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Abstract

In this paper, a generalization of a well-known result of Cohen and Coop-

erstein [4] on strong parapolar spaces of symplectic rank at least three, with

only finite-dimensional singular subspaces, is presented. In contrast with

the aforementioned theorem, we do not assume that symplecta posses a uni-

form symplectic rank, we drop the assumption that the considered spaces

are strong parapolar spaces, and we replace axiom (CC) by the much more

general “haircut axiom.”
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1 Introduction

The important role of symplecta in characterizing certain exceptional geome-

tries emerged in early papers of B. Cooperstein [5]. This paradigm was opened

further by two fundamental theorems which revealed the role of a broad class

of geometries with symplecta—called parapolar spaces—as a stage upon which

the geometries derived from buildings might be characterized by simple axioms

on points and lines.

In [2], Arjeh Cohen characterized Grassmann spaces this way:
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Theorem 1.1 (Cohen). Let Γ = (P,L) be a strong parapolar space of constant

symplectic rank 3, with all singular subspaces (necessarily projective spaces) having

finite rank. Assume Γ possesses the following property:

(H3) If x is a point and S is a symplecton not containing x, then x⊥∩S, the set of

points of S which are collinear with x, is either the empty set, a single point,

or is a projective plane. In other words, it is never a single line.

Then one of two possibilities exist:

(1) Γ is a Grassmann space An,k, 1 < k ≤ (n+ 1)/2.

(2) Γ is A2n−1,n/〈σ〉, a homomorphic image of a Grassmann space, whose ele-

ments are orbits of a polarity σ of Witt index at most n− 5.

A full description of the terminology used in this and subsequent theorems is

given in Section 2.

A key ingenious argument in Cohen’s paper produced a proof that all the

symplecta of Γ were oriflamme—that is, any line of a symplecton lies in exactly

two planes of the symplecton. The argument produced a peculiar sort of gen-

eralized quadrangle which must exist as a substructure of the point-residual of

any symplecton. The quadrangle in question contains a spread of lines S such

that any two lines of the spread generate a grid whose lines parallel to the gen-

erating lines belong to S. Moreover, if G denotes the collection of such grids,

then the quadrangle is either itself a grid or else the incidence structure (S,G)
is a projective plane. The statement that the latter is impossible has come to be

known as “Cohen’s Lemma.” Cohen’s original proof of it invoked Tits’s classifica-

tion of all polar spaces of polar rank three. A somewhat simpler proof invoked

only the property that rank three polar spaces were Moufang [11]. Recently,

J. Schillewaert and H. Van Maldeghem [8] showed the non-existence of such a

quadrangle without invoking any further hypotheses whatsoever.

The second theorem1 opening up the parapolar paradigm was the following:

Theorem 1.2 (Cohen–Cooperstein [4]). Let Γ be a strong parapolar space of

symplectic rank at least three with the various projective ranks of all singular sub-

spaces finite. Assume

(i) All symplecta have the same polar rank r.

(ii) Γ possesses the following restriction on point-symplecton pairs:

1For the historical record, the above theorem was also accompanied by another theorem that

involved parapolar spaces of constant symplectic rank which were not strong, with assumption (ii)

replaced by the assumption that x⊥
∩ S is equal to the empty set, a line or a maximal singular

subspace of S. Although that theorem inspired a series of papers on long-root geometries, [6, 10]

it happens to be outside of the realm of this paper.
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(CC) If x is a point not incident with a symplecton S, then x⊥ ∩ S is ei-

ther the empty set, a single point, or a maximal singular subspace of S

(necessarily a PG(r − 1)).

Then one of the following holds:

(1) r = 3 and Γ is either An,k or A2n−1,n/〈σ〉 as in Theorem 1.1.

(2) r = 4 and Γ is a half-spin geometry Dn,n.

(3) r = 5 and Γ is the exceptional geometry E6.1.

(4) r = 6 and Γ is the exceptional geometry E7,7.

Note. The numbering of the nodes of the exceptional Dynkin diagrams follows

that of Bourbaki: the end node of the middle-sized arm is numbered “1,” the

end-node of the shortest arm is “2,” and the numbering proceeds along the path

of the remaining nodes with “3” next to “1” and ending at the end of the long

arm with label “n.” (In the spherical case, n = 6, 7, 8.)

The main theorem of this paper generalizes Theorem 1.2 in three ways:

1. It drops the assumption that symplecta possess a uniform symplectic rank.

2. It drops the assumption that Γ is a strong parapolar space.

3. Axiom (CC) is replaced by the much more general “haircut axiom” (H)

described below.

On the other hand, one must pay for this generality by allowing some rather

bizarre geometries to intrude into the list of possible conclusion geometries.

Some of these are “extreme” parapolar spaces (see Subsection 2.3), some are

homomorphic images of possibly non-spherical buildings of type En,1 and oth-

ers, such as E8,1 and E8,2, although derived from a spherical building, do not

appear in any previous point-line characterization theorem, and do not seem to

be fully analyzed at the present time.

Theorem 1.3. (Main Theorem) Suppose Σ is a parapolar space of sympletic rank

at least three. Although we have not assumed constant symplectic rank, we shall

assume the following:

(i) Each singular space possesses a finite projective dimension. Moreover, there

exists an upper bound to the polar rank of a symplecton, and all symplecta

have polar rank at least three.

