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1 Introduction and basic concepts

We assume the reader is familiar with the concepts of a partial linear rank two

incidence geometry Γ = (P,L) (also called a point-line geometry) and the Lie

incidence geometries. For the former we refer to [3] and for the latter see the

paper [4].

The collinearity graph of Γ is the graph (P,∆) where ∆ consists of all pairs of

points belonging to a common line. For a point x ∈ P we will denote by ∆(x)

the collection of all points collinear with x. For points x, y ∈ P and a positive

integer t a path of length t from x to y is a sequence x0 = x, x1, . . . , xt = y such

that {xi, xi+1} ∈ ∆ for each i = 0, 1, . . . , t−1. The distance from x to y, denoted

by d(x, y), is defined to be the length of a shortest path from x to y if some path

exists and otherwise is +∞.

By a subspace of Γ we mean a subset S of P such that if l ∈ L and l ∩ S

contains at least two points, then l ⊂ S. (P,L) is said to be a Gamma space if,

for every x ∈ P, {x} ∪ ∆(x) is a subspace. A subspace S is singular provided

each pair of points in S is collinear, that is, S is a clique in the collinearity graph

of Γ. For a Lie incidence geometry with respect to a “good node” every singular

subspace, together with the lines it contains, is isomorphic to a projective space,

see [4]. Clearly the intersection of subspaces is a subspace and, consequently,

it is natural to define the subspace generated by a subset X of P, 〈X〉Γ, to be
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the intersection of all subspaces of Γ which contain X. Note that if (P,L) is a

Gamma space and X is a clique then 〈X〉Γ will be a singular subspace.

A polar space is an incidence geometry (P,L) which satisfies: (i) For any point

x and line l either x is collinear with every point of l or a unique point of l; and

(ii) For each point x there exists a point y such that x and y are non-collinear.

A polar space in which lines are maximal singular subspaces is a generalized

quadrangle.

1.1 Ordinary Grassmannians

Let F be a field and W be a vector space of dimension m over F. For 1 ≤ i ≤
m− 1, let Li(W ) be the collection of all i-dimensional subspaces of W . Now fix

j, 2 ≤ j ≤ m− 2 and set P = Lj(W ).

For pairs (C,A) of incident subspaces of W with dim(A) = a, dim(C) = c, let

S(C,A) consist of all the j-subspaces B of W such that A ⊂ B ⊂ C.

Finally, let L consist of all the sets S(C,A) where dimA = j−1, dimC = j+1

and A ⊂ C. The rank two incidence geometry (P,L) is the incidence geometry

of j-Grassmannian of W, denoted by Gj(W ). We also use the notation Gm,j(F)

for the isomorphism type of this geometry and sometimes Am−1,j(F).

We note that the incidence geometry G4,2(F) is a polar space which is iso-

morphic to the incidence geometry of singular one-spaces and totally singular

two-spaces on a hyperbolic orthogonal space in a vector space of dimension six,

D3,1(F) ∼= Q+(6,F).

1.2 The unitary Grassmannians

Let E ⊂ F be a Galois extension of fields of degree two and let σ be the generator

of the Galois group Gal(F/E). We will often denote the image of an element

a ∈ F under σ by a. Let V be a space of dimension n over the field F and f be a

non-degenerate σ-Hermitian form.

For X ⊂ V let X⊥ = {v ∈ V : f(x,v) = 0, ∀x ∈ X}. Recall that a subspace

U of V is totally isotropic if U ⊂ U⊥. The Witt index of (V, f) is the dimension

of a maximal totally isotropic subspace of V . This is an invariant of f . Because

(V, f) is non-degenerate the dimension of a totally isotropic subspace is at most

⌊n
2 ⌋. We will say that (V, f) has maximal Witt index if there are totally isotropic

subspaces of dimension ⌊n
2 ⌋. Hereafter we assume (V, f) is non-degenerate of

dimension n with Witt index equal to n′ = ⌊n
2 ⌋.

For 1 ≤ k ≤ n′ = ⌊n
2 ⌋, let Ik(V ) consist of all totally isotropic k-dimensional

subspaces of V . More generally, if W is a subspace of V then we will denote by
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Ik(W ) the set of all elements of Ik(V ) which are contained in W . We will set

P = I1(V ), the collection of all one-dimensional subspaces of V and L = I2(V ),

the collection of totally isotropic two-spaces (projective lines). The incidence

geometry (P,L) is the unitary polar space of rank n′ over the field F, which we

will denote by 2An−1,1(F).

Now fix l with 2 ≤ l ≤ n′ − 1 and set P = Il. For a pair of subspaces

C ⊂ D ⊂ C⊥ (so C is totally isotropic) where dim(C) = c < l < d = dim(D)

let Tl(D,C) consist of all the l-dimensional totally isotropic subspaces U such

that C ⊂ U ⊂ D. When c = l − 1, d = l + 1 we set λ(D,C) = Tl(D,C) and

L = {λ(D,C) : C ⊂ D ⊂ C⊥, dimC = l − 1, dimD = l + 1}. In this way we

obtain a rank 2 incidence geometry Γ = (P,L) which we refer to as the unitary

l-Grassmannian of V . We denote the isomorphism type of this geometry by
2An−1,l(F). Note that two totally isotropic l-subspaces, when viewed as points

of Γ, are on a line if and only if they span a totally isotropic (l+ 1)-dimensional

subspace. We remark that the automorphism group of the geometry (P,L) is

isomorphic to PUn(F).

When the subspace C has dimension l − k and D is totally isotropic and has

dimension l +m− k then Tl(D,C) is an ordinary Grassmannian isomorphic to

Gm,k(F). Subspaces arising this way are said to be parabolic since their stabilzers

in Aut(Γ) ∼= Un(F) are parabolic subgroups. In [1] we classified subspaces

of 2An−1,l(F) which are isomorphic to Gm,k(F) and proved that they are all

parabolic.

Assume dim(V ) = n = 2n′. By a hyperbolic basis of the unitary space (V, f)

we will mean a vector space basis (x1, . . . ,xn′ ,y1, . . . ,yn′) such that each vector

xi,yi is isotropic, f(xi,yi) = 1 and f(xi,xj) = f(xi,yj) = f(yi,yj) = 0 for all

i 6= j. The existence of a hyperbolic basis can be shown by an easy induction on

the Witt index m of f .

If dim(V ) = n = 2n′ + 1 then by a “near” hyperbolic basis of the unitary

space (V, f) we will mean a vector space basis (x1, . . . ,xn′ ,y1, . . . ,yn′ , z) such

that each vector xi,yi, z is isotropic, f(xi,yi) = 1, f(xi,xj) = f(xi,yj) =

f(yi,yj) = 0, and f(xi, z) = f(yi, z) = 0 for all i < n′. The existence of a

near hyperbolic basis can also be shown by an easy induction on the Witt index

n′ of f .

1.3 Subspaces of unitary Grassmannians

We continue with the notation from section 1.2 so that (V, f) is a non-degenerate

unitary space of dimension n and 1 ≤ l ≤ n′ − 1. Assume Γ = (P,L) is isomor-

phic to 2An−1,l(F) with P = Il(V ). Suppose X is a subset of P. We will denote

by Σ(X) the vector subspace of V that is spanned by all x ∈ X and by I(X) the
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intersection of all x ∈ X.

