma 3.5 there is a totally isotropic subspace $A_{p}$ of dimension $l-1$ and a subspace $B_{p}$ contained in $A_{p}^{\perp V}$ and containing $A_{p}$ such that $B_{p} / A_{p}$ non-degenerate of dimension $n^{\prime}-2$ and $S_{p}=T_{(V, l)}\left(B_{p}, A_{p}\right)$.

Lemma 3.6. For $p \neq q \in \mathcal{I}_{1}(W), A_{p} \neq A_{q}$.
Proof. Suppose to the contrary that $A_{p}=A_{q}$ for some pair $p \neq q \in \mathcal{I}_{1}(W)$. Set $U=A_{p}=A_{q}$. Then $S_{p}, S_{q}$ are both subspaces of $T_{(V, l)}\left(U^{\perp_{V}}, U\right)$ which is a type two symp. By Lemma 2.7 for any point $y \in S_{q} \backslash S_{p}, \Delta^{\Gamma}(y) \cap S_{p}$ is either empty or a singular subspace. In particular, $S_{p}$ is not contained in $\Delta^{\Gamma}(y)$.

Choose a $y \in S_{q} \backslash S_{p}$ and let $x$ be a point in $S_{p}$ which is not collinear with $y$. Let $w, z$ be points of $S_{p}$ which are non-collinear but are both collinear with $x$. Since $S_{p}, y$ are contained in the symp $T_{(V, l)}\left(U^{\perp_{V}}, U\right), y$ is collinear with a point $w^{\prime} \neq x$ on the line $x w$ and a point $z^{\prime} \neq x$ on the line $x z$. However, the points $w^{\prime}$
and $z^{\prime}$ are non-collinear and this contradicts the fact that $S_{p} \cap \Delta^{\Gamma}(y)$ is empty or a singular subspace. Thus, $A_{p} \neq A_{q}$ for $p \neq q \in \mathcal{I}_{1}(W)$.

We shall now deal with the case $k=l=2$.
Lemma 3.7. Let $n \geq m \geq 6$. Assume $m=l=2$. Then there is a non-degenerate $m$-dimensional subspace $B$ of $V$ such that $S=\mathcal{I}_{2}(B)=T_{(V, 2)}(B, 0)$.

Proof. Let $(W, g)$ be a non-degenerate unitary space of dimension $m$ and maximal Witt index $m^{\prime}=\left\lfloor\frac{m}{2}\right\rfloor$ and let $\sigma:{ }^{2} A_{m-1,2} \rightarrow S$ be a isomorphism. For $p \in \mathcal{I}_{1}(W)$ let $S_{p}=\sigma\left(T_{(W, 2)}\left(p^{\perp}, p\right)\right)$ which is isomorphic to ${ }^{2} A_{m-3,1}(\mathbb{F})$, a symp of $S$. By Lemma 3.5 there is a point $A_{p}$ of $V$ and a subspace $B_{p} \subset A_{p}^{\perp V}$ such that $B_{p} / A_{p}$ non-degenerate of dimension $m-2$ such that $S_{p}=T_{(V, 2)}\left(B_{p}, A_{p}\right)$. We have seen for $p \neq q \in \mathcal{I}_{1}(W)$ that $A_{p} \neq A_{q}$. Thus the map $p \rightarrow A_{p}$ of points of $\mathcal{I}_{1}(W)$ to $\mathcal{I}_{1}(V)$ is injective.

Next note that if $p \perp_{W} q$ then $T_{(W, 2)}\left(p^{\perp W}, p\right) \cap T_{(W, 2)}\left(q^{\perp W}, q\right)=\left\{\langle p, q\rangle_{W}\right\}$. If $x=\sigma\left(\langle p, q\rangle_{W}\right)$ then $A_{p}$ and $A_{q}$ must be contained in $x$. Then they are distinct hyperplanes of $x$ and consequently, $x=\left\langle A_{p}, A_{q}\right\rangle_{V}$. In particular, $A_{p}+A_{q}=$ $\left\langle A_{p}, A_{q}\right\rangle_{V}$ is totally isotropic.

Next suppose $r \neq p$ is a point of $\mathcal{I}_{1}\left(\langle p, q\rangle_{W}\right)$. Then $\langle p, q\rangle_{W}=\langle p, r\rangle_{W}$ from which it follows that $A_{p}+A_{r}=A_{p}+A_{q}$ which implies in turn that $A_{r} \in$ $T_{(V, 2)}\left(A_{p}+A_{q}, 0\right)$; since, for $l=2, A_{p} \cap A_{q}=0$.

Finally, suppose that $p, q \in \mathcal{I}_{1}(W), p$ and $q$ are non-orthogonal. We claim that $A_{p}$ and $A_{q}$ are non orthogonal. Suppose to the contrary that $A_{p} \perp A_{q}$. Let $r \in \mathcal{I}_{1}(W)$ with $p \perp r \perp q$ so that $\langle p, r\rangle_{W},\langle q, r\rangle_{W}$ are two points of ${ }^{2} A_{2}(W)$ which are non-collinear. Then $\sigma\left(\langle p, r\rangle_{W}\right)=A_{p}+A_{r}$ and $\sigma\left(\langle q, r\rangle_{W}\right)=A_{q}+A_{r}$ are not collinear. However, since $A_{p}+A_{q}+A_{r} \in \mathcal{I}_{3}(V)$ and $\left(A_{p}+A_{r}\right) \cap\left(A_{q}+\right.$ $\left.A_{r}\right)=A_{r} \neq 0, A_{p}+A_{r}$ it follows that $A_{p}+A_{r}$ and $A_{q}+A_{r}$ are collinear points of ${ }^{2} A_{n-1}(V)$, a contradiction.