(ii) We assume the “hair-cut axiom”:

(H) If S is a symplecton and x is a point not in S, then x⊥ ∩ S cannot be a

hyperplane of a maximal singular subspace of S.

(iii) Σ is a locally connected space.
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Then Σ possesses a uniform symplectic rank k and one of the following occurs:

(1) k = 3 and Σ is either a Grassmann space An,k, or a homomorphic image

A2n−1,n/〈σ〉, where σ is a polarity of A2n−1 of Witt index at most n− 5.

(2) k = 4 and Σ is a Y1-geometry or a twisted version thereof (see Subsection 3.2).

In the latter case Σ is extreme. If the parapolar space Σ is neither extreme or

strong, then Σ is the long-root geometry E6,2. If Σ is a strong parapolar space,

then Σ is a half-spin geometry of type Dn,n, n ≥ 5.

(3) k = 5 and Σ belongs to a Y1,2,m-diagram and is a homomorphic image of the

building geometry Em+4,1. If m = 4 then Σ is the building geometry E8,1.2 If

m = 3 then Σ is the long-root geometry E7,1. If Σ is a strong parapolar space,

then m = 2 and Σ is the Lie incidence geometry E6,1.

(4) k = 6 and Σ is the geometry E7,7, a strong parapolar space.

(5) k = 7 and Σ is the long-root geometry E8,8.

Conversely, all of the listed geometries satisfy the hypotheses.

2 Basic terminology

2.1 Point-line geometries

A point-line geometry is a set of points P together with a collection L of subsets

of P of size at least three called lines. Two distinct points x and y are said to be

collinear if they are both contained in a common line. In this way each point-

line geometry (P,L) is associated with a point-collinearity graph ∆ = (P,∼)

whose vertices are the points, two being adjacent if and only if they are collinear.

In this graph, for each point x, the symbol x⊥ denotes the set consisting of

point x together with all points which are collinear with it. We also write X⊥

for the set ∩x∈Xx⊥, where X ⊆ P. The point-line geometry Γ = (P,L) is

said to be connected if and only if the graph ∆ is connected. The length of

a shortest path in ∆ connecting two points is denoted d(x, y), so in this way

∆ provides a distance metric d : P × P → N. The diameter of any graph is

the maximal distance (if it exists) between any two of its vertices. A point-line

geometry (P,L) is said to have point-diameter m if and only if its associated

point-collinearity graph has this diameter.

A subspace of a point-line geometry (P,L) is a subset A of points with the

2In the table of parapolar space characterizations on page 722 of the survey article [3], a char-

acterization in [4] uses the notation E8,1 instead of E8,8. It is correctly listed as E8,8 in sec. 6.11,

p. 720, of the same article. As far as is known to the author, E8,1 has not heretofore been charac-

terized as a parapolar space.
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property that if L ∈ L and L ∩ A contains at least two points, then L ⊆ A.

Thus the points of any subspace together with the lines contained in it, can

itself be regarded as a point-line geometry and is thus subject to any of the

adjectives we attach to point-line geometries. The intersection of subspaces is

again a subspace, and the smallest subspace containing a set X is denoted 〈X〉.
A subspace A is said to be convex if and only if, for any shortest possible path

connecting any two of its points, all intermediate points of such a path also lie

in A. A subspace is said to be a singular subspace if any two of its points are

collinear.

A point-line geometry Γ = (P,L) is said to be a gamma space if and only if,

for each of its points p, the set p⊥ is a subspace of Γ; Γ is said to be a partial

linear space if and only if any two distinct lines intersect in at most one point.

A singular space which is also a partial linear space is simply called a linear

space.

2.2 Projective spaces and polar spaces

We describe here two very important types of point-line geometries, projective

spaces and polar spaces. A projective plane is a linear space in which any two

lines intersect at a point. A projective space is a linear space in which any

two lines that intersect at a point lie in a subspace that is a projective plane.

The famous Veblen–Young Theorem ([13]) asserts that any projective space

that properly contains a projective plane is in fact isomorphic to the geometry

PG(V ) whose points and lines are the 1- and 2-dimensional vector subspaces of

a vector space V over some division ring. This allows us to attach a rank (or

projective dimension) to each projective space. Thus a single point has rank 0,

a single line has rank 1, a projective plane has rank 2, and the rank of PG(V ) is

dimV − 1, where dimV denotes the vector space dimension of V .

For the purposes of this paper3 a polar space is a point-line geometry (P,L)
with these two properties:

(i) L is non-empty and for any point p that does not lie in a line L, either p is

collinear with exactly one point of L, or is collinear with all points of L.

(ii) No point is collinear with all remaining points.

It is obvious from the definition that a polar space cannot be a single point,

and that it is a connected gamma space of point diameter two. The following

however is not so obvious:

Theorem 2.1. A polar space is a partial linear space and all its singular subspaces

are projective spaces.

3In the general literature, what we define is called a non-degenerate polar space.
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If all these singular subspaces of a polar space have finite projective dimen-

sion, then the maximal singular subspaces all have the same projective dimen-

sion m. In that case the polar space is said to have polar rank m + 1. A polar

space of polar rank two is called a generalized quadrangle.

2.3 Parapolar spaces

In a point-line geometry Γ, a convex subspace that happens to be a polar space

is called a symplecton. If the symplecton has polar rank two—that is, it is a

generalized quadrangle—then we refer to it as a quad.