Let A ∈ Il−k with k ≥ 1 and B a subspace of A⊥ with A ⊂ B and such

that the quotient space B/A is non-degenerate of dimension q. In this situation

the collection of isotropic subspaces Tl(B,A) is a subspace of the incidence

geometry (P,L) and is isomorphic to a unitary Grassmannian space 2Aq−1,k(F).

In our main result we show that these “natural” examples are the only subspaces

of (P,L) which are isomorphic to a unitary Grassmannian.

Main theorem. Let S be a subspace of 2An−1,l(F) isomorphic to 2An′−1,l′(F).

Then there exists a totally isotropic subspace A of dimension l − l′ and a subspace

B with A ⊂ B ⊂ A⊥ with B/A non-degenerate of dimension n′ and such that

S = Tl(B,A).

It may be possible that a result like this can be obtained more generally by

relaxing the condition that the unitary space have maximal Witt index but we

have chosen not to do so because of the many technical obstacles that would

have to be overcome. In any case, the result is applicable whenever the field is

finite.

The proof will be very much in the spirit of [5] where we proved a similar re-

sult for symplectic Grassmanians. Before proceeding to the proof we introduce

some notation:

Notation 1.1. Since we will generate all kinds of subspaces, of the unitary

space V , of the geometry Γ = (P,L), etc., we need to distinguish between these.

When X is some collection of subspaces or vectors from V we will denote the

subspace of V spanned by X by 〈X〉F. When X is a subset of P we will denote

the subspace of Γ = (P,L) generated by X by 〈X〉Γ.

For a point p ∈ P we will denote by ∆Γ(p) the collection of all points of P
which are collinear with p in (P,L) (including p).

2 Properties of unitary Grassmannians

In this short section we review some properties of unitary Grassmannians. We

omit the proofs of most because these propositions are either well known or

easy to prove.

Lemma 2.1. Let (V, f) be a non-degenerate unitary space of dimension n and

maximal Witt index m. Then the following hold:

(i) The unitary Grassmannian space 2Al(V ), which is isomorphic to 2An−1,l(F),

has two classes of maximal singular subspaces with representatives Tl(B, 0)

where B is a totally isotropic subspace of V, dimB = l + 1, and Tl(C,A)
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where A and C are totally isotropic subspaces of V with A ⊂ B and where

dim(A) = l − 1, dim(C) = m. In the former case Tl(B, 0) ∼= PGl(F) and

in the latter Tl(C,A) ∼= PGm−l(F). We refer to the first class as type one

maximal singular subspaces and the latter as type two singular subspaces.

(ii) If M1 and M2 are maximal singular subspaces of different types then either

M1 ∩M2 is empty, a point, or a line.

(iii) If M1 and M2 are distinct maximal singular subspaces of the same type then

M1 ∩M2 is either empty or a point.

Definition 2.2. A symp of (P,L) is a maximal geodesically closed subspace

which is isomorphic to a polar space.

Lemma 2.3. There are two classes of symps in (P,L). One class has representative

Tl(E,D) where D ⊂ E are totally isotropic subspaces, dimD = l − 2, dimE =

l + 2. In this case Tl(E,D) ∼= D3,1(F) the polar space of a non-degenerate six

dimensional orthogonal space with maximal Witt index. The second class has

representative Tl(C
⊥, C) where C is a totally isotropic subspace, dimC = l − 1.

In this case Tl(C
⊥, C) is isomorphic to the polar space of a non-degenerate unitary

space of dimension n− 2(l − 1).

Definition 2.4. We refer to a member of the first class of symps in Lemma 2.3

as a type one symp and and a member of the second class as a type two symp.

Lemma 2.5. There are three classes of points at distance two in Γ = (P,L):

(i) The pairs {x, y} which satisfy dim(x ∩ y) = l − 2 and x ⊥ y. Such a pair

{x, y} lies in a unique symp which is Tl(x + y, x ∩ y). Note this only occurs

if the Witt index of the unitary space is greater than or equal to four.

(ii) The pairs {x, y} that satisfy dim(x ∩ y) = l − 1 and (x + y)/(x ∩ y) is

a non-degenerate two-space. This pair belongs to a unique symp which is

Tl((x ∩ y)⊥, x ∩ y).

(iii) The pairs {x, y} which satisfy dim(x∩y) = l−2 and dim([x+y]∩[x+y]⊥) =

l. There is a unique point (of the geometry (P,L)) collinear with both x and

y, namely [x+ y] ∩ [x+ y]⊥.

Definition 2.6. The first class of pairs in Lemma 2.5 will be referred to as type

one symp pairs, the second as type two symp pairs and the third type as

special pairs. For a point x we will denote by ∆(2,i)(x) all the points y such

that the pair x, y is a type i symp pair and by ∆(2,s)(x) the points y such that

x, y is a special pair.

Lemma 2.7. Let S be a type two symp of the incidence geometry (P,L) ∼= 2An−1,l(F)

and x ∈ P \ S. Then ∆Γ(x) ∩ S is either empty or a line.
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Lemma 2.8. Let (P,L) = 2Al(V ) ∼= 2An−1,l(F) and let p 6= q ∈ I1(W ).

(i) Assume p ⊥ q and let x ∈ Tl(p
⊥, p). Then one of the following occurs:

(α) q ⊂ x and x ∈ Tl(q
⊥, q);

(β) q is not contained in x, x ⊂ q⊥ and ∆Γ(x) ∩ Tl(q
⊥, q) = Tl(x+ q, q) is

a singular subspace isomorphic to PGl−1(F); or

(γ) x is not contained in q⊥ and 〈x∩q⊥, q〉 is the unique point in ∆(2,2)(x)∩
Tl(q

⊥, q).

(ii) Assume p and q are non-orthogonal. Then Tl(p
⊥, p) ∩ Tl(q

⊥, q) = ∅. If x ∈
Tl(p

⊥, p) then y = 〈x ∩ q⊥, q〉V is the unique point in Tl(q
⊥, q) ∩∆(2,2)(x).

2.1 Properties of the geometry 2
A5,2(F)

The particular geometry 2A5,2(F) plays a prominent role in our proof and we

use several properties of this geometry which we will make explicit here for

later reference. Throughout this subsection we will let W be a non-degenerate

six dimensional unitary space over F and (P,L) will be the geometry 2A2(W ) ∼=
2A5,2(F).

Lemma 2.9. The maximal singular subspaces of 2A2(W ) are projective planes. If

M1,M2 are two such subspaces then M1 ∩M2 is either empty or a point.

Proof. Suppose x and y are collinear points of 2A2(W ). Then x ∩ y ∈ I1(W )

and T2([x ∩ y]⊥, [x ∩ y]) is a generalized quadrangle and therefore its lines are

maximal singular subspaces. Therefore, if z is collinear with both x and y but

does not lie on the line T2(x + y, x ∩ y) then z must lie in the totally isotropic

three space x + y and 〈x, y, z〉Γ = T2(x + y, 0) is a projective plane (dual to

T1(x+ y, 0).) We have therefore shown that the maximal singular subspaces of
2A2(W ) are all of the form T2(U, 0) for U a totally isotropic subspace of W of

dimension three.