Assume that $A \in \mathbb{P} \mathbb{G}\left(A_{p}+A_{q}\right)$. We claim that there exists an $r \in \mathbb{P} \mathbb{G}(p+q)$ such that $A_{r}=A$. Towards that end, let $s_{1}, s_{2}$ be non-collinear points of $W$ with $p \perp s_{i} \perp q$ for $i=1,2$. The totally isotropic lines $p+s_{i}$ and $q+s_{i}$ meet at $s_{i}$ and their sum is $p+q+s_{i}$, which is totally isotropic. Therefore $p+s_{i}$ and $q+s_{i}$ are collinear in ${ }^{2} A_{2}(W)$. Now set $x_{i}=\sigma\left(p+s_{i}\right), y_{i}=\sigma\left(q+s_{i}\right), i=1,2$. Then $x_{i} \in T_{(V, 2)}\left(A_{p}^{\perp}, A_{p}\right)$ and $y_{i} \in T_{(V, 2)}\left(A_{q}^{\perp}, A_{q}\right)$ are collinear. It follows that there is a unique point $z_{i}$ on the line $T_{(V, 2)}\left(x_{i}+y_{i}, A_{s_{i}}\right)$ contained in $T_{(V, 2)}\left(A^{\perp}, A\right)$. Since $S$ is a subspace, $z_{i} \in S$. Since $\sigma$ is an isomorphism of ${ }^{2} A_{2}(W)$ onto $S$ there are points $u_{i} \in{ }^{2} A_{2}(W)$ such that $\sigma\left(u_{i}\right)=z_{i}, i=1,2$. In fact, $u_{i}$ belongs to the line $T_{(W, 2)}\left(p+q+s_{i}, s_{i}\right)$. Also, since $z_{1}, z_{2}$ are contained in the type two symp $T_{(V, 2)}\left(A^{\perp}, A\right)$ it also follows that $u_{1} \cap u_{2}$ is a point $r \in \mathcal{I}_{1}(W)$ which belongs to
$\left(p+q+s_{1}\right) \cap\left(p+q+s_{2}\right)=p+q$. It now follows that $S_{r} \subset T_{(V, 2)}\left(A^{\perp}, A\right)$ and consequently that $A_{r}=A$.

We can now conclude that the injective map $p \rightarrow A_{p}$ defines an isomorphism of the polar space ${ }^{2} A_{1}(W)$, which is isomorphic to ${ }^{2} A_{m-1,1}(\mathbb{F})$ into ${ }^{2} A_{1}(V)$. It follows that the image of this map is a non-degenerate $m$-dimensional subspace $B$ of $V$. We claim that $S=T_{(V, 2)}(B, 0)$.

If $x=\sigma\left(\langle p, q\rangle_{W}\right)$ then $x=A_{p}+A_{q} \subset B$ and consequenlty, $S \subset \mathcal{I}_{2}(B)$. Since $S$ is isomorphic to $T_{(V, 2)}(B, 0)$ it follows that $S=T_{(V, 2)}(B, 0)$ as claimed.
Lemma 3.8. Assume that $S$ is isomorphic to ${ }^{2} A_{5,2}(\mathbb{F})$ and $\Gamma$ is isomorphic to ${ }^{2} A_{n-1, l}(\mathbb{F})$ with $l>2$. Then there is a totally isotropic subspace $A, \operatorname{dim} A=l-2$, a subspace $B$ containing $A$ and contained in $A^{\perp_{V}}$ such that $B / A$ is a six-dimensional non-degenerate space and $S=T_{(V, l)}(B, A)$.

Proof. Let $U \in \mathcal{I}_{3}(W)$. We set $M(U)=\sigma\left(T_{(W, 2)}(U, 0)\right)$ which is a singular plane of $S$. There are two possibilities for $M$ : (i) $M=T_{(V, l)}(D, C)$ with $C \subset D$ totally singular subspaces, $\operatorname{dim}(C)=l-1, \operatorname{dim}(D)=l+2$; or (ii) $M=T_{(V, l)}(D, C)$ with $C \subset D$ totally singular subspaces, $\operatorname{dim}(C)=l-2, \operatorname{dim}(D)=l+1$. We want to show that the first case cannot occur. Toward that end we first show that it is not possible for two different types of planes to occur in $S$.

By Lemma 2.13 the graph on $\mathcal{I}_{3}(W)$ given by $U_{1} * U_{2}$ if $U_{1} \cap U_{2} \in \mathcal{I}_{1}(W)$ is connected. Consequently, it suffices to show for any such pair that $M\left(U_{1}\right)$ and $M\left(U_{2}\right)$ have the same type. So, let $U_{1}, U_{2} \in \mathcal{I}_{3}(W)$ with $U_{1} \cap U_{2} \in \mathcal{I}_{1}(W)$ and set $M_{i}=M\left(U_{i}\right), i=1,2$ and suppose $M_{i}=T_{(V, l)}\left(D_{i}, C_{i}\right)$ where $\operatorname{dim}\left(C_{1}\right)=$ $l-1, \operatorname{dim}\left(C_{2}\right)=l-2, \operatorname{dim}\left(D_{1}\right)=l+2, \operatorname{dim}\left(D_{2}\right)=l+1$.

