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1 Introduction

For a class of incidence geometries which are defined (for instance coordina-

tized) over fields, it often makes sense to consider the “limit” of these geome-

tries when the number of field elements tends to 1. As such, one ends up with

a guise of a “field with one element, F1” through taking limits of geometries. A

general reference for F1 is the recent monograph [23].

1.1 Example: projective planes

For instance, let the class of geometries be the classical projective planes PG(2, k)

defined over commutative fields k. Then the number of points per line and the

number of lines per point of such a plane is

|k|+ 1, (1)

so in the limit, the “limit object” should have 1 + 1 points incident with every

line. On the other hand, we want that the limit object remains an axiomatic

projective plane, so we still want it to have the following properties:

(i) any two distinct lines meet in precisely one point;

(ii) any two distinct points are incident with precisely one line (the dual

of (i));

(iii) not all points are on one and the same line (to avoid degeneracy).

It is clear that such a limit projective plane (“defined over F1”) should be an

ordinary triangle (as a graph).

1.2 Example: generalized polygons

Projective planes are, by definition, generalized 3-gons. Generalizing the sit-

uation to generalized n-gons, n ≥ 3, a limit generalized n-gon becomes an
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ordinary n-gon (as a graph). The easiest way to see this is through the polyg-

onal definition of generalized n-gons: if E is the union of the set of points and

the set of lines (which are assumed to be disjoint without loss of generality),

then one demands that:

PD1 there are no sub m-gons with 2 ≤ m ≤ n− 1;

PD2 any two elements of E are inside at least one n-gon, and

PD3 there exist (n+ 1)-gons.

There is a constant c 6= 0, 1 such that any line is incident with c+ 1 points [27,

1.5.3], and as in the previous example, one lets c go to 1. So (PD3) cannot hold

anymore. In [26], Tits defines a generalized n-gon over F1 to be an ordinary

n-gon. (The fact that the number of lines incident with a point is also 1 + 1, is

explained at the end of §1.6.)

1.3 Example: projective spaces of higher dimension

Generalizing the first example to higher dimensions, projective n-spaces over

F1 should be sets X of cardinality n+1 endowed with the geometry of 2X : any

subset (of cardinality 0 ≤ r + 1 ≤ n + 1) is a subspace (of dimension r). In

other words, projective n-spaces over F1 are complete graphs on n + 1 vertices

with a natural subspace structure. It is important to note that these spaces still

satisfy the Veblen–Young axioms [28], and that they are the only such incidence

geometries with thin lines.

In the same vein, combinatorial affine F1-spaces consist of one single point and

a number m of one-point-lines through it; m is the dimension of the space. We

will come back to this definition in §2.

In this paper, for any object X in a category C, Aut(X) denotes the automor-

phism group of X, and Sm denotes the symmetric group acting on m letters.

In the next proposition, “combinatorial projective space” means “projective n-

space (over a field k) seen as a rank n geometry,” that is, the geometry of linear

subspaces of the vector space V (n + 1, k). Its elements set E consists of all the

i-dimensional vector subspaces, with i = 0, 1, . . . , n, and the type function

τ : E 7→ {−1, 0, . . . , n− 1} (2)

maps an i-dimensional vector subspace, to i − 1. In the projective context, we

call such a space an (i−1)-dimensional projective subspace. Incidence is inherited

from the vector space.
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Proposition 1.1 (See, e.g., Cohn [4] and Tits [26]). Let n ∈ N∪{−1}. The com-

binatorial projective space PG(n,F1) = PG(n, 1) is the complete graph on n+ 1

vertices endowed with the induced geometry of subsets, and Aut(PG(n,F1)) ∼=
PGLn+1(F1) ∼= Sn+1.

It is important to note that any PG(n, k) with k a field contains (many) sub-

geometries isomorphic to PG(n,F1) as defined above; so the latter object is

independent of k, and is a common geometric structure of all projective spaces of

a fixed given dimension (that is, it is present, as a subgeometry, in each of these

spaces). We depict this idea romantically as

A : {PG(n, k) | k field} −→ {PG(n,F1)}. (3)

More precisely, we imagine F1 to be an initial object in an enlarged category

R of commutative rings, so for each field k we have a diagram with unique

morphisms

F1 −→ Z −→ k. (4)

(We suppose the morphism Z −→ k still is unique in R.) For each positive

integer n, consider the category Rn of commutative rings A[X0, . . . , Xn], with

A an object in R, and where the morphisms send, for each i ∈ {0, 1, . . . , n},
Xi 7→ Xi (and act as ring morphisms on the coefficient rings A). Applying the

Proj-functor on Rn (defined on the enlarged category R), we obtain a diagram

Proj(F1[X0, . . . , Xn]) ←− Proj(Z[X0, . . . , Xn]) ←− Proj(k[X0, . . . , Xn]).

(5)

So we imagine the projective space Proj(F1[X0, . . . , Xn])
/
PG(n,F1) to be a

terminal object in the appropriate category.

Further in this paper (in §2), we will formally find the automorphism groups of

F1-vector spaces through matrices, and these groups will perfectly agree with

Proposition 1.1.

1.4 Example: buildings

The examples of the previous subsections can be generalized to all buildings B:

in that case, the F1-copy is an apartment A. In the context of F1-geometry,

apartments are often called Weyl geometries. We refer to [26] and [20] for

details. One approach in rank ≥ 3 is to look at a standard BN-pair, and then to

consider the geometry induced on the Weyl group of the BN-pair, thus giving an

apartment. As we have seen (for projective spaces), one can also start from a

point-line characterization of the building (or other geometry), and introduce a
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thin-ness axiom. It is clear that different point-line characterizations of the same

class of buildings in principle could lead to essentially different F1-versions. So

in this approach, a more general notion of Weyl geometry has to be taken into

account. The example below will highlight this idea.

In this section, we will take a deeper look into the polar spaces.

We use the Buekenhout–Shult approach [2] to define polar spaces in a synthetic

way. We start from a point-line geometry Γ = (P,L, I), and we ask for the

following axioms:

BS1 Γ is a partial linear space.

BS2 [“One-or-all axiom”] If x is a point and Y is a line not incident with x,

then either x is collinear with precisely one point of Y , or with all points

of Y .

BS3 We have

rad :=
⋂

z∈P

z⊥ = ∅; (6)

here z⊥ is the set of points of Γ which are incident with some line on z.

Suppose that each line is incident with precisely two points (in terms of [3],

each line is a short line); this will be our definition of a polar space over F1.

We ignore the third degeneracy axiom for now. Then a polar space over F1 is

an undirected graph which satisfies (BS2). So, it is a graph with the property

that for each set of three distinct vertices there are either 0, 2 or 3 edges which

contain two vertices of this set. So the complementary graph is a graph with

the property that for each set of three distinct vertices there are either 0, 1 or 3

edges which contain two vertices of this set. Such a graph is a disjoint union

of complete subgraphs; for, if x and y are vertices which lie in a connected

component, then by induction, they are adjacent. So the connected components

are complete subgraphs (“cliques”). Now by complementing again, we obtain

the original graph, so this is a complete multipartite graph: if the connected

components in the complement have respectively n1, . . . , nk vertices, then we

obtain a graph isomorphic to Kn1,...,nk
.