Now let Mi = T2(Ui, 0), i = 1, 2 where Ui are distinct maximal totally isotropic

subspaces of W . Then dim(U1 ∩ U2) ≤ 2. If dim(U1 ∩ U2) = 2 then U1 ∩ U2 is

the unique point in M1 ∩M2. Otherwise M1 ∩M2 = ∅. �

Lemma 2.10. Let Mi = T2(Ui, 0), i = 1, 2 where Ui are maximal isotropic sub-

spaces of W . Assume M1 ∩ M2 = {x}. For a point y ∈ M1, y 6= x we have the

following:

(i) ∆Γ(y) ∩M2 = {x}.

(ii) [∆(2,2)(y) ∩M2] ∪ {x} is the line T2(M2, x ∩ y).
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Proof. Note that U1∩U2 = {x}. Let y ∈ M1. Then y∩x = p is a projective point

of W . Since U2 is a maximal totally singular subspace and y is not contained in

U2 it follows that y⊥ ∩ U2 = x and so {x} = ∆Γ(y) ∩ M2. On the other hand,

suppose z ∈ M2 and z ∩ x = p. Then y ∩ z = p and the pair y, z is a type

two symp pair. Thus, every point of the line T2(U2, p), apart from x belongs to

∆(2,2)(y). Moreover, if w ∈ M2 and w ∩ x = q 6= p then {y, w} is a special pair.

Thus, we have shown (i) and (ii). �

Lemma 2.11. Let M1 and M2 be maximal singular subspaces of 2A2(W ) such

that M1 ∩M2 = ∅. Then one of the following occurs:

(i) There are lines mi ⊂ Mi, i = 1, 2, satisfying the following: For each point

x ∈ m1,∆
Γ(x) ∩ M2 ∈ m2 is a point and m2 ⊂ ∆Γ(x) ∪ ∆(2,2)(x). In

particular, for every x ∈ m1, y ∈ m2, dim(x ∩ y) = 1. Moreover, if x1 ∈
m1, x2 ∈ M2 \m2 then {x1, x2} is a special pair, whereas if xi /∈ mi, i = 1, 2

then d(x1, x2) = 3.

(ii) For each point x ∈ M1,M2 ∩∆Γ(x) = ∅. For each x ∈ M1,∆(2,s)(x) ∩M2

is a line and if y ∈ M2, y /∈ ∆(2,s)(x) ∩M2 then d(x, y) = 3.

Proof. (i) Let Mi = T2(Ui, 0), i = 1, 2. Then we have either U1 ∩ U2 = {0W }
or U1 ∩ U2 = {p} where p is an isotropic point of W . Assume first that

U1 ∩ U2 = {p}. We show that (i) holds. Set mi = T2(Ui, p), i = 1, 2,

lines of M1,M2 respectively. Suppose x ∈ m1. Let y = U2 ∩ x⊥. Then

y ∈ m2 and it is the unique point of M2 collinear with x. For any other

point y′ ∈ m2, dim(x ∩ y′) = 1 and therefore {x, y′} is a type two symp

pair. On the other hand, if z ∈ M2 \m2 then x ∩ z = {0W }. However, p ⊂
x⊥W ∩ z and therefore {x, z} is a special pair. On the other hand, suppose

xi ∈ M2, i = 1, 2 and p is not contained in x1 ∩ x2. Then x1 ∩ x2 = {0}
and x1 ∩ x⊥

2 = {0} and d(x1, x2) = 3.

(ii) Now assume that U1 ∩ U2 = {0W }. Then for each x ∈ M1 and y ∈ M2

we have x ∩ y = 0 and {x, y} cannot be collinear or a type two symp

pair and so either {x, y} is special pair or d(x, y) = 3. However, for x ∈
M1, x

⊥ ∩ U2 = p is a projective point of W and all the points of the line

T2(U2, p) are in ∆(2,s)(x). This proves (ii). �

Notation 2.12. If M1,M2 are maximal singular subspaces of 2A2(W ) we will

write M1 ∼ M2 if M1∩M2 is a point and M1∗M2 if M1,M2 are as in Lemma 2.11

part (i).

Lemma 2.13. Let M be the collection of all maximal singular subspaces of 2A2(W ).

Then

(i) The graph (M,∼) is connected.
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(ii) The graph (M, ∗) is connected.

Proof. (i) The graph (M,∼) is the collinearity graph of the dual polar space
2A5,3(F) = DU(6,F) which is known to be connected.

(ii) In light of (i) it suffices to prove that if M1 ∼ M2 then there exists a ∗ path

from M1 to M2. Suppose Mi = T2(Ui, 0), i = 1, 2 where U1 ∩ U2 ∈ I2(W ).

Let (v1,v2) be a basis for U1 ∩ U2. Extend this to a basis (v1,v2,v3) for

U1 and (v1,v2,w3) for U2. Now v3 and w3 are non-orthogonal. Then

(v3 + w3)
⊥ is a non-degenerate four dimensional subspace of W which

contains v1 and v2. Extend this to a base (v1,v2,w1,w2) where vi ⊥
wj for i 6= j and w1 ⊥ w2. Now set M3 = 〈v1, w2, v3 + w3〉F. Then

M1 ∗M3 ∗M2. �

3 Proof of the main theorem

In this section we prove our main theorem. Let (V, f) be a non-degenerate

unitary space of dimension n over F and (W, g) a non-degenerate unitary space

of dimension m over F. When necessary, we will distinguish orthogonality in V

by writing ⊥V and in W by ⊥W . Before proceeding to the proof we introduce

some notation: When A,B are subspaces of V and l is an positive integer we will

denote by T(V,l)(B,A) the collection of l-dimensional totally isotropic subspaces

of V which satisfy A ⊂ C ⊂ B and in a similar fashion we define T(W,k)(E,D).

Fix an l, 1 ≤ l ≤ n− 1 and let Γ = (P,L) where P = Il(V ) and L consists of

all sets λ(B,A) = T(V,l)(B,A) where A ⊂ B ⊂ B⊥V are subspaces of V, dimA =

l − 1 and dimB = l + 1.

Now fix k, 1 ≤ k ≤ m − 1 and set P ′ = Ik(W ) and set L′ equal to the

collection of all set λ(B′, A′) = T(W,k)(B
′, A′) where A′ ⊂ B′ ⊂ (B′)⊥W are

subspaces of W, dimA′ = k − 1 and dimB′ = k + 1 so that Γ′ = (P ′,L′) ∼=
2Am−1,k(F). Now assume that S is a subspace of Γ, S = (PS ,LS) ∼= (P ′,L′). Let

σ : Γ′ → S be an isomorphism. For a totally isotropic subspace U ∈ It(W ), 1 ≤
t ≤ m, we will denote by SU the image under σ of T(W,k)(U

⊥W , U).

Notation 3.1. For a subset X of P we will denote by Σ(X) the subspace of V

spanned by all U ∈ X.

We will show that the conclusions of our main theorem hold in a sequence of

lemmas. Our proof is by induction on N = n+ l +m+ k.

Lemma 3.2. Let x, y ∈ P be collinear and z on the line xy. Then x∩y ⊂ z ⊂ x+y.
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Proof. This is an immediate consequence of the definition of collinearity in
2An−1,l and of a line. �

Lemma 3.3. Let S be a subspace of Γ = 2Al(V ) ∼= 2An−1,l(F) and X a generating

set of S, that is, a subset X of S such that 〈X〉Γ = S. Then Σ(S) = Σ(X).