By Lemma 2.11 there are lines $m_{i} \subset M_{i}, i=1,2$ such that if $x \in m_{1}$ then $M_{2} \cap \Delta^{\Gamma}(x)=m_{2} \cap \Delta^{\Gamma}(x)$ is a point, $x^{\prime}$, and for $y \in m_{2} \backslash\left\{x^{\prime}\right\}$ the pair $x, y$ is a type two symp pair. Let $m_{1}=T_{(V, l)}\left(E_{1}, C_{1}\right)$ where $E_{1}$ is contained in $D_{1}$ and $\operatorname{dim}\left(E_{1}\right)=l+1$ and $m_{2}=T_{(V, l)}\left(D_{2}, E_{2}\right)$ where $E_{2}$ is contained in $D_{2}$ and $\operatorname{dim}\left(E_{2}\right)=l-1$. We claim that there is no $x \in m_{1}$ with $x \subset D_{2}$ and no $y \in m_{2}$ such that $y \subset D_{1}$. Suppose to the contrary that $x \in m_{1}$ and $x \subset D_{2}$. Then $x$ is a hyperplane of $D_{2}$. In particular, $D_{2} \subset x^{\perp}$. Since for all $y \in m_{2}, \operatorname{dim}(x \cap y)=l-1$ it is then the case that $m_{2} \subset \Delta^{\Gamma}(x)$, a contradiction. We get a similar contradiction if there is a $y \in m_{2}$ such that $y \subset D_{1}$.

We next claim that for $x \in m_{1}, y \in m_{2}$ the intersection $x \cap y$ is independent of $x$ and $y$. Assume to the contrary that there are $x \in m_{1}, y_{1}, y_{2} \in m_{2}$ such that $x \cap y_{1} \neq x \cap y_{2}$. Since $x \cap y_{1}$ and $x \cap y_{2}$ are hyperplanes of $x$ we then get that $x=x \cap y_{1}+x \cap y_{2} \subset D_{1} \cap D_{2}$, contradicting the above. Wet get a similar contradiction if there are $x_{1}, x_{2} \in m_{1}, y \in m_{2}$ such that $x_{1} \cap y \neq x_{2} \cap y$.

Let $x \in m_{1}, y \in m_{2}$. Since $x \cap y$ is independent of the choice of $x, x \cap y$ is
contained in $I\left(m_{1}\right)=C_{1}$. Likewise, $x \cap y$ is contained in $I\left(m_{2}\right)=E_{2}$. However, $\operatorname{dim}(x \cap y)=l-1=\operatorname{dim}\left(C_{1}\right)=\operatorname{dim}\left(E_{2}\right)$ and therefore $C_{1}=E_{2}$.

Now assume that $\left.y \in m_{2}=T_{(V, l)}\left(D_{2}, E_{2}\right)=T_{(V, l)}\right)\left(D_{2}, C_{1}\right)$ and $x \in M_{1}=$ $T_{(V, l)}\left(D_{1}, C_{1}\right)$. Then $C_{1}=x \cap y$ and therefore $\{x, y\}$ is either a collinear or a type two symp pair. However, this contradicts part (i) of Lemma 2.11. Thus, only one type of plane can occur. We show that, in fact, type (i) planes do not occur.

Suppose to the contrary that all the planes of $S$ are type of (i). Let $U_{1}, U_{2} \in$ $\mathcal{I}_{3}(W)$ with $U_{1} \cap U_{2} \in \mathcal{I}_{2}(W)$ and set $M_{i}=M\left(U_{i}\right)=T_{(V, l)}\left(D_{i}, C_{i}\right)$ where $D_{i}, C_{i}$ are isotropic subspaces with $C_{i} \subset D_{i}, \operatorname{dim}\left(C_{i}\right)=l-1$ and $\operatorname{dim}\left(D_{i}\right)=l+2$. Set $x=\sigma\left(U_{1} \cap U_{2}\right)$. Since $M_{1} \cap M_{2}=\{x\}$ either $C_{1}+C_{2}=x$ or $C_{1}=C_{2}$ and $D_{1} \cap D_{2}=x$. Suppose $C_{1}+C_{2}=x$. Let $y \in M_{1}, y \neq x$ so that $C_{2}$ is not contained in $y$. By pulling back to ${ }^{2} A_{2}(W)$ and using the isomorphism $\sigma$ we can conclude that there is a line $\lambda_{y} \subset M_{2}$ containing $x$ such that if $y^{\prime} \in \lambda_{y} \backslash\{x\}$ then $y, y^{\prime}$ is a symp pair and therefore $\operatorname{dim}\left(y \cap y^{\prime}\right)=l-1$. Now the line $\lambda_{y}$ must be of the form $T_{(V, l)}\left(D, C_{2}\right)$ for some subspace $D$ of $D_{2}, \operatorname{dim}(D)=l+1$. But then $I\left(\lambda_{y}\right)=C_{2}$. Since $\operatorname{dim}(y \cap z)=l-1$ for all $z \in \lambda_{y}$ and $\cap_{z \in \lambda_{y}} z=C_{2}$ is not contained in $y$ it follows that there are $z_{1}, z_{2} \in \lambda_{y}$ such that $y \cap z_{1} \neq y \cap z_{2}$. Then $y=y \cap z_{1}+y \cap z_{2} \subset D_{1} \cap D_{2}$. Since $y$ is arbitrary and $y \neq x$ it follows that $D_{1}=\Sigma\left(M_{1}\right) \subset D_{2}$ and therefore $D_{1}=D_{2}$. But then for each point $y \in M_{1} \backslash\{x\}, M_{2} \cap \Delta^{\Gamma}(y)$ is a line, a contradiction. Thus, $C_{1}=C_{2}$ in this case as well. However, since the graph on $\mathcal{I}_{3}(W)$ given by $U_{1} \sim U_{2}$ if and only if $U_{1} \cap U_{2} \in \mathcal{I}_{2}(W)$ is connected, it must be the case that for any $U_{1}, U_{2} \in \mathcal{I}_{3}(W)$ if $M_{i}=M\left(U_{i}\right)=T_{(V, l)}\left(D_{i}, C_{i}\right)$ then $C_{1}=C_{2}=C$. But then it follows that $S \subset T_{(V, l)}\left(C^{\perp}, C\right)$ a symp, which is a contradiction. Thus, every singular plane of $S$ is of type (ii).