Because of the convexity, if x is a point not in the symplecton S, then x⊥ ∩ S

is a clique—and, if Γ is a gamma space, it is a singular subspace.

A parapolar space is a connected gamma space Γ = (P,L) with the follow-

ing properties:

1. Every line of L lies in a symplecton.

2. Γ is not itself a polar space.

3. For any two points x and y at distance two in ∆ one of the following

occurs:

(a) x⊥ ∩ y⊥ consists of a single point z(x, y). (In this case {x, y} is called

a special pair and z(x, y) is called the center of the special pair.)

(b) {x, y} is contained in a symplecton. (In this case {x, y} is called a

polar pair.)

If all symplecta of the parapolar space Γ have polar rank r or higher, we say

that Γ has symplectic rank at least r.

Theorem 2.2. If Γ is a parapolar space of symplectic rank at least 3, then any

singular subspace space generated by a point and a line lies in some symplecton

and so is a line or a projective plane. It follows that every singular subspace of Γ is

a projective space.

Proof. This is Theorem 17.2.3 of [9]. �

A parapolar subspace is said to be locally connected if, for any two distinct

lines L and N incident with a point p, their exists a finite sequence of projective

planes π1, . . . , πs on the point p such that L ⊆ π1, N ⊆ πs, and πj∩πj+1 is a line

on p. If this can be done with s = 1 then 〈L ∪N〉 is a projective plane. Choose

(x, y) ∈ L × N so that neither x nor y is equal to p. If L and N do not lie in a

plane and s = 2, then the convex closure 〈〈L,N〉〉 is a symplecton, and {x, y} is

a polar pair. If we cannot find such a sequence of planes of length s = 2 then
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{x, y} is a special pair. If such a sequence of length s = 3 cannot be found then

the special pair {x, y} is called an extreme pair.

A parapolar space without special pairs is called a strong parapolar space.

An extreme parapolar space is one that contains extreme pairs. Some of the

geometries in the conclusion of the main theorem of this paper are extreme

parapolar spaces.

Now assume Σ is a parapolar space such that every singular subspace is a

projective space and that every line lies in a projective plane. If p is a point of

Σ, the point-residual at p is the geometry of all lines and planes of Σ which are

incident with the point p and is denoted ResΣ(p). Similarly, if A is a singular

subspace of Σ which has codimension at least 2 in some other singular spaces,

the residue Σ(A) is the geometry of singular subspaces in which A has codimen-

sion at most two, with containment as incidence. This geometry is merely an

incidence system of points and lines; it need not be a parapolar space or even

be connected.

There will be frequent appeals to some very elementary facts relating a para-

polar space and its point-residuals:

Lemma 2.3. (1) If S is a symplecton of polar rank at least 3 in a parapolar

space Σ, and p is a point of Σ, then the collection of lines and planes of S

that contain p forms a symplecton S̄ of the point-residual ResΣ(p).

(2) If Σ is a parapolar space of symplectic rank at least 3 then each point-residual

Σ(p) := ResΣ(p) has the property that each of its pairs of points at distance

two lies in a symplecton of Σ(p). This symplecton might be a quad. In

particular if the point-residual Σ(p) is itself a parapolar space, then it is a

strong parapolar space.

(3) If Σ is a strong parapolar space of symplectic rank at least 3, then each of its

point-residuals have point-diameter 2.

We list here three important results on parapolar spaces which we shall use.

Lemma 2.4. Suppose Σ is a parapolar space of symplectic rank at least 3. Then

the following statements are equivalent:

(i) Σ possesses the property (H).

(ii) Every point-residual ResΣ(p) of Σ also has the property (H).

Proof. (i) ⇒ (ii). Suppose Σ has property (H) and select a point p. Suppose S

is a symplecton containing p. Then by part 1 of the preceding Lemma,

the lines and planes of S which contain p form a symplecton Sp of the

point-residual of polar rank at least two. Select a line L = px of Σ which

does not lie in Sp. Now, x⊥ ∩ S is a singular subspace U of S which
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contains p and its lines and planes on p form a singular subspace Up of the

symplecton Sp. By hypothesis U is not a hyperplane of a maximal singular

subspace of S, and so Up cannot be a hyperplane of a maximal singular

subspace of Sp.

(ii) ⇒ (i). Suppose the property (H) failed for Σ. Then there exists a pair (x, S)

where x is a point not in the symplecton S, and x⊥ ∩ S is a hyperplane H

of a maximal singular subspace of S. Now choose p ∈ H. Then in ResΣ(p)

one sees that (xp)⊥ ∩ Sp = Hp is a hyperplane of a maximal singular

subspace of Sp. That is, (H) fails for the residue ResΣ(p). Thus if (i) is

false, then statement (ii) is false. The proof is complete. �

Lemma 2.5. Suppose Σ is a locally connected parapolar space with the following

property:

(K) If x is a point and S is a symplecton of polar rank at least 3, then x⊥ ∩ S is

never just a line.

Then Σ is a strong parapolar space of symplectic rank at least 3.