Proof. We define a sequence of sets Pj(X) ⊂ P, j ≥ 0 inductively as follows:

P0(X) = X and

Pj+1(X) = Pj(X) ∪
⋃

{λ∈L:|λ∩Pj(X)|≥2}

λ

and set P (X) = ∪j≥0Pj(X). Note that Pj+1(X) ⊃ Pj(X). We claim that P (X)

is a subspace of Γ. For suppose that λ is a line and x 6= y ∈ λ ∩ P (X). Then

there are natural numbers s, t such that x ∈ Ps(X), y ∈ Pt(X). If t′ = max{s, t}
then x, y ∈ Pt′(X) and then λ ⊂ Pt′+1(X). This proves that P (X) is a subspace.

Since X ⊂ P (X) and X generates S we can conclude that S ⊂ P (X). On the

other hand, a simple induction implies that Pj(X) ⊂ S for each j ≥ 0, whence

P (X) ⊂ S and consequently, P (X) = S.

We next claim that Σ(Pj(X)) ⊂ Σ(X) for all j ≥ 0. The proof is by induction

on j. Since P0(X) = X the base case is clear.

Now assume that Σ(Pj(X)) ⊂ Σ(X) and let z ∈ Pj+1(X) \ Pj(X). Then

there is a line λ containing z with |λ ∩ Pj(X)| ≥ 2. Let x 6= y ∈ λ ∩ Pn(X). By

the inductive hypothesis, x, y ⊂ Σ(X) and then by Lemma 3.2 it follows that

z ⊂ Σ(X).

Since Pj(X) ⊂ Pj+1(X) it follows that Σ(Pj(X)) ⊂ Σ(Pj+1(X)) and conse-

quently that ∪j≥0Σ(Pj(X)) is a subspace of V and equal to Σ(∪j≥0Pj(X)). We

can then conclude that

Σ(X) ⊇ ∪j≥0 Σ(Pj(X))

= Σ(∪j≥0 Pj(X))

= Σ(S). �

Before getting to the next result we need a lemma on the generation of uni-

tary polar spaces of which have maximal Witt index.

Lemma 3.4. Let Π = (P,L) be the polar space of isotropic points and totally

isotropic lines of a non-degenerate unitary space (V, f) of dimension n and maxi-

mal Witt index m. Then the following occurs:

(i) Assume n = 2m and the Witt index of (V, f) is m. Then any subgraph

of the collinearity graph of (P,L) with isomorphism type K2,2,...,2 (m 2’s)

generates P .
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(ii) Assume n = 2m + 1 and the Witt index of (V, f) is m. Let pi, qi, 1 ≤ i ≤ m

and r be isotropic points such that

(1) pi ⊥ pj , pi ⊥ qj , qi ⊥ qj for i 6= j, 1 ≤ i, j ≤ m whereas pi 6⊥ qi for

1 ≤ i ≤ m;

(2) pi ⊥ rj ⊥ qi for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ 3, pm 6⊥ r 6⊥ qm; and

(3) p⊥m ∩ r⊥ 6= q⊥m ∩ r⊥.

Then {pi, qi|1 ≤ i ≤ m} ∪ {r} generates P .

Proof. (i) This is proved by Blok and Cooperstein in [2].

(ii) Set X = {pi, qi|1 ≤ i ≤ m} and Y = X ∪ {r}. Also set U = 〈X〉F, H =

〈X〉Π, and S = 〈Y 〉Π. By (i) H = I1(U), the point set of 2A2m−1,1(U).

Also, since U is a linear hyperplane of V,H is a geometric hyperplane

of P . Note, by assumption (3) that r /∈ H. Let x ∈ P, x ⊥ r. We claim

that x ∈ S. If x ∈ H then x ∈ S since H ⊂ S. So assume that x /∈ H.

Let λ be the line of Π containing x and r and let y be the point of λ in H.

Since r, y ∈ S it follows that λ ⊂ S, whence x ∈ S. In a similar fashion,

if x, y ∈ P \ H and x ⊥ y ⊥ r then x ∈ S. We now claim that S = P .

Suppose x ∈ P \ H. Let z1, z2 ∈ H, z1 ⊥ r ⊥ z2, z1 6⊥ z2. Let λi, i = 1, 2

be the line on zi and r. Of course, we can assume that x 6⊥ r3. Suppose

x 6⊥ z1. Let y be the point on λ1 such that x ⊥ y. Then r3 ⊥ y ⊥ x whence

x ∈ S by the above. We get a similar conclusion if x 6⊥ z2. So we may

now assume that z1 ⊥ x ⊥ z2. Let λ3 be the line on x and z2 and choose a

point y on λ1, y 6= r, z1 and let y′ be the point on λ3 with y ⊥ y′. Observe

that y′ 6= z2 since z1 6⊥ z2. Now r ⊥ y ⊥ y′ and therefore y′ ∈ S. Then y′

and z2 ∈ S from which we can conclude that λ3 ⊂ S. Thus, x ∈ S. �

Lemma 3.5. If k = 1, that is, S is isomorphic to 2Am−1,1(F) with m ≥ 4, then

there exists a totally isotropic subspace D of dimension l − 1, and a subspace E

contained in D⊥ and containing D such that E/D non-degenerate of dimension n′

and S = T(V,l)(E,D).

Proof. The subspace S is a polar space and therefore contained in one of the two

types of symps because any polar space is the convex hull of any two of its points

at distance two. Suppose S is contained in a type two symp, T(V,l)(D
⊥, D),

where D is totally isotropic, dimD = l − 1. Suppose n′ = 2s is even. Let

pi, qi, 1 ≤ i ≤ s, be points of S such that the pairs {pi, pj}, {pi, qj}, {qi, qj}
are collinear for i 6= j and {pi, qi} are not collinear for 1 ≤ i ≤ s. By (i) of

Lemma 3.4, 〈pi, qi|1 ≤ i ≤ s〉Γ = S. Since pi, qi ∈ T(V,l)(D
⊥, D) and pi, qi are

not collinear we must have p⊥i ∩ qi = D, pi ⊥V pj , pi ⊥V qj , and qi ⊥V qj for

i 6= j. Then the space E =
∑s

i=1(pi + qi) has dimension 2s + (l − 1) and E/D
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is non-degenerate. Since {pi, qi|1 ≤ i ≤ s} generates the subspace S it follows

from Lemma 3.3 that Σ(S) = E. So in this case the conclusion of the theorem

holds.

Suppose m = 2s + 1. Let pi, qi, 1 ≤ i ≤ s and r be points of S such that the

pairs {pi, pj}, {pi, qj}, {qi, qj}, i 6= j, are collinear for 1 ≤ i ≤ s, that {pi, r} and

{qi, r} are collinear for 1 ≤ s − 1 and all other pairs are non-collinear. Further,

assume that r is not in 〈pi, qi|1 ≤ i ≤ s〉Γ. Then by (ii) of Lemma 3.4, S is

generated by {pi, qi|1 ≤ s} ∪ {r}. Note that D is a subset of pi, qi for every i

and r since all these points are in T(V,l)(D
⊥, D). Since pi, qi are not collinear it

follows that p⊥i ∩qi = D and pi/D, qi/D are two non-orthogonal isotropic points

of D⊥/D as are pm/D and r/D as well as qm/D and r/D. It then follows that

the dimension of r/D +
∑s

i=1(pi/D + qi/D) is 2s + 1 = n′. Consequently, if

E = r +
∑s

i=1(pi + qi) then dim(E) = (l − 1) + 2s + 1 = (l − 1) + n′. Since

{pi, qi|1 ≤ i ≤ s} ∪ {r} generates S it follows that E = Σ(S). Thus, in this case

the result holds.