Now let $U_{1}, U_{2} \in \mathcal{I}_{3}(W)$ with $U=U_{1} \cap U_{2} \in \mathcal{I}_{2}(W)$ and set $M_{i}=M\left(U_{i}\right)=$ $T_{(V, l)}\left(D_{i}, C_{i}\right), i=1,2$ and $x=\sigma(U) \in M_{1} \cap M_{2}$. Then $x \subset D_{1} \cap D_{2}$ and $C_{1}+C_{2} \subset x$. If $D_{1} \cap D_{2} \neq x$ and $C_{1}+C_{2} \neq x$ then $T_{(V, l)}\left(D_{1} \cap D_{2}, C_{1}+C_{2}\right)$ is contained in $M_{1} \cap M_{2}$ has points in addition to $x$, a contradiction. We claim that $C_{1}=C_{2}$. Suppose to the contrary that $C_{1} \neq C_{2}$. As in the previous paragraph, for $y \in M_{1}$ we will denote by $\lambda_{y}$ a line in $M_{2}$ containing $x$ such that for $x \neq y^{\prime} \in \lambda_{y}$ the pair $y, y^{\prime}$ is a symp pair and therefore $\operatorname{dim}\left(y \cap y^{\prime}\right)=l-1$. And, as shown above, $I\left(\lambda_{y}\right)=C_{2}$.

We have $I\left(M_{1}\right)=C_{1} \neq C_{2}=I\left(M_{2}\right)$. Since $\cap_{z \in \lambda_{y}}(y \cap z) \subset C_{2}$ has dimension $l-2$ and $\operatorname{dim}(y \cap z)=l-1$ for $z \in \lambda_{y}$ there must be $z_{1}, z_{2} \in \lambda_{y}$ with $y \cap z_{1} \neq y \cap z_{2}$. Then $y \cap z_{1}, y \cap z_{2}$ are distinct hyperplanes of $y$ and $y=\left(y \cap z_{1}\right)+\left(y \cap z_{2}\right) \subset$ $D_{1} \cap D_{2}$. Since $y$ is arbitrary, $D_{1}=\Sigma\left(M_{1}\right) \subset D_{2}$ and therefore $D_{1}=D_{2}$. But any two hyperplanes of $D_{1}=D_{2}$ are then collinear, whence every point of $M_{1}$ with every point of $M_{2}$, a contradiction. Thus, $C_{1}=C_{2}$.

As argued previously, this implies there is a fixed $l-2$ dimensional subspace $C$ such that $M(U)=T_{(V, l)}(D, C)$ for all $U \in \mathcal{I}_{3}(W)$. But then $S$ is contained in $T_{(V, l)}\left(C^{\perp}, C\right)$ which is isomorphic to ${ }^{2} A_{n-l+1,2}(\mathbb{F})$ and we are done by Lemma 3.7.

Lemma 3.9. Assume that $S$ is isomorphic to ${ }^{2} A_{m-1,2}(\mathbb{F})$ and $\Gamma$ is isomorphic to ${ }^{2} A_{n-1, l}(\mathbb{F})$ with $l>2$. Then there is a totally isotropic subspace $A, \operatorname{dim}(A)=l-2$, and a subspace $B$ which contains $A$ and is contained in $A^{\perp_{V}}$ and such that $B / A$ is an $m$-dimensional non-degenerate space and $S=T_{(V, l)}(B, A)$.

Proof. For a point $p \in \mathcal{I}_{1}(W)$ we let $S_{p}=\sigma\left(T_{(W, 2)}\left(p^{\perp}, p\right)\right)$ which is isomorphic to ${ }^{2} A_{m-3,1}(\mathbb{F})$. By Lemma 3.5, $S_{p}=T_{(V, l)}\left(B_{p}, A_{p}\right)$ where $A_{p}$ is a totally isotropic space of dimension $l-1, B_{p}$ contains $A_{p}$ and is a subset of $A_{p}^{\perp V}$ and $B_{p} / A_{p}$ is non-degenerate of dimension $m-2$. From Lemma 3.6 the map $p \rightarrow A_{p}$ is injective. Now suppose $q_{1}, q_{2}$ are two isotropic points of $W$ such that $q_{1} \perp_{W} p \perp_{W} q_{2}$. We claim that $A_{p} \cap A_{q_{1}}=A_{p} \cap A_{q_{2}}$.