Proof. Suppose (x, y) is a pair of points of Σ at distance two and let p be a point

in x⊥ ∩ y⊥. Since Σ is locally connected, there exists a sequence of projective

planes (π1, π2, . . . , πn), each containing the point p, such that xp ⊂ π1, py ⊂ πn,

and πi∩πi+1 = Li, a line, i = 1, 2, . . . , n−1. We write L0 = xp and Ln = py. On

each Li we select a point yi distinct from p, setting x0 = x and xn = y. Among

such sequences we can suppose we have chosen one such that n is as small as

possible. Of course n > 1.

By way of contradiction, we suppose n > 2. Since (yn−2, yn) is a polar pair,

these points lie in a symplecton S. Now, by the minimality of n, yn−3 does

not lie in the symplecton S of rank at least three, while y⊥n−3 ∩ S contains

the line Ln−2. By hypothesis (K), y⊥n−3 ∩ S contains a plane π. Then there

is a line N in L⊥
n ∩ π, by the fact that S is a polar space. Now the sequence

(π1, . . . , πn−3, 〈Ln−3, N〉, 〈N,Ln〉) is a sequence of planes on p of length n − 1

connecting L0 and Ln. This contradicts the minimal choice of n.

Thus we have n = 2 and so (x, y) is a polar pair whose convex closure is

a symplecton of polar rank at least 3. Since (x, y) was an arbitrarily chosen

distance 2 point pair, Σ is a strong parapolar space of symplectic rank at least 3.

The proof is complete. �

Theorem 2.6. Suppose Σ is a locally connected parapolar space of symplectic

rank at least 3 (but otherwise bounded). Assume that every point-residual Σ(p) :=

ResΣ(p) has the following properties:

(i) All symplecta possess a uniform polar rank r.
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(ii) Whenever S is a symplecton and x is a point of Σ(p) not in S, then x⊥ ∩ S

is either empty or a maximal singular subspace of S.

Then Σ is a strong parapolar space with uniform symplectic rank r + 1.

Proof. Assume each point-residual Σ(p) of Σ satisfies conditions (i) and (ii).

Property (i) implies that all symplecta of Σ are either quads or have polar

rank r + 1. Since property (ii) holds for each point-residual, we see that for

every non-incident point-symplecton pair (x, S) of Σ, where S is not a quad,

x⊥ ∩ S is equal to the empty set, a single point or a maximal singular space of

S which has polar rank at least three. Thus x⊥ ∩ S cannot be a line. Since Σ

is locally connected, by Lemma 2.5, Σ is a strong parapolar space of symplec-

tic rank at least 3. Thus no quads exist. Now condition (i) on point-residuals

forces all point-residuals of Σ to have the same polar rank r + 1. The proof is

complete. �

2.4 Parapolar spaces, diagram geometries and the local ap-

proach theorem

Consider a geometry with objects whose types belong to a finite set of types I,

with incidence occurring only between objects of differing types. Equivalently

one might view this as a multipartite graph whose component parts are labelled

by the set I. Here the vertices are the objects of the geometry, sorted by type,

and the edges denote the incidences. The number |I| of distinct types of objects,

is called the rank of the geometry. A flag of type J is a clique in this graph

whose vertex types (one for each vertex) exhaust the types in J . The residue

of a flag F of type J is the collection of objects of types I\J which are incident

with every object in F . The flag F is said to be of cotype I\J . The geometry is

said to belong to a diagram D if the residue of every flag of cotype {i, j} (i.e., a

residue of type {i, j}) is specified.

In this paper we shall only be concerned with simply-laced diagrams in

which all residues of type {i, j} are either projective planes or digons (where

every object of one type is incident with every object of the other type). The

associated diagram is built this way: its nodes represent the types. Two nodes

of types i and type j are connected if and only if the residues of types {i, j} are

projective planes.

This is a convenient way to represent the structure of a geometry. For ex-

ample, the proper subspaces of a projective space over a division ring form a

diagram geometry An and similarly, the non-empty singular subspaces of the

oriflamme polar spaces form a geometry belonging to the diagram Dn (using

the names of the familiar Dynkin diagrams).
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Without rehashing well-known definitions, we may distinguish the building

geometries which are residually connected diagram geometries of “type M”

(meaning that all rank two residues are generalized polygons whose point-

diameter is determined by the type of the residue) and possessing a system

of apartments subject to certain axioms. Their importance here lies in the fact

that they are universal objects in categories of diagram geometries of type M .

This is essentially the content of the famous Tits Local Approach Theorem [12].

Remark 2.7. Buildings are normally defined in the category of residually con-

nected chamber systems of type M where 2-covers are easily defined. There

Tits’s theorem asserts that a building of type M is the universal 2-cover of any

chamber system whose rank 3 residues are covered by buildings. But the cat-

egories of residually connected chamber systems and residually connected ge-

ometries are connected by a functorial equivalence allowing a special case of

Tits’s theorem to be restated in the context of appropriate diagram geometries.

We state a special case of that theorem.

Theorem 2.8. Suppose G is a diagram geometry with a simply-laced diagram D.

Then G is a homomorphic image of a building geometry B with the same dia-

gram D. More precisely, G ≃ B/A where A is a group of type-preserving automor-

phisms of B which act freely on chamber-flags of B.

Now suppose we have a diagram geometry G with diagram D. From such

a geometry, one may produce a point-line geometry Γ = (P,L) by selecting as

the set of points all objects of a fixed type t ∈ I. The lines are the flags whose

type set is that of the set of neighbors of node t in the diagram. In this case

we say that the point-line geometry G is derived from or is supported by the

diagram D. Of course this can be done in a number of ways depending on the

choice of t in the diagram.