Remark 1.2. This short argument was communicated to me by Andries Brouwer

(in April 2017).

The subspace structure of the corresponding polar space is given by considering

all the cliques in Kn1,...,nk
. We keep using the same notation for the correspond-

ing polar space.

The following proposition sums up some of the direct consequences.
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Proposition 1.3. (i) The (possibly degenerate) polar spaces over F1 are pre-

cisely the complete multipartite graphs Kn1,...,nk
, endowed with the natural

F1-subspace structure.

(ii) A polar space Kn1,...,nk
, endowed with the natural F1-subspace structure, is

degenerate if and only if some ni = 1.

(iii) The maximal dimension of a linear subspace of a polar space Kn1,...,nk
is

k − 1, and the dimension of the ambient projective space is
∑k

i=1 ni − 1.

The automorphism groups of the polar spaces over F1 are easily determined

and well known, since they coincide with the automorphism groups of the cor-

responding complete multipartite graphs. In case n1 = n2 = · · · = nk = 2,

we obtain a Coxeter group of type Bk; it is isomorphic to the group of signed

bijections

β : {±1, . . . ,±k} 7→ {±1, . . . ,±k}. (7)

The maximal dimension of a linear subspace is then k − 1.

This particular case is one of the two cases Tits considers in [26]; he also defines

another type of polar space over F1, also defined on Kn1=2,n2=2,...,nk=2, but so

that there are two types of maximal singular subspaces, and the automorphism

group is isomorphic to a Coxeter group of type Dk. From the viewpoint of above,

this consideration seems a bit artificial. (The Buekenhout–Shult approach was

published long after Tits’s paper [26].)

Usually a polar space of rank k is called thick, if all lines have at least 3 points,

and if all (k− 1)-spaces are on at least 3 maximal singular subspaces; otherwise

it is called thin. For the polar spaces Kn1=2,n2=2,...,nk=2, besides that every line

is short, we also have that every (k− 1)-space is on precisely 2 maximal singular

subspaces. This latter property is of course not true for general F1-polar spaces;

however, if at least one ni = 2, then some (k − 1)-spaces are in precisely 2

maximal singular subspaces.

It makes the discussion all the more interesting.

Remark 1.4. In [3] polar spaces with short lines are classified. As a polar space

of rank 1 is nothing but a set of points, the above examples are direct sums of

polar spaces of rank 1, as in [3, p. 226, (1)].

Remark 1.5. It might be interesting to study the varieties F(Kn1,...,nk
)⊗Spec(F1)

Spec(ℓ), with ℓ a field (in the notation of §7).
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Figure 1: The thin polar space K2,3,5,2.

1.5 Example: graphs

Let Γ be any graph, and see it as an incidence geometry with the additional

property that any line/edge has precisely two distinct points/vertices. (Let us

assume for the sake of convenience that it has no loops.) Then over F1, nothing

changes, and hence graphs are fixed points of the functor which sends incidence

geometries to their F1-models.

1.6 The functor A

In [20], a functor A : B 7→ A is described which associates to a natural class B

of “combinatorial F1-geometries” its class A of “F1-versions” in much the same

way as we have done here for the examples in §§1.1–1.5. These F1-versions can

be obtained as fixed objects of A (which is called Weyl functor in loc. cit.).

1.6.1 Intuitive description of A

The F1-functor A should have several properties (with respect to the images);

for the details, we refer to the chapter [20]. Here, we isolate the following

fundamental properties which will be useful for the present paper:
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A1— all lines should have at most 2 different points;

A2— an image should be a “universal object,” in the sense that it should be a

subgeometry of any thick geometry of the same “type” (defined over any

field, if at all defined over one) of at least the same rank;

A3— it should carry the same axiomatic structure (for example: o ∈ A and

elements of A−1(o) carry the same Buekenhout–Tits diagram, cf. §1.6.2);

F— as A will be a subclass of the class of F1-geometries, it should consist

precisely of the fixed elements of A.

Remark 1.6. We work up to point-line duality: that is why we are allowed to

ask, without loss of generality, that lines have at most two points. We do not ask

that they have precisely two points, one motivation being e.g. (combinatorial)

affine spaces over F1, in which any line has precisely one point.

In some sense, the number of lines through a point of an element Γ of A should

reflect the rank of the geometries in A
−1(Γ). Think for example of the combina-

torial affine and projective spaces over F1, and the Weyl geometries of buildings

as described by Tits. This principle is a very important feature in the work of

Mérida-Angulo and the author described in §7.

1.6.2 Some remarks on diagram geometry: Buekenhout–Tits diagrams

Let D be a labeled graph on I, where for i, j ∈ I the label Dij is a class of rank

2 geometries. We say that D is a Buekenhout–Tits diagram for the geometry

Γ = (X, I, I, t) when for every flag F of Γ of corank 2, say t(F ) = I \ {i, j}, the

residue ΓF belongs to the class of geometries Dij .

This is a recursive definition for the concept of diagram in terms of what the

labeled edges mean for rank 2 geometries.

1.6.3 Some traditional labels

We introduce the nomenclature for some frequently used labels.

Di: Every i-object is incident with every j-object.

A2: The i-objects and j-objects form the points and lines of an

axiomatic projective plane.

B2: The i-objects and j-objects form the points and lines of a gen-

eralized quadrangle.
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m I2(m) (m ∈ {6, 8}): The i-objects and j-objects form the points

and lines of a generalized hexagon/octagon.

Af Af: The i-objects and j-objects form the points and lines of an

axiomatic affine plane.

C C: The i-objects and j-objects form the points and edges of a com-

plete graph.

Many other such diagrams are used, but those will be of no concern for our

purposes.

1.6.4 An example

The geometry of points, lines and planes in a 3-dimensional combinatorial pro-

jective space satisfies the axioms given by the diagram

By the result of Veblen–Young [28], combinatorial 3-dimensional projective spa-

ces necessarily come from (left or right) vector spaces over a skew field. It is

an easy exercise to prove the Veblen–Young axiom from the An-diagram, so that

the following holds.

Theorem 1.7. A (thick) Buekenhout–Tits geometry satisfying the An-diagram ax-

ioms is a projective space.

So the axioms which are imposed on the Buekenhout–Tits geometry by the

An-diagram suffice to fully determine the incidence geometry.

1.6.5 Low rank

Our natural starting point in [25] was the category of Buekenhout–Tits geome-

tries; all buildings are members. We only consider connected geometries — the

general theory can be reduced to the connected theory as usual. We call this

assumption “C.”

The first step is to classify the elements of A. We take A1-A2-A3-A4-C to be the

main axioms. After having determined A, one defines the functor A, and the

inverse image A
−1(A) in BT, the category of Buekenhout–Tits geometries with

obvious morphisms. This inverse image is denoted by BT|1.