Let $W^{\prime}$ be the non-degenerate six dimensional subspace of $W$ which contains $p+q_{1}+q_{2}$ and let $S^{\prime}=\sigma\left(T_{(W, 2)}\left(W^{\prime}, 0\right)\right)$ which is isomorphic to ${ }^{2} A_{5,2}(\mathbb{F})$. By Lemma 3.8 it follows that $S^{\prime}=T_{(V, l)}(D, A)$ where $A$ is a totally isotropic subspace, $\operatorname{dim}(A)=l-2, D$ is a subspace containing $A$ and contained in $A^{\perp_{V}}$, and $D / A$ is non-degenerate of dimension six. For a point $y \in \mathcal{I}_{1}\left(W^{\prime}\right)$ set $S_{y}^{\prime}=S_{y} \cap S^{\prime}$. Then $S_{y}^{\prime}$ is isomorphic to ${ }^{2} A_{3,1}(\mathbb{F})$ and $S_{y}^{\prime}=T_{(V, l)}\left(B_{y} \cap D, A_{y}\right)$. Now for all $y \in S^{\prime}, A_{y} \supset A$. On the other hand, if $y, z \in S^{\prime}$ with $A_{y} \neq A_{z}$ then $A_{y} \cap A_{z}=A$. In particular, $A_{p} \cap A_{q_{1}}=A=A_{p} \cap A_{q_{2}}$. Now the graph whose vertices consists of those of pairs $\{p, q\}$ in $\mathcal{I}_{1}(W)$ with $p \perp_{W} q$ given by $\alpha \sim \beta$ if and only if $|\alpha \cap \beta|=1$ is connected. From this it follows that $I(S)=A$ and $S \subset T_{(V, l)}\left(A^{\perp}, A\right)$. Applying Lemma 3.7 completes the result.

We next take up the case where $S$ is a subspace of ${ }^{2} A_{l}(V)$ which is isomorphic to ${ }^{2} A_{m-1, l}(\mathbb{F})$. We will make use of our inductive hypothesis: if $S^{\prime}$ is isomorphic to ${ }^{2} A_{m^{*}, l^{*}}(\mathbb{F})$ is a subspace of ${ }^{2} A_{l}(V)$ with $m^{*}+l^{*}<m+l$ then the conclusion of our theorem holds: there is a totally isotropic subspace $A$ of dimension $l-l^{*}$ and a subspace $B$ with $A \subset B \subset A^{\perp_{V}}$ such that $B / A$ is non-degenerate of dimension $m^{*}$ with $S^{\prime}=T_{(V, l)}(B, A)$.

Before proceeding to the proof we obtain a lemma about "large" subspaces of unitary polar spaces which will be used in the succeeding result.

Lemma 3.10. Let $(V, f)$ be a non-degenerate unitary space of dimension $n$ and Witt index $n^{\prime}=\left\lfloor\frac{n}{2}\right\rfloor>2$ and let $1<l \leq n^{\prime}$. Let $X$ be a proper subspace of $W$ and assume for every element of $x \in \mathcal{I}_{l}(W)$ that $x \subset X$ or $x \cap X$ is a hyperplane of $x$. Then $X$ is a hyperplane of $W$.

Proof. We claim that for every $z \in \mathcal{I}_{2}(V)$ that $z \cap X \neq\{\mathbf{0}\}$ from which it will follow that $\mathcal{I}_{1}(X)$ is a geometric hyperplane of the polar space $\left(\mathcal{I}_{1}(V), \mathcal{I}_{2}(V)\right)$ and then $X$ is a linear hyperplane of $V$. If $l=2$ then there is nothing to prove. Suppose $2<l$ and $z \in \mathcal{I}_{2}(V)$. Let $x \in \mathcal{I}_{l}(V)$ with $z \subset x$. If $x \subset X$ then $z \subset X$ so we may assume that $x \not \subset X$ so that $x \cap X$ is a hyperplane of $x$. Then we have either $z \subset x \cap X \subset X$ or $z \cap[x \cap X]$ is a point. Since $z \cap[x \cap X] \subset z \cap X$ it follows that $z \cap X \neq\{\mathbf{0}\}$.

Lemma 3.11. Assume $l \geq 3, m \geq 2(l+1)$ and $S$ is a subspace of ${ }^{2} A_{l}(V)$ is isomorphic to ${ }^{2} A_{m-1, l}(\mathbb{F})$. Then there is non-degenerate subspace $B$ of dimension $m$ such that $S=T_{(V, l)}(B, 0)$.

Proof. The proof of this closely follows the proof of Lemma 3.7 but differs in enough of its details to warrant its inclusion.

As previously defined, for a point $p \in \mathcal{I}_{1}(W)$ we let $S_{p}=\sigma\left(T_{(W, l)}\left(p^{\perp}, p\right)\right)$ which is isomorphic to ${ }^{2} A_{m-3, l-1}(\mathbb{F})$. By our inductive hypothesis there is an isotropic point $A_{p}$ and a subspace $B_{p}$ satisfying $A_{p} \subset B_{p} \subset A_{p}^{\perp V}$ with $B_{p} / A_{p}$ non-degenerate of dimension $m-2$ and $S_{p}=T_{(V, l)}\left(B_{p}, A_{p}\right)$. We first show that the map $p \rightarrow A_{p}$ from $\mathcal{I}_{1}(W)$ to $\mathcal{I}_{1}(V)$ is injective.

Suppose first that $p \neq q \in \mathcal{I}_{1}(W)$ are orthogonal and $A_{p}=A_{q}$. Set $A=$ $A_{p}=A_{q}$. Note that $S_{p} \cap S_{q}=\sigma\left(T_{(W, k)}\left(\langle p, q\rangle^{\perp_{W}},\langle p, q\rangle\right)\right)=T_{(V, l)}\left(B_{p} \cap B_{q}, A\right)$ is isomorphic to ${ }^{2} A_{m-5, l-2}(\mathbb{F})$. Consequently, the dimension of $\left[B_{p} \cap B_{q}\right] / A$ is $m-4$.