Remark 2.9. Geometries G with diagram Dn, E6, E7, E8 are already building

geometries. The reason is that these geometries support a parapolar space Σ

which is either a polar space or a long-root geometry, each of which is already

a truncation of a building geometry. (This follows from the fact that the point-

collinearity graph ∆ of a long-root geometry is T -simply connected, where T is

the class of all triangles of ∆; see [6] or [9, Theorem 17.2.8].)

Although a parapolar space Σ is defined as a geometry of points and lines, we

may also regard it as a geometry Σ∗ further enriched by symplecta and singular

subspaces of various projective dimensions to obtain a geometry of higher rank.

It may then appear from examining the residuals of each of the objects of Σ∗

that one is seeing a truncation of a diagram geometry with diagram D. In this

case one must ask if Σ∗ is really a truncation of a diagram geometry?
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The answer is affirmative if the following two conditions are satisfied:

(1) Objects of apparently distinct type within a point-residual Σ∗(p) are never

fused in Σ∗, i.e., they represent the same type of object in Σ∗.4 (The factor

geometry of Theorem 1.1 is a perfect example of fusion.)

(2) A sheaf exists for the geometry Σ∗. (See [9, Chapter 11].)5

Condition (1) holds if the diagram D has no non-trivial symmetries.

Condition (2) must hold in the particular case that the diagram D has a node

of valency three, connecting three separate branches of the diagram, such that

it and its three neighbors are types of objects in Σ∗. (See [9, Theorem 11.3.2]

for the case that one branch has length one, but the theorem works if that

branch is replaced by a string of length more than 1.) It then follows that Σ∗ is

a truncation of a homomorphic image of a building geometry with diagram D.

This theory, which has its antecedents in papers of M. Ronan [7] and A. Brouwer

and A. Cohen [1], is fully expounded in [9, Chapter 11].

3 The geometries of the conclusion of Theorem 1.3

3.1 The geometries of Theorem 1.3 for k = 3

These geometries, An,k and A2n−1,n/〈σ〉, are strong parapolar spaces whose

symplecta are of type A3,2. If (x, S) is any non-incident point-symplecton pair,

then x⊥ ∩ S is either empty, a point, or a maximal singular subspace of S. So

the axiom (H) holds.

An important detail is the following:

Lemma 3.1. For any non-incident point-symplecton pair (x, S) of the line Grass-

mannian, An,2, x⊥ ∩ S cannot be a single point.

The factor geometries A2n−1,n/〈σ〉, though locally well-behaved, have not

been fully studied. We can say this much about the point-collinearity graph:

Lemma 3.2. Suppose Σ = A2n−1,n/〈σ〉 where σ is a polarity of A2n−1,n of Witt

index at most n − 5. Then the geometry Σ possesses two points at distance five or

more.

4This notion can be made precise. Two objects A and B of distinct apparent types in Σ∗(p)

are fused in Σ∗ if there is a circuit (p = x0, x1, . . . , xn = p) in the point-collinearity graph ∆,

and a sequence of objects (A = X1, . . . , Xn = B) such that Xi+1 and Xi are objects of the same

apparent type in the point-residual Σ∗(xi), i = 1, . . . , n.
5There is also the mild condition that Σ∗ be a residually connected geometry, i.e., all its residues

of rank 2 or more are connected.
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Proof. Let V be the 2n-dimensional vector space and let P denote the full collec-

tion of n-dimensional subspaces of V , so that P is essentially the set of “points”

of the Grassmann space Σ = A2n−1,n. The polarity σ can be regarded as a

permutation of the subspaces of V , taking each k-dimensional subspace to a

(2n − k)-dimensional space. Notice that P = P σ. The condition on the Witt

index of σ now simply means that for every subspace A ∈ P , A ∩ Aσ has codi-

mension at least 5 in A (and Aσ). Among all choices of A ∈ P , we choose A

so that the codimension d of B = A ∩ Aσ in A is as small as possible. Notice

that d ≥ 5 and that Bσ = 〈A,Aσ〉. Thus W = Bσ/B is a 2d-dimensional vector

space admitting the action of σ on its subspaces so as to induce a polarity σW

of the associated projective space PG(W ). Note that this polarity σW has Witt

index zero. Again we regard σW as a permutation of the subspaces of W . We

let PW denote the elements of P which contain B and lie in Bσ. If X ∈ PW ,

we write X̄ for the subspace X/B of dimension d. Now, Ā ∩ Āσ = 0̄, the trivial

subspace of W . It is then easy to construct a third subspace C̄ of W having

dimension d and intersecting both Ā and Āσ at 0̄. Then C̄σ also intersects Ā

and Āσ at 0̄. Thus, as elements of Σ, the four Grassmann points {A,Aσ, C, Cσ},

are all at mutual distance d. It follows that (A,Aσ) and (C,Cσ) are two points

of the geometry Σ = A2n−1,n/〈σ〉 at distance d ≥ 5. The proof is complete. �

3.2 The Y1-geometries and their derivative geometries

These geometries are the parapolar spaces whose point-residuals are one of the

parapolar spaces in the conclusion of Theorem 1.1. Thus, for a given point p,

any projective plane on p lies in, and is the intersection of, exactly two maximal

singular spaces of projective dimensions a+2 and b+2. If x is a point collinear

with p, then the line xp lies in some plane that is in exactly two maximal singular

spaces of dimension a+2 and b+2, and so this is true for all planes on x. Since

the point collinearity graph of a parapolar space is connected, all planes lie in

just two maximal singular spaces of these dimensions.