We include some detailed comments about the rank 1 and 2 cases.
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Rank 1 — description of A

Di1: Every i-object is incident with every j-object. Over F1, this

example has one line and one point, and they are incident.

A1: The i-objects and j-objects form the points and lines of a com-

binatorial projective line over F1: two distinct points incident with a line.

Af
Af: The i-objects and j-objects form the points and lines of a

combinatorial affine line over F1: one point incident with one line (the “absolute

flag”).

Rank 2 — description of A

The rank 2 examples of Buekenhout–Tits geometries are the most important

ones, since all other examples (ignoring the rank 0 and 1 cases) are constructed

from them through axioms governed by the diagrams. By A4, any point is

incident with at most two lines. Taking this property into account, the reader

easily sees that the geometries must be of one of the following types (where at

the end, we introduce a new type).

Di2: Every i-object is incident with every j-object. Over F1, this

example has two lines and two points, and any point is incident with any line.

A2: The i-objects and j-objects form the points and lines of a com-

binatorial projective plane over F1: an ordinary triangle.

B2: The i-objects and j-objects form the points and lines of a gen-

eralized quadrangle over F1, which is an ordinary 4-gon (the polar space K2,2).

m
I2(m) (m ∈ N ∪ {∞}, m ≥ 5): The i-objects and j-objects form

the points and lines of an ordinary m-gon.

Af
Af: The i-objects and j-objects form the points and lines of a

combinatorial affine plane over F1: one point incident with two lines which are

incident with only that point.

There is also an odd-one-out class of examples which enters the picture.

U
U: The i-objects and j-objects form the points and lines of a con-

nected loose tree of valency ≤ 2, with at least one end point or end edge. (Lines

with one point are allowed, so at the ends, one can have end points or end lines;

we call trees with this relaxation “loose trees” — see §7.)
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The unique examples of Di2, A2, B2 and I2(m) are self-dual. The class described

by U is also self-dual, while the point-line dual of the Af-type geometry is one of

the rank 1 examples. The example in Af is contained in U but plays a different

role in this discussion. Also note that I2(∞) ∪ U precisely is the class of loose

trees with valency ≤ 2.

Rank 2 — description of BT

Pulling back these examples to BT (by A
−1), it is clear — taking A3 into account

— that

⋆ A
−1(·), with values taken in Di2 ∪ A2 ∪ B2 ∪ I2(m) ∪ Af, respectively con-

sists of the generalized digons, projective planes, generalized quadran-

gles, generalized m-gons, and affine planes. We remark that in all of these

cases, the corresponding elements in A are also assumed to be in the fibers

(thin examples are allowed in A
−1(·); cf. property F)! In the case m =∞,

A
−1(I2(∞)) is the class of trees without end points (where more than two

points per line are allowed).

⋆ A
−1(U) is the set of loose trees with end points or end edges (where more

than two points per line are allowed).

In the case of generalized polygons Γ, that is, elements of

A
−1

(
Di2 ∪ A2 ∪ B2 ∪ I2(m)

)
, (8)

any pair of elements in P ∪ B is contained in a geometry isomorphic to A(Γ),

making them in a sense the most natural geometries defined over F1. It might

be desirable to impose similar conditions on elements of A−1(U).

We denote the class of F1-Buekenhout–Tits geometries defined in this section

by BT
(2)
|1 , and its image in A by A(2).

Remark 1.8. Note that all polar spaces Kn1,n2
with n1, n2 ≤ 2 are elements

of A.

2 Combinatorial theory

Certain invariants attached to a finite field k happen to be expressible as a value

p(|k|) for some polynomial p ∈ Z[X]. So it makes sense to replace the argument

with 1 and ask for the meaning of the resulting value p(1).
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It is then easy to see the symmetric group also directly as a “limit” with |k| −→ 1

of linear groups PG(n, k) (with the dimension fixed). The number of elements

in PG(n, k) (where k = Fq is assumed to be finite and q is a prime power) is

(qn+1 − 1)(qn+1 − q) · · · (qn+1 − qn)

(q − 1)
= (q − 1)nN(q) (9)

for some polynomial N(X) ∈ Z[X], and we have

N(1) = (n+ 1)! = |Sn+1|. (10)

Now let n, q ∈ N, and define [n]q = 1 + q + · · · + qn−1. (For q a prime power,

[n]q = |PG(n, q)|.) Put [0]q! = 1, and define

[n]q! := [1]q[2]q . . . [n]q (11)

and [
n

k

]

q

=
[n]q!

[k]q! [n− k]q!
. (12)

If q is a prime power, this is the number of (k − 1)-dimensional subspaces of

PG(n − 1, q) (= |Grass(k, n)(Fq)|). The next proposition again gives sense to

the limit situation of q replaced by 1.

Proposition 2.1 (See e.g. Cohn [4]). The number of k-dimensional subspaces of

PG(n,F1), with k ≤ n ∈ N, equals

[
n+ 1

k + 1

]

1

=
(n+ 1)!

(n− k)!(k + 1)!
=

(
n+ 1

k + 1

)
. (13)

Many other enumerative formulas in Linear Algebra, Projective Geometry, etc.

over finite fields Fq seem to keep meaningful interpretations if q is replaced by 1,

and this phenomenon (the various interpretations) suggests a deeper theory in

characteristic one.

Right now, we will have a look at some Linear Algebra features in characteris-

tic 1. Many of them are taken from Kapranov and Smirnov’s [12].

2.1 A definition for F1

We define F1 as the monoid {0, 1} for which we only have the following opera-

tions:

0 · 1 = 0 = 0 · 0 and 1 · 1 = 1. (14)
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This setting makes F1 sit in between the group ({1}, ·) and F2. So in absolute

Linear Algebra we are not allowed to have addition of vectors and we have to

define everything in terms of scalar multiplication.

The reason why this approach is natural, will become clear when we consider,

e.g., linear automorphisms later in this section.

2.2 Field extensions of F1

For each m ∈ N× we define the field extension F1m of F1 of degree m as the

monoid {0} ∪ µm, where µm is the (multiplicatively written) cyclic group of

order m, and 0 is an absorbing element for the extended multiplication to {0}∪
µm.

2.3 Vector spaces over F1(n)

At the level of F1 we cannot make a distinction between affine spaces and vector

spaces — as a torsor, nothing happens. This motivates the following definition:

a vector/affine space over F1n , n ∈ N×, is a triple V = (0, X, µn), where 0 is

a point which is sometimes called “the distinguished point” and X a set, and

where µn acts freely on X. Each µn-orbit corresponds to a direction. If n = 1,

we get the notion considered in §1.3. If the dimension is countably infinite, µn

may be replaced by Z,+ (the infinite cyclic group). Another definition is needed

when the dimension is larger.

2.4 Basis

A basis of the d-dimensional F1n -vector space V = (0, X, µn) is a set of d ele-

ments in X that is a set of representatives of the µn-action; here, formally, X

consists of dn elements, and µn is the cyclic group with n elements. (If d is not

finite one selects exactly one element in each µn-orbit.) If n = 1, we only have

d elements in X (which expresses the fact that the F1-linear group indeed is the

symmetric group).