By Lemma 2.8 if $x \in S_{p}$ then either $x \in S_{q}, \Delta^{\Gamma}(x) \cap S_{q}$ is a singular subspace isomorphic to $\mathbb{P} \mathbb{G}_{l-1}(\mathbb{F})$, or there is a unique $y \in \Delta_{(2,2)}(x) \cap S_{q}$.

In the first case $x \subset B_{q}$. In the second case, if $y \in S_{q} \cap \Delta^{\Gamma}(x)$, then $x \cap y$ is a hyperplane of $x$ and therefore we can conclude that $B_{q} \cap x$ contains a hyperplane of $x$. Finally, in the third case, if $y \in \Delta_{(2,2)}(x) \cap S_{q}$ then $x \cap y$ is a hyperplane of $x$ and again $B_{q} \cap x$ contains a hyperplane of $x$.

It therefore follows that either $x / A \subset\left(B_{p} \cap B_{q}\right) / A$ or the intersection of $x / A$ and $\left(B_{p} \cap B_{q}\right) / A$ is a hyperplane of $x / A$ for every $x \in T_{(V, l)}\left(B_{p}, A\right)$. Since $l>2$, Lemma 3.10 applies and $\left(B_{p} \cap B_{q}\right) / A$ is a hyperplane of $B_{p} / A$. In particular, $\operatorname{dim}\left(\left[B_{p} \cap B_{q}\right] / A\right)=m-3$, a contradiction.

Now assume that $p$ and $q$ are non-orthogonal points of $W$ and that $A_{p}=$ $A_{q}=A$. Note that $S_{p} \cap S_{q}=\emptyset$. Let $x \in S_{p}=T_{(V, l)}\left(B_{p}, A_{p}\right)=T_{(V, l)}\left(B_{p}, A\right)$. Then it cannot be the case that $x \subset B_{q}$ because otherwise we would have $x \in T_{(V, l)}\left(B_{q}, A\right)=S_{q}$ contradicting $S_{p} \cap S_{q}=\emptyset$. On the other hand, there is a unique point $y \in \Delta_{(2,2)}(x) \cap S_{q}$. Then $x \cap y$ is a hyperplane of $x$ contained in $B_{q} \cap x$. It therefore follows that for every $x \in T_{(V, l)}\left(B_{p}, A\right)$, either $x / A$ is contained in $\left(B_{p} \cap B_{q}\right) / A$ or else $\left(B_{p} \cap B_{q}\right) / A$ meets $x / A$ in a hyperplane.

By Lemma 3.10 it follows that $\left(B_{p} \cap B_{q}\right) / A$ is a hyperplane of $B_{p} / A$. Since $l<m=\left\lfloor\frac{n}{2}\right\rfloor$, the index of $(V, f)$, it must be the case that $B_{p} \cap B_{q}$ contains an element of $T_{(V, l)}\left(B_{p}, A\right)$ contradicting $S_{p} \cap S_{q}=\emptyset$. Thus, the map from $\mathcal{I}_{1}(W)$ to $\mathcal{I}_{1}(V), p \rightarrow A_{p}$ is injective.

When $p \neq q \in \mathcal{I}_{1}(W)$ and $p \perp_{W} q$ then $S_{p} \cap S_{q} \neq \emptyset$ from which it follows that $A_{p} \perp_{V} A_{q}$. On the other hand, suppose $p, q \in \mathcal{I}_{1}(W)$ and are non-orthogonal. We claim that $A_{p}$ and $A_{q}$ are non-orthogonal. Suppose to the contrary that $A_{p} \perp_{V} A_{q}$. We will get a contradiction.

We first show that either $A_{p} \subset B_{q}$ or $A_{q} \subset B_{p}$. Let $U \in \mathcal{I}_{l-1}(W)$ be contained in $p^{\perp_{W}} \cap q^{\perp_{W}}$ and set $X=\langle U, p\rangle_{W}, Y=\langle U, q\rangle_{W}$. Then $X, Y \in{ }^{2} A_{l}(W)$ and belong to the type two symp $T_{(W, l)}\left(U^{\perp}, U\right)$. Set $x=\sigma(X), y=\sigma(Y)$. Then $(x, y) \in \Delta_{(2,2)}$ and so $x \cap y \in \mathcal{I}_{l-1}(V)$. Suppose neither $A_{p}$ nor $A_{q}$ is contained in $x \cap y$. Then $x+y=\left\langle x \cap y, A_{p}, A_{q}\right\rangle_{\mathbb{F}}$ is totally isotropic which means that $x$ and $y$ are collinear, a contradiction. This proves our assertion. Without loss of generality we can assume that $A_{p} \subset B_{q}$.

By Lemma 2.8, for each $x^{\prime} \in S_{p}$ there is a unique point $y^{\prime} \in S_{q}$ with $\left(x^{\prime}, y^{\prime}\right) \in$ $\Delta_{(2,2)}$. Then $x^{\prime} \cap y^{\prime} \subset B_{q}$ is a hyperplane. By Lemma 3.10, $\left(B_{p} \cap B_{q}\right) / A_{p}$ is a hyperplane of $B_{p} / A_{p}$ and consequently, $B_{p} \cap B_{q}$ is a hyperplane of $B_{p}$. It then follows that $T_{(V, l)}\left(B_{p} \cap B_{q}, A_{p}\right) \neq \emptyset$. Let $x^{\prime} \in T_{(V, l)}\left(B_{p} \cap B_{q}, A_{p}\right)$. If $A_{q} \subset x^{\prime}$ then $x^{\prime} \in S_{p} \cap S_{q}$, a contradiction. However, it now follows that $\left\langle x^{\prime}, A_{q}\right\rangle_{V} \subset B_{q}$ and that $T_{(V, l)}\left(\left\langle x^{\prime}, A_{q}\right\rangle_{V}, A_{q}\right) \subset \Delta^{\Gamma}\left(x^{\prime}\right) \cap S_{q}$, a contradiction. Thus, if $p, q \in \mathcal{I}_{1}(W)$ are non-orthogonal then the points $A_{p}$ and $A_{q}$ in $V$ are non-orthogonal.