We now show that S cannot be contained in a type one symp. Suppose to the

contrary that S is contained in T(V,l)(B,A) with A ⊂ B ⊂ A⊥V , subspaces of V

with dim(A) = l − 2 and dim(B) = l + 2. Let p1, p2, q1, q2 be points in S such

that all pairs are collinear except {p1, q1} and {p2, q2}. Then 〈p1, p2, q1, q2〉Γ is

a quadrangle of S isomorphic to 2A3,1(F). However, for four such points in

T(V,l)(B,A), 〈p1, p2, q1, q2〉Γ is a grid and we have a contradiction. �

We will next be treating the case that m ≥ 6, S is isomorphic to 2An′−1,2(F)

and is a subspace of 2Al(V ) which is isomorphic to 2An−1,l(F). Let p be a

point of I1(W ) and denote by Sp those elements of S which are the image of

point x of the geometry 2A2(W ) such that p ⊂ x. Then Sp is isomorphic to
2Am−3,1(F). By Lemma 3.5 there is a totally isotropic subspace Ap of dimension

l − 1 and a subspace Bp contained in A⊥V
p and containing Ap such that Bp/Ap

non-degenerate of dimension n′ − 2 and Sp = T(V,l)(Bp, Ap).

Lemma 3.6. For p 6= q ∈ I1(W ), Ap 6= Aq.

Proof. Suppose to the contrary that Ap = Aq for some pair p 6= q ∈ I1(W ). Set

U = Ap = Aq. Then Sp, Sq are both subspaces of T(V,l)(U
⊥V , U) which is a type

two symp. By Lemma 2.7 for any point y ∈ Sq \ Sp,∆
Γ(y) ∩ Sp is either empty

or a singular subspace. In particular, Sp is not contained in ∆Γ(y).

Choose a y ∈ Sq \ Sp and let x be a point in Sp which is not collinear with y.

Let w, z be points of Sp which are non-collinear but are both collinear with x.

Since Sp, y are contained in the symp T(V,l)(U
⊥V , U), y is collinear with a point

w′ 6= x on the line xw and a point z′ 6= x on the line xz. However, the points w′
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and z′ are non-collinear and this contradicts the fact that Sp ∩ ∆Γ(y) is empty

or a singular subspace. Thus, Ap 6= Aq for p 6= q ∈ I1(W ). �

We shall now deal with the case k = l = 2.

Lemma 3.7. Let n ≥ m ≥ 6. Assume m = l = 2. Then there is a non-degenerate

m-dimensional subspace B of V such that S = I2(B) = T(V,2)(B, 0).

Proof. Let (W, g) be a non-degenerate unitary space of dimension m and max-

imal Witt index m′ = ⌊m
2 ⌋ and let σ : 2Am−1,2 → S be a isomorphism. For

p ∈ I1(W ) let Sp = σ(T(W,2)(p
⊥, p)) which is isomorphic to 2Am−3,1(F), a symp

of S. By Lemma 3.5 there is a point Ap of V and a subspace Bp ⊂ A⊥V
p such

that Bp/Ap non-degenerate of dimension m − 2 such that Sp = T(V,2)(Bp, Ap).

We have seen for p 6= q ∈ I1(W ) that Ap 6= Aq. Thus the map p → Ap of points

of I1(W ) to I1(V ) is injective.

Next note that if p ⊥W q then T(W,2)(p
⊥W , p)∩T(W,2)(q

⊥W , q) = {〈p, q〉W }. If

x = σ(〈p, q〉W ) then Ap and Aq must be contained in x. Then they are distinct

hyperplanes of x and consequently, x = 〈Ap, Aq〉V . In particular, Ap + Aq =

〈Ap, Aq〉V is totally isotropic.

Next suppose r 6= p is a point of I1(〈p, q〉W ). Then 〈p, q〉W = 〈p, r〉W from

which it follows that Ap + Ar = Ap + Aq which implies in turn that Ar ∈
T(V,2)(Ap +Aq, 0); since, for l = 2, Ap ∩Aq = 0.

Finally, suppose that p, q ∈ I1(W ), p and q are non-orthogonal. We claim

that Ap and Aq are non orthogonal. Suppose to the contrary that Ap ⊥ Aq. Let

r ∈ I1(W ) with p ⊥ r ⊥ q so that 〈p, r〉W , 〈q, r〉W are two points of 2A2(W )

which are non-collinear. Then σ(〈p, r〉W ) = Ap + Ar and σ(〈q, r〉W ) = Aq + Ar

are not collinear. However, since Ap +Aq +Ar ∈ I3(V ) and (Ap +Ar) ∩ (Aq +

Ar) = Ar 6= 0, Ap +Ar it follows that Ap +Ar and Aq +Ar are collinear points

of 2An−1(V ), a contradiction.

Assume that A ∈ PG(Ap + Aq). We claim that there exists an r ∈ PG(p + q)

such that Ar = A. Towards that end, let s1, s2 be non-collinear points of W with

p ⊥ si ⊥ q for i = 1, 2. The totally isotropic lines p + si and q + si meet at si
and their sum is p+ q+ si, which is totally isotropic. Therefore p+ si and q+ si
are collinear in 2A2(W ). Now set xi = σ(p + si), yi = σ(q + si), i = 1, 2. Then

xi ∈ T(V,2)(A
⊥
p , Ap) and yi ∈ T(V,2)(A

⊥
q , Aq) are collinear. It follows that there

is a unique point zi on the line T(V,2)(xi + yi, Asi) contained in T(V,2)(A
⊥, A).

Since S is a subspace, zi ∈ S. Since σ is an isomorphism of 2A2(W ) onto S there

are points ui ∈
2A2(W ) such that σ(ui) = zi, i = 1, 2. In fact, ui belongs to the

line T(W,2)(p + q + si, si). Also, since z1, z2 are contained in the type two symp

T(V,2)(A
⊥, A) it also follows that u1 ∩ u2 is a point r ∈ I1(W ) which belongs to
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(p + q + s1) ∩ (p+ q + s2) = p+ q. It now follows that Sr ⊂ T(V,2)(A
⊥, A) and

consequently that Ar = A.

We can now conclude that the injective map p → Ap defines an isomorphism

of the polar space 2A1(W ), which is isomorphic to 2Am−1,1(F) into 2A1(V ). It

follows that the image of this map is a non-degenerate m-dimensional subspace

B of V . We claim that S = T(V,2)(B, 0).

If x = σ(〈p, q〉W ) then x = Ap +Aq ⊂ B and consequenlty, S ⊂ I2(B). Since

S is isomorphic to T(V,2)(B, 0) it follows that S = T(V,2)(B, 0) as claimed. �

Lemma 3.8. Assume that S is isomorphic to 2A5,2(F) and Γ is isomorphic to
2An−1,l(F) with l > 2. Then there is a totally isotropic subspace A, dimA = l− 2,

a subspace B containing A and contained in A⊥V such that B/A is a six-dimen-

sional non-degenerate space and S = T(V,l)(B,A).