Once a choice of a basis {bi | i ∈ I} has been made, any element v of V can be

uniquely written as bα
u

j , for unique j ∈ I and αu ∈ µn = 〈α〉. So we can also

represent v in coordinates by a d-tuple with exactly one nonzero entry, namely

bα
u

j (in the j-th column).
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2.5 Dimension

We define the dimension of V to be given by card(V )/n = d (the number of

µn-orbits).

2.6 Field extension

Let V = (0, X, µn) be a (not necessarily finite dimensional) vector space of

dimension d over F1n , n finite, so that |X = XV | = dn. For any positive divisor

m of n, with n = mr, V can also be seen as a dr-space over F1m . Note that

there is a unique cyclic subgroup µm of µn of size m, so there is only one way

to see V naturally as a dr-space in this context (since we have to preserve the

structure of V in the process).

2.7 Projective completion

By definition, the projective completion of an affine space AG(n, k), n ∈ N and

k a field, is the projective space PG(n, k) of the same dimension and defined

over the same field, which one obtains by adding a hyperplane at infinity.

We have seen how to perform projective completion over F1 through the fol-

lowing formula:

PG(n,F1) = AG(n,F1) + PG(n− 1,F1). (15)

Here we use typical motivic notation (e.g., it is one of the standard expressions

in the Grothendieck ring of varieties if one replaces F1 by a field k) to express

affine space as a piece of projective space (of the same dimension).

If one replaces F1 by an extension F1m , the story is more complicated — see e.g.

[20, 24].

2.8 Linear automorphisms

A linear automorphism α of an F1n -vectorspace V with basis {bi} is determined

by the base images

α(bi) = bβi

σ(i) (16)

for some power βi of the primitive n-th root of unity α, and some permutation

σ ∈ Sd. Then we have that

GLd(F1n) ∼= (µn)
d ⋊ Sd. (17)
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Elements of GLd(F1n) can be written as (d×d)-matrices with precisely one ele-

ment of µn in each row or column (and conversely, any such element determines

an element of GLd(F1n)). In this setting, Sd is represented by (d× d)-matrices

with in each row and column exactly one 1 — permutation matrices.

Remark 2.2. Note that the underlying reason that rows and columns have only

one nonzero element is that we do not have addition in our vector space.

3 Deninger–Manin theory

In a number of works [8, 9, 10] on motives and regularized determinants,

Deninger played with the possibility of translating Weil’s proof of the Riemann

Hypothesis for function fields of projective curves over finite fields Fq to the hy-

pothetical curve Spec(Z). This idea also occurred, for instance, in Haran [11],

and circulated in work of Smirnov [17] — see [22]. In [9], Deninger gave a

description of conditions on a certain category M of motives which might allow

such a translation.

Let C be a nonsingular absolutely irreducible projective algebraic curve over the

finite field Fq. Fix an algebraic closure Fq of Fq and let m 6= 0 be a positive

integer; we have the following Lefschetz formula for the number |C(Fqm)| of

rational points over Fqm :

|C(Fqm)| =
2∑

ω=0

(−1)ω Tr
(
Frm

∣∣∣Hω(C)
)
= 1−

2g∑

j=0

λm
j + qf , (18)

where Fr is the Frobenius endomorphism acting on the étale ℓ-adic cohomology

of C, the λjs are the eigenvalues of this action, and g is the genus of the curve.

We then have a motivic weight decomposition

ζC(s) =

2∏

ω=0

ζhω(C)(s)
(−1)ω−1

=

∏2g
j=1(1− λjq

−s)

(1− q−s)(1− q1−s)

=
DET

(
(s · 1− q−s · Fr)

∣∣∣H1(C)
)

DET

(
(s · 1− q−s · Fr)

∣∣∣H0(C)
)

DET

(
(s · 1− q−s · Fr)

∣∣∣H2(C)
) . (19)

(Here the ω-weight component is the zeta function of the pure weight ω motive

hω(C) of C.)

The following analogous formula would hold in M, where C is replaced by the
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“curve” Spec(Z):

ζ
Spec(Z)

(s) = 2−1/2π−s/2Γ(
s

2
)ζ(s) =

∏∐
ρ

s−ρ

2π

s

2π

s−1

2π

?
=

DET

(
1
2π (s · 1− ̺)

∣∣∣H1(Spec(Z), ∗abs)
)

DET

(
1
2π (s · 1− ̺)

∣∣∣H0(Spec(Z), ∗abs)
)

DET

(
1
2π (s · 1− ̺)

∣∣∣H2(Spec(Z), ∗abs)
) .

(20)

(
The notation used in (20) is as follows:

∗
∏∐

is the infinite regularized product;

∗ DET denotes the regularized determinant;

∗ ̺ is an “absolute” Frobenius endomorphism;

∗ the Hi(Spec(Z), ∗abs) are certain proposed cohomology groups, and

∗ the ρs run through the set of critical zeroes of the classical Riemann zeta.
)

Note that in the left-hand side of (20), we consider Spec(Z) instead of Spec(Z),

because we want to have a projective curve as in the expression for the motivic

weight decomposition of C. This is why the factor

2−1/2π−s/2Γ(
s

2
) (21)

occurs — it is the zeta-factor at infinity.

Conjecturally, in M there are motives h0 (“the absolute point”), h1 and h2 (“the

absolute Lefschetz motive”) with zeta functions

ζhw(s) = DET

( 1

2π
(s · 1− ̺)

∣∣∣Hw(Spec(Z), ∗abs)
)

(22)

for w = 0, 1, 2. Deninger computed that ζh0(s) = s/2π and ζh2(s) = (s− 1)/2π.

Manin proposed to interpret h0 as Spec(F1) and h2 as the affine line over F1,

in [15].

In [15], Manin then suggested to develop Algebraic Geometry over the field

with one element, already in this specific context. So what is a scheme over F1?
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4 Deitmar schemes

One of the first papers which systematically studied a scheme theory over F1

was Deitmar’s [5], published in 2005. The study in [5] is related to Kato’s paper

[13]; see §5 and §9 of that paper. By that time, Soulé had already published his

fundamental F1-approach to varieties [18].

In Z-scheme theory, a scheme X is a locally ringed topological space which is

locally isomorphic to affine schemes. That is to say, X is covered by opens

{Ui | i ∈ I} such that the restriction of the structure sheaf OX to each Uj is

itself a locally ringed space which is isomorphic to the spectrum of a commuta-

tive ring. When aiming at an Algebraic Geometry over F1, one wants to have

similar definitions at hand, but the commutative rings have to be replaced by

appropriate algebraic structures which reflect the F1-nature.

Several attempts have been made to define schemes “defined over F1,” and

often the approaches only differ in subtle variations. We only need the most

basic one, which is the “monoidal scheme theory” of Anton Deitmar [6]. In this

theory, the role of commutative rings over F1 is played by commutative monoids

(with a zero).

4.1 Rings over F1

A monoid is a set A with a binary operation · : A×A −→ A which is associative,

and has an identity element (denoted 1). Homomorphisms of monoids preserve

units, and for a monoid A, A× will denote the group of invertible elements (so

that if A is a group, A× = A).