We next show that if $X \in \mathcal{I}_{2}(W)$ then $\left\{A_{p}: p \in \mathbb{P} \mathbb{G}(X)\right\}$ is contained in a totally singular line of $V$. Let $p \neq q \in \mathcal{I}_{1}(W)$ with $p \perp_{W} q$ and let $r \in$ $\mathbb{P} \mathbb{G}\left(\langle p, q\rangle_{W}\right), r \neq p$. Then $S_{p} \cap S_{q}=S_{p} \cap S_{r}$. Therefore, $T_{(V, l)}\left(B_{p} \cap B_{q}, A_{p}+A_{q}\right)=$ $T_{(V, l)}\left(B_{p} \cap B_{r}, A_{p}+A_{r}\right)$. In particular, $A_{r} \in \mathbb{P} \mathbb{G}\left(A_{p}+A_{q}\right)$.

Finally, we prove that if $p \neq q \in \mathcal{I}_{1}(W)$ with $p \perp q$ then the collection $\left\{A_{r}: r \in \mathbb{P} \mathbb{G}\left(\langle p, q\rangle_{W}\right\}=\mathbb{P} \mathbb{G}\left(\left\langle A_{p}, A_{q}\right\rangle_{V}\right)\right.$. Let $U \in \mathcal{I}_{l+1}(W)$ with $\langle p, q\rangle_{W} \subset$ $U$. Then $T_{(W, l)}(U, 0)$ is a type one maximal singular subspace of ${ }^{2} A_{l}(W)$ and isomorphic to $\mathbb{P} \mathbb{G}_{l}(\mathbb{F})$. Set $X=\sigma\left(T_{(W, l)}(U, 0)\right)$, a singular subspace of ${ }^{2} A_{l}(V)$ (here we are making use of the assumption that $S$ is a subspace, not just a subgeometry, of $\left.{ }^{2} A_{l}(V)\right)$. Note that $X \cap S_{p}$ is a type one maximal singular subspace of $T_{(V, l)}\left(B_{p}, A_{p}\right)$ and consequently must be of the form $T_{(V, l)}\left(U^{\prime}, A_{p}\right)$ for $U^{\prime} \in \mathcal{I}_{l+1}(V)$. It follows that $X=T_{(V, l)}\left(U^{\prime}, 0\right)$. Now suppose that $A \in$ $\mathbb{P} \mathbb{G}\left(A_{p}+A_{q}\right)$. Then $X_{A}=X \cap T_{(V, l)}\left(A^{\perp}, A\right)$ is a hyperplane of $X$ and so, $\sigma^{-1}\left(X_{A}\right)$ is a hyperplane of $T_{(W, l)}(U, 0)$ and therefore there must be a point $r \in$ $\mathbb{P} \mathbb{G}\left(\langle p, q\rangle_{W}\right)$ such that $\sigma^{-1}\left(X_{A}\right)=T_{(W, k)}(U, r)$. Then $X_{A} \subset S_{r}=T_{(V, l)}\left(B_{r}, A_{r}\right)$. Note that $I\left(X_{A}\right)=A$ and consequently, $A=A_{r}$ completing the assertion.

We can now say that the map $p \rightarrow A_{p}$ of $\mathcal{I}_{1}(W)$ into $\mathcal{I}_{1}(V)$ is a full embedding of the polar space $\left(\mathcal{I}_{1}(W), \mathcal{I}_{2}(W)\right.$ into the polar space $\left(\mathcal{I}_{1}(V), \mathcal{I}_{2}(V)\right)$. This
implies that $B=\left\{A_{p}: p \in \mathcal{I}_{1}(W)\right\}$ is a non-degenerate $m$-dimensional space of $V$. This completes the lemma.

We now complete our main result. We can assume that $S$ is isomorphic to ${ }^{2} A_{n^{\prime}-1, l^{\prime}}(\mathbb{F})$ is a subspace of ${ }^{2} A_{l}(V)$, which is isomorphic to ${ }^{2} A_{n-1, l}(\mathbb{F})$, with $l^{\prime}<l$. We will show that there is a totally isotropic subspace $A$ of dimension $l-l^{\prime}$ such that $S \subset T_{(V, l)}\left(A^{\perp_{V}}, A\right)$ and then the result will follow from Lemma 3.11.