Proof. Let U ∈ I3(W ). We set M(U) = σ(T(W,2)(U, 0)) which is a singular plane

of S. There are two possibilities for M : (i) M = T(V,l)(D,C) with C ⊂ D totally

singular subspaces, dim(C) = l − 1, dim(D) = l + 2; or (ii) M = T(V,l)(D,C)

with C ⊂ D totally singular subspaces, dim(C) = l − 2, dim(D) = l + 1. We

want to show that the first case cannot occur. Toward that end we first show

that it is not possible for two different types of planes to occur in S.

By Lemma 2.13 the graph on I3(W ) given by U1 ∗ U2 if U1 ∩ U2 ∈ I1(W ) is

connected. Consequently, it suffices to show for any such pair that M(U1) and

M(U2) have the same type. So, let U1, U2 ∈ I3(W ) with U1 ∩ U2 ∈ I1(W ) and

set Mi = M(Ui), i = 1, 2 and suppose Mi = T(V,l)(Di, Ci) where dim(C1) =

l − 1, dim(C2) = l − 2, dim(D1) = l + 2, dim(D2) = l + 1.

By Lemma 2.11 there are lines mi ⊂ Mi, i = 1, 2 such that if x ∈ m1 then

M2 ∩ ∆Γ(x) = m2 ∩ ∆Γ(x) is a point, x′, and for y ∈ m2 \ {x′} the pair x, y

is a type two symp pair. Let m1 = T(V,l)(E1, C1) where E1 is contained in

D1 and dim(E1) = l + 1 and m2 = T(V,l)(D2, E2) where E2 is contained in

D2 and dim(E2) = l − 1. We claim that there is no x ∈ m1 with x ⊂ D2

and no y ∈ m2 such that y ⊂ D1. Suppose to the contrary that x ∈ m1 and

x ⊂ D2. Then x is a hyperplane of D2. In particular, D2 ⊂ x⊥. Since for all

y ∈ m2, dim(x ∩ y) = l − 1 it is then the case that m2 ⊂ ∆Γ(x), a contradiction.

We get a similar contradiction if there is a y ∈ m2 such that y ⊂ D1.

We next claim that for x ∈ m1, y ∈ m2 the intersection x ∩ y is independent

of x and y. Assume to the contrary that there are x ∈ m1, y1, y2 ∈ m2 such

that x ∩ y1 6= x ∩ y2. Since x ∩ y1 and x ∩ y2 are hyperplanes of x we then get

that x = x ∩ y1 + x ∩ y2 ⊂ D1 ∩D2, contradicting the above. Wet get a similar

contradiction if there are x1, x2 ∈ m1, y ∈ m2 such that x1 ∩ y 6= x2 ∩ y.

Let x ∈ m1, y ∈ m2. Since x ∩ y is independent of the choice of x, x ∩ y is
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contained in I(m1) = C1. Likewise, x∩ y is contained in I(m2) = E2. However,

dim(x ∩ y) = l − 1 = dim(C1) = dim(E2) and therefore C1 = E2.

Now assume that y ∈ m2 = T(V,l)(D2, E2) = T(V,l))(D2, C1) and x ∈ M1 =

T(V,l)(D1, C1). Then C1 = x ∩ y and therefore {x, y} is either a collinear or a

type two symp pair. However, this contradicts part (i) of Lemma 2.11. Thus,

only one type of plane can occur. We show that, in fact, type (i) planes do not

occur.

Suppose to the contrary that all the planes of S are type of (i). Let U1, U2 ∈
I3(W ) with U1∩U2 ∈ I2(W ) and set Mi = M(Ui) = T(V,l)(Di, Ci) where Di, Ci

are isotropic subspaces with Ci ⊂ Di, dim(Ci) = l − 1 and dim(Di) = l + 2. Set

x = σ(U1 ∩ U2). Since M1 ∩ M2 = {x} either C1 + C2 = x or C1 = C2 and

D1 ∩ D2 = x. Suppose C1 + C2 = x. Let y ∈ M1, y 6= x so that C2 is not

contained in y. By pulling back to 2A2(W ) and using the isomorphism σ we can

conclude that there is a line λy ⊂ M2 containing x such that if y′ ∈ λy \ {x}
then y, y′ is a symp pair and therefore dim(y∩ y′) = l− 1. Now the line λy must

be of the form T(V,l)(D,C2) for some subspace D of D2, dim(D) = l + 1. But

then I(λy) = C2. Since dim(y ∩ z) = l − 1 for all z ∈ λy and ∩z∈λy
z = C2 is

not contained in y it follows that there are z1, z2 ∈ λy such that y ∩ z1 6= y ∩ z2.

Then y = y ∩ z1 + y ∩ z2 ⊂ D1 ∩ D2. Since y is arbitrary and y 6= x it follows

that D1 = Σ(M1) ⊂ D2 and therefore D1 = D2. But then for each point

y ∈ M1 \ {x},M2 ∩∆Γ(y) is a line, a contradiction. Thus, C1 = C2 in this case

as well. However, since the graph on I3(W ) given by U1 ∼ U2 if and only if

U1 ∩ U2 ∈ I2(W ) is connected, it must be the case that for any U1, U2 ∈ I3(W )

if Mi = M(Ui) = T(V,l)(Di, Ci) then C1 = C2 = C. But then it follows that

S ⊂ T(V,l)(C
⊥, C) a symp, which is a contradiction. Thus, every singular plane

of S is of type (ii).

Now let U1, U2 ∈ I3(W ) with U = U1 ∩ U2 ∈ I2(W ) and set Mi = M(Ui) =

T(V,l)(Di, Ci), i = 1, 2 and x = σ(U) ∈ M1 ∩ M2. Then x ⊂ D1 ∩ D2 and

C1 + C2 ⊂ x. If D1 ∩ D2 6= x and C1 + C2 6= x then T(V,l)(D1 ∩ D2, C1 + C2)

is contained in M1 ∩M2 has points in addition to x, a contradiction. We claim

that C1 = C2. Suppose to the contrary that C1 6= C2. As in the previous

paragraph, for y ∈ M1 we will denote by λy a line in M2 containing x such that

for x 6= y′ ∈ λy the pair y, y′ is a symp pair and therefore dim(y ∩ y′) = l − 1.

And, as shown above, I(λy) = C2.

We have I(M1) = C1 6= C2 = I(M2). Since ∩z∈λy
(y ∩ z) ⊂ C2 has dimension

l−2 and dim(y∩z) = l−1 for z ∈ λy there must be z1, z2 ∈ λy with y∩z1 6= y∩z2.

Then y ∩ z1, y ∩ z2 are distinct hyperplanes of y and y = (y ∩ z1) + (y ∩ z2) ⊂
D1 ∩ D2. Since y is arbitrary, D1 = Σ(M1) ⊂ D2 and therefore D1 = D2. But

any two hyperplanes of D1 = D2 are then collinear, whence every point of M1

with every point of M2, a contradiction. Thus, C1 = C2.
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As argued previously, this implies there is a fixed l − 2 dimensional sub-

space C such that M(U) = T(V,l)(D,C) for all U ∈ I3(W ). But then S is con-

tained in T(V,l)(C
⊥, C) which is isomorphic to 2An−l+1,2(F) and we are done by

Lemma 3.7. �

Lemma 3.9. Assume that S is isomorphic to 2Am−1,2(F) and Γ is isomorphic to
2An−1,l(F) with l > 2. Then there is a totally isotropic subspace A, dim(A) = l−2,

and a subspace B which contains A and is contained in A⊥V and such that B/A

is an m-dimensional non-degenerate space and S = T(V,l)(B,A).