In [5], Deitmar defines the category of rings over F1 to be the category of

monoids (as thus ignoring additive structure), and the category of commutative

F1-rings to be the category of commutative monoids. Usually, we will assume

without further notice that an F1-ring A also has a zero-element 0 such that

0 · a = 0 = a · 0, ∀a ∈ A.

Below, all monoids will assumed to be abelian.

4.2 Algebraic closure

A monoid A is algebraically closed if every equation of the form xn = a with

a ∈ A and n ∈ N \ {0} has n solutions in A. Every monoid can be embedded

into an algebraically closed monoid, and if A is a group, then there exists a

“smallest” such embedding which is called the algebraic closure of A.
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The algebraic closure F1 of F1 is the group µ∞ of all complex roots of unity; it

is isomorphic to Q/Z. Note that the multiplicative group Fp
×

of the algebraic

closure Fp of the prime field Fp is isomorphic to the group of all complex roots

of unity of order prime to p, so that the definition of F1 might seem strange

if compared with the finite field case. One can easily find “meta-arithmetic”

arguments to deal with this matter — see [21].

4.3 Localization

Let S be a submonoid of the monoid A. We define the monoid S−1A, the

localization of A by S, to be

A× S/ ∼, (23)

where the equivalence relation “∼” is given by

(a, s) ∼ (a′, s′) if and only if s′′s′a = s′′sa′ for some s′′ ∈ S. (24)

Multiplication in S−1A is componentwise, and one suggestively writes
a

s
for the

element in S−1A corresponding to (a, s) (so
a

s
·
a′

s′
=

aa′

ss′
).

4.4 Ideal and spectrum

If C and D are subsets of the monoid A, CD denotes the set of products cd,

with c ∈ C and d ∈ D.

Recall that a monoid is supposed to be abelian. If C is a monoid, Z[C] denotes

the corresponding “monoidal ring” — it is naturally defined similarly to a group

ring.

An ideal a of a monoid M is a subset such that Ma ⊆ a. For any ideal a in M ,

Z[a] is an ideal in Z[M ]. Note that if A and B are monoids and α : A −→ B is a

morphism, then α−1(a) is an ideal in A if a is an ideal in B.

An ideal p is called a prime ideal if Sp := M \ p is a monoid (that is, if uv ∈ p,

then u ∈ p or v ∈ p). For any prime ideal p in M , denote by Mp = S−1
p M the

localization of M at p. It is easy to prove that the natural map

M −→Mp, m −→
m

1
(25)

with p = M \M× is an isomorphism.

Let M be a monoid. The spectrum Spec(M) of M is the set of prime ideals

endowed with the obvious Zariski topology. Note that the spectrum cannot be
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empty since M \M× is a prime ideal. The closed subsets are the empty set and

all sets of the form

V (a) := {p ∈ Spec(M)|a ⊆ p}, (26)

where a is any ideal. The point η = ∅ is contained in every nonempty open set

and the point M \M× is closed and contained in every nonempty closed set.

Note also that for every m ∈M the set V (m) := {p ∈ Spec(M)|m ∈ p} is closed

(as V (m) = V (Mm)).

Proposition 4.1. M \M× is the unique maximal ideal for any monoid M , so any

such M is a local F1-ring.

4.5 Structure sheaf

Let A be a ring over F1. For any open set U ⊆ Spec(A), one defines OSpec(A)(U) =

O(U) to be the set of functions (called sections)

s : U −→
∐

p∈U

Ap (27)

for which s(p) ∈ Ap for each p ∈ U , and such that there exists a neighborhood V

of p in U , and elements a, b ∈ A, for which b 6∈ q for every q ∈ V , and s(q) =
a

b
in Aq. The map

OSpec(A) : Spec(A) −→ monoids : U −→ O(U) (28)

is the structure sheaf of Spec(A).

Proposition 4.2 (Deitmar [6]). (i) For each p ∈ Spec(A), the stalk Op of the

structure sheaf is isomorphic to the localization of A at p.

(ii) For global sections, we have Γ(Spec(A),O) := O(Spec(A)) ∼= A.

4.6 Monoidal spaces

A monoidal space is a topological space X together with a sheaf of monoids OX .

Call a morphism of monoids β : A −→ B local if β−1(B×) = A×. A morphism

between monoidal spaces (X,OX) and (Y,OY ) is defined naturally: it is a pair

(f, f#) with f : X −→ Y a continuous function, and

f# : OY −→ f∗OX (29)

a morphism between sheaves of monoids on Y . (Here, f∗OX , the direct im-

age sheaf on Y induced by f , is defined by f∗OX(U) := OX(f−1(U)) for all

open U ⊆ Y .) The morphism is local if each of the induced morphisms f#
x :

OY,f(x) −→ OX,x is local.
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Proposition 4.3 (Deitmar [6]). (i) If A is any F1-ring, we have that the pair

(Spec(A),OA) defines a monoidal space.

(ii) If α : A −→ B is a morphism of monoids, then α induces a morphism of

monoidal spaces

(f, f#) : Spec(B) −→ Spec(A), (30)

yielding a functorial bijection

Hom(A,B) ∼= Homloc(Spec(B), Spec(A)), (31)

where on the right-hand side we only consider local morphisms (hence the

notation).

4.7 Deitmar’s F1-schemes

As in the theory of rings, we have defined a structure sheaf OX on the topo-

logical space X = Spec(M), with M a commutative monoid (with a zero).

We define a scheme over F1 to be a topological space together with a sheaf

of monoids, locally isomorphic to spectra of monoids in the above sense. The

details are below.

Affine schemes. An affine scheme over F1 is a monoidal space which is iso-

morphic to Spec(A) for some monoid A. Such schemes are coined with the

term affine Deitmar schemes or also D-schemes or D0-schemes. (The “D” stands

for “Deitmar”; sometimes the sub-index 0 is added to stress that monoids have

a zero in this context.)

General schemes. A monoidal space X is a scheme over F1 if for every point

x ∈ X there is an open neighborhood U ⊆ X such that (U,OX|U ) is an affine

scheme over F1. As in the affine case, we also speak of D-schemes and D0-schemes.

A morphism of D(0)-schemes is a local morphism of monoidal spaces. A point

η of a topological space is a generic point if it is contained in every nonempty

open set.

Proposition 4.4 (Deitmar [6]). (i) Any connected D0-scheme has a unique gen-

eric point ∅, and morphisms between connected schemes map generic points

to generic points.

(ii) For an arbitrary D0-scheme X, Hom(Spec(F1), X) can be identified with

the set of connected components of X.
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5 Acquiring flesh (1)

Given an F1-ring A, Deitmar base extension to Z is defined by

A⊗ Z = A⊗F1
Z = Z[A]. (32)

Denote the functor of base extension by F(·,⊗F1
Z).

Conversely, we have a forgetful functor F which maps any (commutative) ring

(with unit) to its (commutative) multiplicative monoid.