Thus our parapolar space Σ enjoys the following local properties.

(L1) Every projective plane lies in exactly two maximal singular subspaces, one

a PG(a+2), the other a PG(b+2), where we can assume a ≤ b. Moreover,

that plane is the intersection of those singular spaces.

(L2) All symplecta are of type D4,1. If p is a point not in a symplecton S, then

p⊥ ∩ S is either empty, contains a single point, or is a maximal singular

subspace of S. (Thus the axiom (H) holds.)

(L3) If p is a point not in a maximal singular subspace M , then p⊥∩M is either

empty, is a single point, or is a projective plane.
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We divide these geometries into two classes:

Class I: All point-residuals are isomorphic to the Grassmann space Aa+b+1,a+1,

a ≤ b.

Class II: a = b and there exists a point p whose residual ResΣ(p) is the geometry

Aa+b+1,a+1/〈σ〉, where σ is a polarity of the underlying PG(2a+1) of Witt

index at most (a+ b+ 1)− 5.

Suppose Σ is a parapolar space of Class I. Now if a = b = 1 then every point-

residual of Σ is a polar space and so lies in a symplecton of Σ. This forces each

point-residual to lie in the same symplecton and so Σ would be a polar space in

that case. But that contradicts the assumption that Σ is a parapolar space. Also

if 1 < a ≤ b, then the common Grassmann space of a point-residual of Σ has

point diameter at least a+ 1. Thus we have:

Lemma 3.3. If Σ is a geometry of Class I, with common residuals of type Aa+b+1,a+1,

then:

(1) a+ b > 2.

(2) Σ is a strong parapolar space if and only if a = 1.

(3) If a > 2, Σ has special pairs.

(4) If a > 3, Σ has extreme pairs.

Next we distinguish two further classes among the parapolar spaces of Class I:

Class I.1: All pairs of objects of distinct type in the geometry of a point-residual

represent objects of distinct types in the geometry Σ.

Class I.2: Some objects of apparently distinct types in a point-residual, are ob-

jects of the same type in Σ.

There is then a way to tell if a parapolar space Γ of Class I with a = b belongs

to Class I.1 or to Class I.2. Let M be the class of all maximal singular subspaces

of Γ. We say that two distinct members of M, say M1 and M2, are adjacent if

and only if M1 ∩M2 is a line, and we write M1 ∗M2 in that case. Now form the

graph (M, ∗). Note that for every point p in Γ, the subgraph induced on Mp,

the collection of maximal singular subspaces incident with p, has exactly two

connected components: those of the Grassmann residual. Since Γ is connected,

the graph (M, ∗) has at most two connected components.

(D) Γ is in Class I.1 or Class 1.2 according as the graph (M, ∗) has two or one

connected components, respectively.
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3.2.1 The geometries of Class I.1

Now consider the enriched geometry Σ∗, consisting of the points, lines, and two

classes of maximal singular subspaces of Σ, whose relationships are described

by a locally truncated diagram Y1,a,b, truncated to the central node and its three

neighbors. Since the two classes of maximal singular subspaces are projective

spaces, the appropriate rigidity conditions are in place, allowing us to produce

a sheaf and to conclude that Σ∗ is indeed the truncation of a diagram geometry

G with diagram Y1,a,b. As noted in the paragraph preceding Lemma 3.3, we

cannot have a = b = 1 for in that case Σ is a polar space rather than a parapolar

space. Since Y1,a,b is a “simply laced” diagram, G is the homomorphic image of

a building geometry B by Tits’s local approach theorem [12]. Put precisely, Σ is

a truncation to points and lines, of a geometry B/A where A is a group of auto-

morphisms of the building geometry B acting freely on its flag chambers. Now

from our discussion in Subsection 2, A is the identity group if the Y1,a,b-diagram

is one of the following Dynkin diagrams: Dn, E6, E7 or E8. In those cases, the

point-line geometry Σ is respectively isomorphic to (1) a half-spin geometry,

(2) the long-root geometry E6,2, (3) the geometry E7,2, and (4) E8,2. The last

two have never before made an appearance in a characterization theorem in

parapolar spaces.

Note that the common Grassmann space of our point-residuals has point di-

ameter a+ 1. As a result, if a > 1, the parapolar space Σ contains special pairs,

and contains extreme pairs if a > 2.

3.2.2 The geometries of Classes I.2 and II

Suppose Σ is a parapolar space of Class I.1. If two objects A and B of distinct

types in a point-residual represent the same object of the enriched geometry Σ,

the two objects must be isomorphic subspaces of different types. This is only

possible if the point-residual ResΣ(p) is isomorphic to the Grassmannian of type

A2a+1,a, that is to say b = a. If a = 2, special pairs are present, and if a > 2

extreme pairs are present.