Proof. For a point p ∈ I1(W ) we let Sp = σ(T(W,2)(p
⊥, p)) which is isomor-

phic to 2Am−3,1(F). By Lemma 3.5, Sp = T(V,l)(Bp, Ap) where Ap is a to-

tally isotropic space of dimension l − 1, Bp contains Ap and is a subset of A⊥V
p

and Bp/Ap is non-degenerate of dimension m − 2. From Lemma 3.6 the map

p → Ap is injective. Now suppose q1, q2 are two isotropic points of W such that

q1 ⊥W p ⊥W q2. We claim that Ap ∩Aq1 = Ap ∩Aq2 .

Let W ′ be the non-degenerate six dimensional subspace of W which contains

p + q1 + q2 and let S′ = σ(T(W,2)(W
′, 0)) which is isomorphic to 2A5,2(F). By

Lemma 3.8 it follows that S′ = T(V,l)(D,A) where A is a totally isotropic sub-

space, dim(A) = l − 2, D is a subspace containing A and contained in A⊥V ,

and D/A is non-degenerate of dimension six. For a point y ∈ I1(W
′) set

S′
y = Sy ∩ S′. Then S′

y is isomorphic to 2A3,1(F) and S′
y = T(V,l)(By ∩D,Ay).

Now for all y ∈ S′, Ay ⊃ A. On the other hand, if y, z ∈ S′ with Ay 6= Az then

Ay ∩ Az = A. In particular, Ap ∩ Aq1 = A = Ap ∩ Aq2 . Now the graph whose

vertices consists of those of pairs {p, q} in I1(W ) with p ⊥W q given by α ∼ β

if and only if |α ∩ β| = 1 is connected. From this it follows that I(S) = A and

S ⊂ T(V,l)(A
⊥, A). Applying Lemma 3.7 completes the result. �

We next take up the case where S is a subspace of 2Al(V ) which is isomorphic

to 2Am−1,l(F). We will make use of our inductive hypothesis: if S′ is isomorphic

to 2Am∗,l∗(F) is a subspace of 2Al(V ) with m∗ + l∗ < m+ l then the conclusion

of our theorem holds: there is a totally isotropic subspace A of dimension l− l∗

and a subspace B with A ⊂ B ⊂ A⊥V such that B/A is non-degenerate of

dimension m∗ with S′ = T(V,l)(B,A).

Before proceeding to the proof we obtain a lemma about “large” subspaces

of unitary polar spaces which will be used in the succeeding result.

Lemma 3.10. Let (V, f) be a non-degenerate unitary space of dimension n and

Witt index n′ = ⌊n
2 ⌋ > 2 and let 1 < l ≤ n′. Let X be a proper subspace of W and

assume for every element of x ∈ Il(W ) that x ⊂ X or x ∩X is a hyperplane of x.

Then X is a hyperplane of W .
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Proof. We claim that for every z ∈ I2(V ) that z ∩ X 6= {0} from which it will

follow that I1(X) is a geometric hyperplane of the polar space (I1(V ), I2(V ))

and then X is a linear hyperplane of V . If l = 2 then there is nothing to prove.

Suppose 2 < l and z ∈ I2(V ). Let x ∈ Il(V ) with z ⊂ x. If x ⊂ X then z ⊂ X

so we may assume that x 6⊂ X so that x∩X is a hyperplane of x. Then we have

either z ⊂ x ∩ X ⊂ X or z ∩ [x ∩ X] is a point. Since z ∩ [x ∩ X] ⊂ z ∩ X it

follows that z ∩X 6= {0}. �

Lemma 3.11. Assume l ≥ 3,m ≥ 2(l + 1) and S is a subspace of 2Al(V ) is

isomorphic to 2Am−1,l(F). Then there is non-degenerate subspace B of dimension

m such that S = T(V,l)(B, 0).

Proof. The proof of this closely follows the proof of Lemma 3.7 but differs in

enough of its details to warrant its inclusion.

As previously defined, for a point p ∈ I1(W ) we let Sp = σ(T(W,l)(p
⊥, p))

which is isomorphic to 2Am−3,l−1(F). By our inductive hypothesis there is an

isotropic point Ap and a subspace Bp satisfying Ap ⊂ Bp ⊂ A⊥V
p with Bp/Ap

non-degenerate of dimension m− 2 and Sp = T(V,l)(Bp, Ap). We first show that

the map p → Ap from I1(W ) to I1(V ) is injective.

Suppose first that p 6= q ∈ I1(W ) are orthogonal and Ap = Aq. Set A =

Ap = Aq. Note that Sp ∩ Sq = σ(T(W,k)(〈p, q〉
⊥W , 〈p, q〉)) = T(V,l)(Bp ∩ Bq, A)

is isomorphic to 2Am−5,l−2(F). Consequently, the dimension of [Bp ∩ Bq]/A is

m− 4.

By Lemma 2.8 if x ∈ Sp then either x ∈ Sq,∆
Γ(x)∩ Sq is a singular subspace

isomorphic to PGl−1(F), or there is a unique y ∈ ∆(2,2)(x) ∩ Sq.

In the first case x ⊂ Bq. In the second case, if y ∈ Sq ∩∆Γ(x), then x ∩ y is a

hyperplane of x and therefore we can conclude that Bq∩x contains a hyperplane

of x. Finally, in the third case, if y ∈ ∆(2,2)(x)∩ Sq then x∩ y is a hyperplane of

x and again Bq ∩ x contains a hyperplane of x.

It therefore follows that either x/A ⊂ (Bp ∩Bq)/A or the intersection of x/A

and (Bp ∩Bq)/A is a hyperplane of x/A for every x ∈ T(V,l)(Bp, A). Since l > 2,

Lemma 3.10 applies and (Bp ∩ Bq)/A is a hyperplane of Bp/A. In particular,

dim([Bp ∩Bq]/A) = m− 3, a contradiction.

Now assume that p and q are non-orthogonal points of W and that Ap =

Aq = A. Note that Sp ∩ Sq = ∅. Let x ∈ Sp = T(V,l)(Bp, Ap) = T(V,l)(Bp, A).

Then it cannot be the case that x ⊂ Bq because otherwise we would have

x ∈ T(V,l)(Bq, A) = Sq contradicting Sp ∩ Sq = ∅. On the other hand, there is

a unique point y ∈ ∆(2,2)(x) ∩ Sq. Then x ∩ y is a hyperplane of x contained

in Bq ∩ x. It therefore follows that for every x ∈ T(V,l)(Bp, A), either x/A

is contained in (Bp ∩ Bq)/A or else (Bp ∩ Bq)/A meets x/A in a hyperplane.
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By Lemma 3.10 it follows that (Bp ∩ Bq)/A is a hyperplane of Bp/A. Since

l < m = ⌊n
2 ⌋, the index of (V, f), it must be the case that Bp ∩ Bq contains an

element of T(V,l)(Bp, A) contradicting Sp ∩ Sq = ∅. Thus, the map from I1(W )

to I1(V ), p → Ap is injective.

When p 6= q ∈ I1(W ) and p ⊥W q then Sp∩Sq 6= ∅ from which it follows that

Ap ⊥V Aq. On the other hand, suppose p, q ∈ I1(W ) and are non-orthogonal.

We claim that Ap and Aq are non-orthogonal. Suppose to the contrary that

Ap ⊥V Aq. We will get a contradiction.