Theorem 5.1 (Deitmar [5]). The functor F(·,⊗F1
Z) is left adjoint to F, that is,

for every ring R and every F1-ring A we have that

HomRings(A⊗F1
Z, R) ∼= HomF1

(A,F(R)). (33)

One obtains a functor

X −→ XZ (34)

from D0-schemes to Z-schemes, thus extending the base change functor in the

following way: (a) write a scheme X over F1 as a union of affine D0-schemes,

X = ∪iSpec(Ai); (b) then map it to ∪iSpec(Ai ⊗F1
Z) (glued via the gluing

maps from X).

Similarly to the general case, we say that the D0-scheme X is of finite type if

it has a finite covering by affine schemes Ui = Spec(Ai) such that the Ai are

finitely generated.

Proposition 5.2 (Deitmar [6]). X is of finite type over F1 if and only if XZ is a

Z-scheme of finite type.

Conversely, one has a functor from monoids to rings, and it is left adjoint to the

forgetful functor that sends a ring (R,+,×) to the multiplicative monoid (R,×).
A scheme X over Z can be written as a union of affine schemes

X = ∪iSpec(Ai) (35)

for some set of rings {Ai}. Then map X to ∪iSpec(Ai,×) (using the gluing

maps from X) to obtain a functor from schemes over Z to schemes over F1

which extends the aforementioned forgetful functor.

The next theorem, which is due to Deitmar, shows that integral D0-schemes

of finite type become toric varieties, once pulled to C. (We won’t define toric

varieties here; we refer the reader to any standard text on these structures.

Details can also be found in [21].)
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Theorem 5.3 (Deitmar [7]). Let X be a connected integral D0-scheme of finite

type. Then every irreducible component of XC is a toric variety. The components

of XC are mutually isomorphic as toric varieties.

Other scheme theories over F1 are known for which the base change functor to

Z is “more general.” We refer to the monograph [23], and the chapters therein,

for a garden of such scheme theories.

6 Kurokawa theory

One of the main tools to understand F1-schemes are their zeta functions. In this

section, we define the Kurokawa zeta function, and we mention some interest-

ing results taken from [14]. We first start with collecting some basic notions on

arithmetic zeta functions.

6.1 Arithmetic zeta functions

A Z-variety X is by definition a scheme of finite type over Z. This means that X

has a finite covering of affine Z-schemes Spec(Ai) with the Ai finitely generated

over Z.

Recall also that if X̃ is a k-scheme, k a field, a point x ∈ X̃ is k-rational if the

natural morphism

k →֒ k(x) (36)

is an isomorphism, with k(x) the residue field of x . (Note at this point that a

homomorphism of fields f −→ g is necessarily injective.) A morphism

Spec(L) −→ X̃, (37)

with L/k a field extension, is completely determined by the choice of a point x ∈
X̃ (namely the image of Spec(L) in X̃) and a field extension L/k(x). Whence

the set of L-rational points of X̃ can be identified with

Homk(Spec(L), X̃). (38)

(If X̃ ∼= Spec(A) is affine, A being a commutative ring, one also has the identi-

fication with Hom(A,L).)

In the next proposition, a k-scheme X 7→ Spec(k) is said to be locally of finite

type (over k) if X has a cover of open affine subschemes Spec(Ai), with all the

Ai finitely generated k-algebras.
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Proposition 6.1 (Closed and rational points). (1) Let X be a Z-scheme of fi-

nite type. A point x of X is closed if and only if its residue field k(x) is

finite.

(2) Let k = k be algebraically closed, and let X̃ −→ Spec(k) be a k-scheme

which is locally of finite type. Then a point x is closed if and only if it is

k-rational.

(3) More generally, let k be any field. Then a point x of the k-scheme X̃ −→
Spec(k), which is again assumed to be locally of finite type, is closed if and

only if the field extension k(x)/k is finite. A closed point is k-rational if and

only if k(x) = k.

Assume again that X is an arithmetic scheme. Let X be the “atomization” of X;

it is the set of closed points, equipped with the discrete topology and the sheaf

of fields {k(x) | x}. For x ∈ X, let N(x) be the cardinality of the finite field

k(x), that is, the norm of x. Define the arithmetic zeta function ζX(s) as

ζX(s) :=
∏

x∈X

1

1−N(x)−s
. (39)

Examples

We mention four standard examples.

Dedekind. Let X = Spec(A), where A is the ring of integers of a number field

K; then ζX(s) is the Dedekind zeta function of K.

Riemann. Put X = Spec(Z); then ζX(s) becomes the classical Riemann zeta

function.

Affine space. With An(X) being the affine n-space over a scheme X, n ∈ N,

one has

ζAn(X) = ζX(s− n). (40)

Projective space. With Pn(X) being the projective n-space over a scheme X,

n ∈ N, one has

ζPn(X) =

n∏

j=0

ζX(s− j). (41)

The latter can be obtained inductively by using the expression for the zeta

function of affine spaces.
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6.2 Kurokawa theory

In [14], Kurokawa says a scheme X is of F1-type if its arithmetic zeta function

ζX(s) can be expressed in the form

ζX(s) =
n∏

k=0

ζ(s− k)ak (42)

with the aks in Z. A very interesting result in [14] reads as follows:

Theorem 6.2 (Kurokawa [14]). Let X be a Z-scheme. The following are equiva-

lent.

(i)

ζX(s) =

n∏

k=0

ζ(s− k)ak (43)

with the aks in Z.

(ii) For all primes p we have

ζX|Fp
(s) =

n∏

k=0

(1− pk−s)−ak (44)

with the aks in Z.

(iii) There exists a polynomial NX(Y ) =
∑n

k=0 akY
k such that

#X(Fpm) = NX(pm) (45)

for all finite fields Fpm .

Kurokawa defines the F1-zeta function of a Z-scheme X which is defined over

F1 as

ζX|F1
(s) :=

n∏

k=0

(s− k)−ak (46)

with the aks as above. Define, again as above, the Euler characteristic

#X(F1) :=

n∑

k=0

ak. (47)

The connection between F1-zeta functions and arithmetic zeta functions is ex-

plained in the following theorem, taken from [14].
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Theorem 6.3 (Kurokawa [14]). Let X be a Z-scheme which is defined over F1.

Then

ζX|F1
(s) = lim

p−→1
ζX|Fp

(s)(p− 1)#X(F1). (48)

Here, p is seen as a complex variable (so that the left hand term is the leading

coefficient of the Laurent expansion of ζX|F1
(s) around p = 1).

Theorem 6.3 was also obtained by Soulé in [18].

Examples

For affine and projective spaces, we obtain the following zeta functions (over Z,

Fp and F1, with n ∈ N×).

Affine space. ζAn|Z(s) = ζ(s− n);

ζAn|Fp
(s) = (1− pn−s)

−1
;

ζAn|F1
(s) = (s− n)

−1
.

Projective space. ζPn|Z(s) = ζ(s)ζ(s− 1) · · · ζ(s− n);

ζPn|Fp
(s) =

(
(1− p−s)(1− p1−s) · · · (1− pn−s)

)−1

;

ζPn|F1
(s) =

(
s(s− 1) · · · (s− n)

)−1

.