Let $U$ be a non-degenerate subspace of $W$ of dimension $2\left(l^{\prime}+1\right)$ and Witt index $l^{\prime}+1, Y$ a maximal totally singular subspace of $U$ and $X$ a subspace of $Y$ of dimension $l^{\prime}-2$. Set $M=M(Y)=\sigma\left(T_{\left(W, l^{\prime}\right)}(Y, 0)\right)$ a singular subspace of $S$ isomorphic to $\mathbb{P} \mathbb{G}\left(l^{\prime}, \mathbb{F}\right)$. Also, set $S(U)=\sigma\left(T_{\left(W, l^{\prime}\right)}(U, 0)\right)$ which is isomorphic to ${ }^{2} A_{l^{\prime}+1, l^{\prime}}(\mathbb{F})$ and $S^{\prime}=\sigma\left(T_{\left(W, l^{\prime}\right)}\left(U \cap X^{\perp_{W}}, X\right)\right)$ which is isomorphic to ${ }^{2} A_{5,2}(\mathbb{F})$ and $M^{\prime}=S^{\prime} \cap M$. We have seen in Lemma 3.8 that $M^{\prime}=T_{(V, l)}(D, C)$ for totally isotropic subspaces $C \subset D$ with $\operatorname{dim}(C)=l-2, \operatorname{dim}(D)=l+1 . T_{(V, l)}(D, 0)$ is the unique maximal singular subspace of $\Gamma$ containing $M^{\prime}$. Since $M^{\prime} \subset M$ it follows that $M \subset T_{(V, l)}(D, 0)$ and consequently, $M=T_{(V, l)}\left(D_{Y}, A_{Y}\right)$ where $\operatorname{dim}\left(A_{Y}\right)=l-l^{\prime}$ and $\operatorname{dim}\left(D_{Y}\right)=l+1$. Note that since $D_{Y} \subset D$ and $\operatorname{dim}\left(D_{Y}\right)=$ $\operatorname{dim}(D)$ it follows that $D_{Y}=D$.

We next claim that if $Y_{1}, Y_{2}$ are totally isotropic subspaces of $W$ of dimension $l^{\prime}+1$ which satisfy $\operatorname{dim}\left(Y_{1} \cap Y_{2}\right)=l^{\prime}$ and $Y_{1}, Y_{2}$ are not orthogonal then $A_{Y_{1}}=$ $A_{Y_{2}}$. For convenience set $D_{Y_{i}}=D_{i}, A_{Y_{i}}=A_{i}, i=1,2$. The singular subspaces $M_{i}=T_{(V, l)}\left(D_{i}, A_{i}\right)$ have a common point $x$. Moreover, there is a one-to-one correspondence between the lines on $x$ in $M_{1}$ and the lines on $x$ in $M_{2}$ such that if $\lambda$ is a line on $x$ in $M_{1}$ and $\lambda^{\prime}$ is the corresponding line in $M_{2}$ then for $x \neq y \in \lambda, x \neq z \in \lambda^{\prime}$ it follows that $y, z$ is a type two symp pair and $y \cap z$ has dimension $l-1$.

Fix $y$ in $M_{1}, y \neq x$ and let $\lambda_{y}$ be the line on $x$ and $y$. Suppose there are $z_{1}, z_{2} \in$ $\lambda_{y}^{\prime}$ such that $y \cap z_{1} \neq y \cap z_{2}$ then $y \cap z_{1}$ and $y \cap z_{2}$ are distinct hyperplanes of $y$ and then $y=y \cap z_{1}+y \cap z_{2} \subset D_{1} \cap D_{2}$. Then $y$ is a hyperplane of $D_{2}$ in which case $M_{2} \subset \Delta^{\Gamma}(y)$, a contradiction. Thus, $y \cap z_{1}=y \cap z_{2}$ for any points $z_{1}, z_{2} \subset \lambda_{y}^{\prime}$. By reversing the argument we can conclude that $\cap_{w \in \lambda_{y}} w=\cap_{z \in \lambda_{y}^{\prime}} z$ has dimension $l-1$. From this it follows that $A_{1}=I\left(M_{1}\right)=\cap_{y \in M_{1}} y=\cap_{z \in M_{2}} z=I\left(M_{2}\right)=A_{2}$ as claimed.

Finally, since the graph on $\mathcal{I}_{l^{\prime}+1}(W)$ given by $Y_{1} \sim Y_{2}$ if and only if $\operatorname{dim}\left(Y_{1} \cap\right.$ $\left.Y_{2}\right)=l^{\prime}$ and $Y_{1}$ and $Y_{2}$ non-orthogonal is connected, it follows for any two $Y_{1}, Y_{2} \in \mathcal{I}_{l^{\prime}+1}(W)$ that $A_{Y_{1}}=A_{Y_{2}}$. Let $A=A_{Y}$ for some totally isotropic subspace of dimension $l^{\prime}+1$ in $W$. Since every point $x$ of $S$ belongs to a singular subspace $M(Y)$ for some totally isotropic subspace $Y$ of $W$ of dimension $l^{\prime}+1$, it follows that $x \in T_{(V, l)}\left(A^{\perp_{V}}, A\right)$ and the proof of the main result is complete.

## References

[1] Rieuwert J.Blok and Bruce N. Cooperstein, Projective subgrassmannians of polar Grassmannians, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 4, 675-691.
[2] $\qquad$ The generating rank of unitary and symplectic Grassmannians, J. Combin. Theory Ser. A 119 (2012), 675-691.
[3] Francis Buekenhout, The foundations of incidence geometry, in Handbook of Incidence Geometry, Buildings and Foundations (ed. F. Buekenhout), Chapter 9, Elsevier, North-Holland, 1995, 63-106.
[4] Bruce N. Cooperstein, Some geometries associated with parabolic representations of groups of Lie type, Canad. J. Math. 28, no. 5 (1976), 1021-1031.
[5] $\qquad$ Symplectic subspaces of symplectic Grassmannians, European $J$. Combin. 28, no. 5 (2007), 1442-1454

[^0]
[^0]:    Bruce N. Cooperstein
    Department of Mathematics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064,
    e-mail: coop@ucsc.edu