We first show that either Ap ⊂ Bq or Aq ⊂ Bp. Let U ∈ Il−1(W ) be contained

in p⊥W ∩ q⊥W and set X = 〈U, p〉W , Y = 〈U, q〉W . Then X,Y ∈ 2Al(W ) and

belong to the type two symp T(W,l)(U
⊥, U). Set x = σ(X), y = σ(Y ). Then

(x, y) ∈ ∆(2,2) and so x ∩ y ∈ Il−1(V ). Suppose neither Ap nor Aq is contained

in x ∩ y. Then x + y = 〈x ∩ y,Ap, Aq〉F is totally isotropic which means that x

and y are collinear, a contradiction. This proves our assertion. Without loss of

generality we can assume that Ap ⊂ Bq.

By Lemma 2.8, for each x′ ∈ Sp there is a unique point y′ ∈ Sq with (x′, y′) ∈
∆(2,2). Then x′ ∩ y′ ⊂ Bq is a hyperplane. By Lemma 3.10, (Bp ∩ Bq)/Ap is a

hyperplane of Bp/Ap and consequently, Bp ∩ Bq is a hyperplane of Bp. It then

follows that T(V,l)(Bp∩Bq, Ap) 6= ∅. Let x′ ∈ T(V,l)(Bp∩Bq, Ap). If Aq ⊂ x′ then

x′ ∈ Sp ∩ Sq, a contradiction. However, it now follows that 〈x′, Aq〉V ⊂ Bq and

that T(V,l)(〈x
′, Aq〉V , Aq) ⊂ ∆Γ(x′) ∩ Sq, a contradiction. Thus, if p, q ∈ I1(W )

are non-orthogonal then the points Ap and Aq in V are non-orthogonal.

We next show that if X ∈ I2(W ) then {Ap : p ∈ PG(X)} is contained in

a totally singular line of V . Let p 6= q ∈ I1(W ) with p ⊥W q and let r ∈
PG(〈p, q〉W ), r 6= p. Then Sp∩Sq = Sp∩Sr. Therefore, T(V,l)(Bp∩Bq, Ap+Aq) =

T(V,l)(Bp ∩Br, Ap +Ar). In particular, Ar ∈ PG(Ap +Aq).

Finally, we prove that if p 6= q ∈ I1(W ) with p ⊥ q then the collection

{Ar : r ∈ PG(〈p, q〉W } = PG(〈Ap, Aq〉V ). Let U ∈ Il+1(W ) with 〈p, q〉W ⊂
U . Then T(W,l)(U, 0) is a type one maximal singular subspace of 2Al(W ) and

isomorphic to PGl(F). Set X = σ(T(W,l)(U, 0)), a singular subspace of 2Al(V )

(here we are making use of the assumption that S is a subspace, not just a

subgeometry, of 2Al(V )). Note that X ∩ Sp is a type one maximal singular

subspace of T(V,l)(Bp, Ap) and consequently must be of the form T(V,l)(U
′, Ap)

for U ′ ∈ Il+1(V ). It follows that X = T(V,l)(U
′, 0). Now suppose that A ∈

PG(Ap + Aq). Then XA = X ∩ T(V,l)(A
⊥, A) is a hyperplane of X and so,

σ−1(XA) is a hyperplane of T(W,l)(U, 0) and therefore there must be a point r ∈
PG(〈p, q〉W ) such that σ−1(XA) = T(W,k)(U, r). Then XA ⊂ Sr = T(V,l)(Br, Ar).

Note that I(XA) = A and consequently, A = Ar completing the assertion.

We can now say that the map p → Ap of I1(W ) into I1(V ) is a full embedding

of the polar space (I1(W ), I2(W ) into the polar space (I1(V ), I2(V )). This
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implies that B = {Ap : p ∈ I1(W )} is a non-degenerate m-dimensional space

of V . This completes the lemma. �

We now complete our main result. We can assume that S is isomorphic

to 2An′−1,l′(F) is a subspace of 2Al(V ), which is isomorphic to 2An−1,l(F), with

l′ < l. We will show that there is a totally isotropic subspace A of dimension l−l′

such that S ⊂ T(V,l)(A
⊥V , A) and then the result will follow from Lemma 3.11.

Let U be a non-degenerate subspace of W of dimension 2(l′ + 1) and Witt

index l′ +1, Y a maximal totally singular subspace of U and X a subspace of Y

of dimension l′ − 2. Set M = M(Y ) = σ(T(W,l′)(Y, 0)) a singular subspace of S

isomorphic to PG(l′,F). Also, set S(U) = σ(T(W,l′)(U, 0)) which is isomorphic to
2Al′+1,l′(F) and S′ = σ(T(W,l′)(U ∩ X⊥W , X)) which is isomorphic to 2A5,2(F)

and M ′ = S′∩M . We have seen in Lemma 3.8 that M ′ = T(V,l)(D,C) for totally

isotropic subspaces C ⊂ D with dim(C) = l − 2, dim(D) = l + 1. T(V,l)(D, 0)

is the unique maximal singular subspace of Γ containing M ′. Since M ′ ⊂ M

it follows that M ⊂ T(V,l)(D, 0) and consequently, M = T(V,l)(DY , AY ) where

dim(AY ) = l− l′ and dim(DY ) = l+1. Note that since DY ⊂ D and dim(DY ) =

dim(D) it follows that DY = D.

We next claim that if Y1, Y2 are totally isotropic subspaces of W of dimension

l′ + 1 which satisfy dim(Y1 ∩ Y2) = l′ and Y1, Y2 are not orthogonal then AY1
=

AY2
. For convenience set DYi

= Di, AYi
= Ai, i = 1, 2. The singular subspaces

Mi = T(V,l)(Di, Ai) have a common point x. Moreover, there is a one-to-one

correspondence between the lines on x in M1 and the lines on x in M2 such

that if λ is a line on x in M1 and λ′ is the corresponding line in M2 then for

x 6= y ∈ λ, x 6= z ∈ λ′ it follows that y, z is a type two symp pair and y ∩ z has

dimension l − 1.

Fix y in M1, y 6= x and let λy be the line on x and y. Suppose there are z1, z2 ∈
λ′
y such that y∩z1 6= y∩z2 then y∩z1 and y∩z2 are distinct hyperplanes of y and

then y = y ∩ z1 + y ∩ z2 ⊂ D1 ∩D2. Then y is a hyperplane of D2 in which case

M2 ⊂ ∆Γ(y), a contradiction. Thus, y∩z1 = y∩z2 for any points z1, z2 ⊂ λ′
y. By

reversing the argument we can conclude that ∩w∈λy
w = ∩z∈λ′

y
z has dimension

l− 1. From this it follows that A1 = I(M1) = ∩y∈M1
y = ∩z∈M2

z = I(M2) = A2

as claimed.

Finally, since the graph on Il′+1(W ) given by Y1 ∼ Y2 if and only if dim(Y1 ∩
Y2) = l′ and Y1 and Y2 non-orthogonal is connected, it follows for any two

Y1, Y2 ∈ Il′+1(W ) that AY1
= AY2

. Let A = AY for some totally isotropic

subspace of dimension l′+1 in W . Since every point x of S belongs to a singular

subspace M(Y ) for some totally isotropic subspace Y of W of dimension l′+1, it

follows that x ∈ T(V,l)(A
⊥V , A) and the proof of the main result is complete. �
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