7 Graphs and zeta functions

In this section we will introduce a new zeta function for (loose) graphs through

F1-theory, following the work of [16].

In [19], starting with a loose graph Γ, which is a graph in which one also allows

edges with 0 or 1 point, I associated a Deitmar scheme S(Γ) to Γ of which the

closed points correspond to the vertices of Γ. (So by definition, a loose graph is

an incidence structure Γ = (V,E) with V a set of vertices and E a set of edges,

such that each edge is incident with at most 2 vertices.)

Some features of S(·):

• Fundamental properties and invariants of the Deitmar scheme can be ob-

tained from the combinatorics of the loose graph, such as connectedness

and the isomorphism class of the automorphism group.

• A number of combinatorial F1-objects (such as combinatorial F1-project-

ive space) are just loose graphs, and moreover, the associated Deitmar
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schemes are precisely the “scheme versions” in Deitmar’s theory of these

objects. (Example: starting from a complete graph with m+1 vertices, one

obtains the Deitmar scheme of projective space of dimension m; this is the

“scheme version” of the corresponding combinatorial projective space.)

Translation properties such as in the first item above, were a main goal of the

note [19]: trying to handle F1-scheme theoretic issues at the graph theoretic

level (bearing in mind how some standard loose graphs should give rise to some

standard Deitmar schemes). After base extension, some basic properties of the

“real” schemes might then be controlled by the loose graphs, etc.

The idea of the recent work [16] is now to associate a Deitmar constructible set

to a loose graph in a more natural way, and to show that, after having applied

Deitmar’s (· ⊗F1
Z)-functor, the obtained Grothendieck schemes are defined over

F1 in Kurokawa’s sense. So they come with a Kurokawa zeta function, and that

is the zeta function we associate to loose graphs.

As in [16], we will call the modified functor “F.” It has to obey a tight set of

rules, of which we mention a few important ones:

Rule #1 The loose graphs of the affine and projective space Deitmar schemes should

correspond to affine and projective space Deitmar schemes.

Rule #2 A vertex of degree m should correspond locally to an affine space Am.

Rule #3 An edge without vertices should correspond to a multiplicative group.

Rule #4 “The loose graph is the map to gluing.”

Remark 7.1. • Because of Rule #1, the pictures of Tits and Kapranov–

Smirnov of affine and projective spaces over F1 are in agreement with

the functor F. (This was also the case for the functor S.)

• In general, Rule #2 does not hold for the functor S. As we expressed at

the end of the first section (in the discussion about the functor A), this

property is highly desirable though.

• Rule #3 implies that we have to work with a more general version of

Deitmar schemes, since we allow expressions of type

F1[X,Y ]/(XY = 1) (49)

(where the last equation generates a congruence on F1[X,Y ]). In [19], I

only worked with Deitmar schemes, thus yielding a less natural approach

to what the effect on deleting edges is on the corresponding schemes. By

the way, F1[X,Y ] denotes the free abelian monoid generated multiplica-

tively by X and Y , enriched with a zero.
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• The last rule means that for any two vertices u, v of a loose graph Γ,

the intersection of the local affine spaces Au and Av which arise in F(Γ)

as defined by Rule #2, can be read from Γ. In general, this is a highly

nontrivial game to play, as the examples and booby traps in [16] show.

For the details, we refer the reader to [16].

7.1 The Grothendieck ring over F1

Many of the formulas and calculations in [16] are expressed in the language of

Grothendieck rings.

Definition 7.2. The Grothendieck ring of (Deitmar) schemes of finite type over

F1, denoted as K0(SchF1
), is generated by the isomorphism classes of schemes

X of finite type over F1, [X]
F1

, with the relation

[X]
F1

= [X \ Y ]
F1

+ [Y ]
F1

(50)

for any closed subscheme Y of X, and with the product structure given by

[X]
F1
· [Y ]

F1
= [X ×F1

Y ]
F1
. (51)

Denote by L = [A1
F1
]
F1

the class of the affine line over F1. Then the multiplica-

tive group Gm satisfies

[Gm]
F1

= L− 1, (52)

since it can be identified with the affine line minus one point.

If X is a Deitmar scheme of finite type, and

[X]F1
∈ Z[L] ⊂ K0(SchF1

), (53)

then we say that [X]F1
=: P(X) is the Grothendieck polynomial of X. More

generally, if Γ is a loose graph, and there is a polynomial P(Z) ∈ Z[Z] such that

for all finite fields Fq we have that

P(q) =
∣∣∣F(Γ)⊗F1

Fq

∣∣∣
q
, (54)

then we say that P(Z) =: P(Γ) is a Grothendieck polynomial for Γ (or F(Γ), or

F(Γ)⊗F1
Fq).
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7.2 Affection principle

Starting from a (finite) loose graph Γ, we denote the Deitmar constructible set

obtained by applying the functor F by F(Γ), as before.

In [16] it is shown that each F(Γ) comes with a Grothendieck polynomial. Let

P(Γ) be the Grothendieck polynomial of F(Γ). For each finite field Fq, the num-

ber of Fq-rational points of F(Γ) ⊗F1
Fq is given by substituting the value q for

the indeterminate L in P(Γ) [16]. By Rule #3, locally each closed point of

F(Γ) ⊗F1
Fq yields an affine space (of which the dimension is the degree of the

point in the graph), so the total number of points can be expressed through the

Inclusion–Exclusion principle.

Consider a finite loose graph Γ, and let P(Γ) be as above. Taking any edge uv

which is not loose, we want to compare P(Γ) and P(Γuv) in order to introduce

a recursive procedure to simplify the loose graph (in that the number of cycles

is reduced). Here, Γuv is the loose graph which one obtains when deleting the

edge uv, while replacing it by two new loose edges, one through u and one

through v.

In this section, A denotes the projective completion of a given affine space A.

Also, if Γ is a loose graph, P(Γ) is the projective F1-space which is defined on

the ambient graph of Γ (i.e., the smallest graph in which Γ is embedded).

Calling d(·, ·) the distance function in Γ defined on V × V , V being the vertex

set (so that, for example, d(s, t), with s and t distinct vertices, is the number of

edges in a shortest path from s to t), it appears that one only needs to consider

what happens in the vertex set

B(u, 1) ∪B(v, 1), (55)

where B(c, k) := {v ∈ V | d(c, v) ≤ k}.

Theorem 7.3 (Affection Principle [16]). Let Γ be a finite connected loose graph,

let xy be an edge on the vertices x and y, and let S be a subset of the vertex set. Let

k be any finite field, and consider the k-constructible set F(Γ)⊗F1
k. Then ∩s∈SAs

changes when one resolves the edge xy only if |S ∩
(
B(x, 1) ∪B(y, 1)

)
| ≥ 2.

In the next theorem, we will use the notation P(B(u, 1) ∪B(v, 1)) =: Pu,v. If ∆

is a loose graph, its reduced version is the graph one obtains after deleting the

loose edges.