The geometries of Class I.1 exist (they are point-line geometries derived from

a homomorphic image of a building geometry) but it is not clear that parapolar

spaces of Class I.2 even exist. Using Lemma 3.2, we see that all geometries in

Class II, if any exist, are extreme parapolar spaces.
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4 Proof of the Main Theorem

4.1 Introductory remarks

The proof of Theorem 1.2 given in [4] is a “bottom-up” proof. That is, because

of the constant symplectic rank, the proof could begin with the case that the

uniform symplectic rank r of the parapolar space was three (basically Theo-

rem 1.1), then consider the cases r = 4, 5, . . . , one after another, each time

armed with full knowledge of the point-residuals. The procedure finally termi-

nates with r = 6, when one reaches E7,7 which has point-diameter three and so

cannot be the point-residual of a further strong parapolar space.

Such an approach is not possible here because one is immediately confronted

with a population of symplecta with a multitude of polar ranks. Instead we

take a “top-down” approach beginning with the class A2 of singular subspaces

which have codimenion 2 in a maximal singular subspace of any symplecton

of maximal polar rank n in the parapolar space. For A2 ∈ A2, the residue

Σ2 := ResΣ(A2) is a point-line geometry of some sort. We do not know if it is

even connected. All we know at the outset is that it possesses a non-empty class

of symplecta, all of uniform polar rank two with the haircut axiom (H), but even

then, it is not obvious that every line lies in such a rank 2 symplecton. However,

using (H) we will show that all these objections will fall away.

Let Σ be a parapolar space satisfying the hypotheses of the Main Theorem.

By hypothesis, there is an upper bound on the possible ranks of a symplecton

of Σ. We let S denote the class of symplecta which reach this maximal polar

rank n. In general, we let Ak denote the set of all singular subspaces which have

codimension k in a maximal singular subspace of a symplecton of S. For each

Ak ∈ Ak, we obtain a point-line geometry ResΣ(Ak) whose points and lines are

all the singular subspaces of Σ in which Ak has codimension 1 or 2, respectively.

Notice that if Ak = ∅, the empty subspace, then ResΣ(Ak) = Σ.

Lemma 4.1. For Ak ∈ Ak, k ≥ 2, the point-line geometry Σk = ResΣ(Ak) is

connected.

Proof. Let Γk be a connected component of Σk. Clearly Γk is a subspace of Σk.

We assume by way of contradiction that Σk is not connected.

If Ak = ∅, that is, Σk = Σ, then it is a parapolar space and so by defini-

tion is connected. Thus we may assume Ak 6= ∅. Thus there is a (possibly

empty) singular space Ak+1 of codimension 1 in Ak. If Ak+1 = ∅, so that

Σk+1 = ResΣ(Ak+1) = Σ, then by hypothesis, Σk+1 = Σ is locally connected,

forcing Σk to be connected against our assumption. Thus we may also assume
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Ak+1 6= ∅. Thus we also have (again a possibly empty) singular subspace Ak+2,

of codimention 1 in Ak+1.

Since Σk is not connected, there exists a “point” B of Σk not in Γk and a

“point” C in Γk. Now consider these spaces as objects of the geometry Σk+2. In

this geometry Ak+1 is a “point,” Ak is a “line,” and B and C are two “planes”

which intersect at “line” Ak and together do not lie in a singular subspace (oth-

erwise B and C would be collinear in Σk, contrary to our choice of C and B).

It follows from the parapolar space axioms that B and C are in a symplecton

of Σk+2 of polar rank three, and so, in Σk+1 represent two “lines” of a convex

generalized quadrangle which we denote Q.

The rest of the argument proceeds within the geometry ResΣ(Ak+1). From

the foregoing we see that the “lines” B and C of Σk+1 = ResΣ(Ak+1) meet

at “point” Ak and lie in a quad Q which meets Γk at “line” C. There exists a

“line” E containing “point” Ak (representing a “point” of Γk) which does not lie

in a singular subspace with C. (This is because Γk contains a non-degenerate

symplecton.) Choose a “point” X in “line” E distinct from “point” Ak. Then (in

Σk+1), X⊥ ∩ Q contains the “point” Ak. But Q possesses the haircut property

(H) forcing X⊥ ∩Q = M , a line of the quad Q. The “line” M is distinct from C

since the latter is not in X⊥.

But now (shifting from Σk+1 to Σk), M becomes a “point ” of Σk not in Γk yet

“collinear” to the “point” E of Γ. That contradicts the fact that Γk is a connected

component of Σk. The proof is complete. �

Corollary 4.2. For any Ak ∈ Ak, k ≥ 3, the geometry Σk = ResΣ(Ak) is not itself

a symplecton.

Proof. We know that when m is the maximal polar rank of a symplecton, then

Am = ∅, so that Σm = Σ is a parapolar space and so by definition is not itself a

polar space. Suppose, for some k, Σk is a polar space. Then this is true for Σj for

all j with 3 ≤ j ≤ k. We may then assume k is chosen as large as possible such

that Σk is a polar space. Now, as observed at the beginning of this paragraph,

Ak contains a hyperplane Ak+1. Moreover, the singular spaces in Σk+1 which

contain its “point” Ak must lie in a symplecton R of polar rank k + 1. But from

our choice of k, Σk+1 6= R. But, from Lemma 4.1, Σk+1 is connected and so

it contains a “point” B not in R collinear with a “point” of R, which, without

loss of generality, we may take to be Ak. Now the singular spaces of R which

contain Ak form the unique symplecton of Σk. But that is impossible, since the

space 〈B,Ak〉 represents a “point ” of Σk not in that symplecton. The proof is

complete. �
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Lemma 4.3. If Ak ∈ Ak, and Ak 6= ∅, k ≥ 2, then every geodesic path of length

two in ∆k, the point-collinearity graph of Σk = ResΣ(Ak), lies in a symplecton of

Σk. Moreover, each line of Σk lies in a symplecton.