Corollary 7.4 (Geometrical Affection Principle [16]). Let Γ be a finite connected

loose graph, let xy be an edge on the vertices x and y, and let k be any finite field.

The difference in the number of k-points of F(Γ)⊗F1
k and F(Γxy)⊗F1

k is
∣∣∣F(Γ|Px,y

)⊗F1
k
∣∣∣
k
−

∣∣∣F(Γxy |Px,y
)⊗F1

k
∣∣∣
k
. (56)
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In this expression, Γ may be chosen to be reduced (but one is not allowed to re-

duce Γxy).

In terms of Grothendieck polynomials, we have the following theorem.

Corollary 7.5 (Polynomial Affection principle [16]). Let Γ be a finite connected

loose graph, let xy be an edge on the vertices x and y, and let k be any finite field.

Then we have

P(Γ)− P(Γxy) = P(Γ|Px,y
)− P(Γxy |Px,y

). (57)

7.3 Loose trees

A loose tree is a loose graph without cycles.

Let Γ be a loose tree.

• Let D be the set of degrees {d1, . . . , dk} of the vertex set V (Γ) such that

1 < d1 < d2 < . . . < dk.

• Let us call ni the number of vertices of Γ of degree di, 1 ≤ i ≤ k.

• Put I =

k∑

i=1

ni − 1.

• Let E be the number of vertices of Γ with degree 1, that is the end points.

Then by [16], the class of Γ in K0(SchF1
) is given by

[
Γ
]
F1

=

k∑

i=1

niL
di − I · L+ I + E. (58)

7.4 Surgery

Calculating Grothendieck polynomials of general loose graphs is very compli-

cated — see the many examples analyzed in [16]. In loc. cit., a procedure called

“surgery” is introduced, which makes it possible to determine such polynomials

by “resolution of edges,” eventually reducing the calculation to the tree case,

and this is a case which was resolved completely (cf. §7.3).

When ∆ is a loose graph, and e = xy is an edge with vertices x and y 6= x,

resolving e means that one constructs the loose graph ∆xy = ∆e as before, i.e.,

the adjacency between x and y is broken, and replaced by two new loose edges

(one on x and one on y). (Locally, the dimensions of the affine spaces at x
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and y remain the same, and the dimension of the ambient projective space of ∆

increases.)

In a nutshell, the following happens, starting from a finite loose graph Γ =

(V,E).

Spanning. Choose an arbitrary loose spanning tree T (obviously defined) in Γ.

Resolution. Let S be the set of egdes of Γ not in T which are not loose. Order

S = {e1, . . . , en}. Now resolve all the edges in S, as follows:

Γ −→ Γe1 −→ (Γe1)e2 −→ · · · (59)

while keeping track of all the polynomial differences

[
P(Γe1)− P(Γ)

]
,

[
P((Γe1)e2)− P(Γe1)

]
, . . . (60)

which one calculates using the Affection Principle.

Reduction. Once one has resolved all the edges in S, we obtain a tree, and by

§7.3 we know its Grothendieck polynomial. Now use the list of differences

in the previous step to write down the Grothendieck polynomial of Γ.

In [16] it is shown that surgery is independent of the choice of the spanning

tree, and of the order in which one chooses to resolve the edges.

7.5 Resolving edges — two examples

We now explain some examples.

7.5.1 Example #1

We define Γ(u, v; 2), with u, v symbols, to be the loose graph with adjacent

vertices u, v; 2 common neighbors v1, v2 of u and v and no further incidences.

u v
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For any field k, the corresponding k-constructible sets consist of two affine

3-spaces Au and Av and 2 additional closed points in their spaces at infinity, of

which the union covers all the points of the projective 3-space P(Γ(u, v; 2)) up

to all points of the intersection γ of their spaces at infinity (which is a projective

line), except 2 points in γ in general position. So the Grothendieck polynomial

is
3∑

i=0

L
i −

(
(

1∑

i=0

L
i)− 2

)
= L

3 + L
2 + 2. (61)

u v

Resolving Γ(u, v; 2) along uv, the k-constructible sets corresponding to Γ(u, v; 2)uv
consist of two disjoint affine 3-spaces Au and Av (of which the planes at infinity

intersect in the projective line generated by v1, v2) and 2 additional mutually

disjoint affine planes αi, i = 1, 2, in the projective 5-space P(Γ(u, v; 2)) such

that for each j, αj ∩ Au
∼= αj ∩ Av is a projective line minus two points.

The Grothendieck polynomial is

2L3 + 2L2 − 4(L− 1). (62)

7.5.2 Example #2

Starting from a triangle (as a graph), i.e., a combinatorial projective plane over

F1, one deduces in a similar manner that its Grothendieck polynomial is L
2 +

L+1. In general, the Grothendieck polynomial of a complete graph with m+1

vertices, m 6= 0, is

L
m + L

m−1 + · · ·+ 1. (63)

The loose graph of an affine F1-space of dimension m has as Grothendieck poly-

nomial

L
m. (64)

Both (63) and (64) are connected via the expression (15) in the Grothendieck

ring.
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7.6 The zeta function

We formally recall the next theorem (which was already mentioned implicitly),

from [16].

Theorem 7.6 ([16]). For any loose graph Γ, the Z-constructible set χ := F(Γ)⊗F1

Z is defined over F1 in Kurokawa’s sense.

Theorem 7.6 makes it possible to associate a (Kurokawa) zeta function to any

loose graph, in the following way.

Definition 7.7 (Zeta function for (loose) graphs). Let Γ be a loose graph, and

let χ := F(Γ) ⊗F1
Z. Let P(Γ) =

∑m
i=0 aiX

i ∈ Z[X] be as above. We define the

F1-zeta function of Γ as:

ζF1

Γ (t) :=
m∏

k=0

(t− k)−ak . (65)

7.7 Example: trees

Now let Γ be a tree. We use the same notation as before, so that its class in the

Grothendieck ring is given by

[
Γ
]
F1

=
m∑

i=1

niL
di − I · L+ I + E. (66)

The zeta function is thus given by

ζF1

Γ (t) =
(t− 1)I

tE+I
·

m∏

k=1

(t− k)−nk . (67)
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A Acquiring flesh (2) — The Weyl functor depicted

Sometimes, the functor A is artfully depicted by the following diagram, in which

Bacon’s “Study after Velázquez’s portrait of Pope Innocent X” [1] is compared to

Velázquez’s “Portrait of Innocent X” [29] (Bacon’s version being the F1-version

of the original painting of Velázquez):

“Portrait of Innocent X”

An oil on canvas (114cm× 119cm) of the Spanish painter Diego Velázquez

(1599–1660) dating from about 1650, depicting a portrait of Pope Innocent X.

↓ A

“Study after Velázquez’s portrait of Pope Innocent X”

An oil on canvas (153cm× 118cm) of the Irish painter Francis Bacon

(1909–1992) dating from 1953, showing a distorted version of Velázquez’s

portrait of Pope Innocent X.

At the conference, I showed that in a more modern setting, there is some anal-

ogy with the arrow

JAT −→ KT.
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