Proof. Let (A,B,C) be a shortest path connecting two points A and C in Σk.

Then, as Ak 6= ∅, Ak contains a (possibly empty) hyperplane Ak+1 ∈ Ak+1.

Then in the point-line geometry Σk+1 = ResΣ(Ak+1), A, B, and C are three

lines on the point Ak, the first two and last two of these lines spanning planes

while A and C do not lie in a plane. Then, from the parapolar space axioms

for Σ, A and C are lines of Σk+1 lying in a symplecton R of Σk+1 of polar rank at

least three. Now the lines and planes of R which contain Ak form a symplecton

of Σk containing the path (A,B,C).

It remains to show that any line of Σk lies in a symplecton. Now suppose

A,B are two collinear points of Σk. By the result of the previous paragraph, if

(A,B) belongs to a geodesic path (D,A,B) or (A,B,C), we are done.

Since Σk contains a symplecton, we cannot have Σk = A⊥. Thus there is a

point C not collinear with A, and since Σk is connected by Lemma 4.1, we can

assume C is collinear with a point E in A⊥. Then (A,E,C) is a geodesic path of

length two and so, by the previous paragraph, this path lies in a symplecton R

of polar rank at least 2. If R contains B we are done. Thus we may assume that

B is not in R. Now B⊥∩R is a clique containing A, while A⊥∩R is not a clique.

Thus in R there is a point B ∈ A⊥ which is not collinear with B. Thus (D,A,B)

is now a geodesic path of length two and so it must lie in some symplecton.

Thus the line on (A,B) does lie in a symplecton. The proof is complete. �

Corollary 4.4. For Ak ∈ Ak, k ≥ 3, the point-line geometry Σk is a parapolar

space. If Ak 6= ∅ it is a strong parapolar space.

Proof. The statement is true by hypothesis if Ak = ∅ so that Σk = Σ. So we may

assume that Ak 6= ∅. Then the result follows from Lemma 4.1, Lemma 4.3 and

Corollary 4.2. �

With these preliminaries in place, we may proceed with the proof of the main

theorem in the next series of subsections. From this point onward assume that

Σ satisfies the hypotheses of Theorem 1.3.

4.2 The case k = 3

Lemma 4.5. If A3 ∈ A3, then Σ3 is either a Grassmann space An,k or the factor

space A2n−1,n/〈σ〉 where σ is a polarity of PG(2n−1) of Witt index at most n−5.
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Proof. Before we can apply Cohen’s theorem there are some things to prove.

First, consider a space A2 ∈ A2 so that A3 ⊆ A2 and set Σ2 = ResΣ3
(A2). Now

by Corollary 4.4 both Σ3 and Σ2 are parapolar spaces and so are connected.

Since all point residues of Σ3 are connected, Σ3 is locally connected.

Now by (possibly repeated) application of Lemma 2.4, both Σ3 and Σ2 pos-

sess the haircut property (H). Thus for any symplecton of Σ2, some quad Q, and

point x not in Q, we have that x⊥∩Q is either empty or a maximal singular sub-

space of Q (i.e., a line). Since Σ2 is any typical point-residual of Σ3, we have

gathered together the hypotheses of Theorem 2.6 with the parameter k = 2.

Thus we conclude that Σ3 is a strong parapolar space of uniform symplectic

rank three. Now we may apply Theorem 1.1 to reach the conclusion. The proof

is complete. �

4.3 The case k = 4

Choose A4 ∈ A4 and let Σ4 = ResΣ(A4). For each point p in the parapolar

space Σ4, the point-residual ResΣ4
(p) := Σ4(p) is the Grassmannian An,k, or the

factor geometry A2a+1,a+1/〈σ〉 as described in Theorem 1.1. Now this means

that every plane of Σ4 that contains the point p lies in exactly two maximal

singular subspaces of projective dimensions k and n − k + 1 (or two singular

spaces of the same dimension k = a + 1 in the factor geometry case). Now if

q is another point of Σ4 collinear with p, the line pq lies in a plane whose two

maximal singular subspaces above it have the same dimensions “as for p.” Since

Σ4 is a connected geometry, it now follows that every plane of Σ4 lies in exactly

two maximal singular subspaces of projective dimensions n or n− k + 1. When

these two numbers are distinct every point-residual Σ4(p) is isomorphic to An,k.

But when the two numbers are equal it is possible that Σ4(p) is A2a+2,a+1 for

some choices of point p and is A2a+1,a+1/〈σ〉 for other choices.

We must next show that Σ4 has uniform symplectic rank. Since all the point-

residuals Σ4(p) have constant symplectic rank three, all of the symplecta of Σ4

are either of polar rank 4 or else they are quads. We need only show that no

quads can be present. There are two cases.

The case A4 = ∅, that is Σ = Σ4: in this case Σ = Σ4 has symplectic rank

at least three by hypothesis, and so no quads are present. By definition, Σ4 is

one of the Y1-geometries or one of their twisted versions in Class I.2 or Class II,

loosely described in Subsection 3.2 above.

The case A4 6= ∅: in this case, Σ4 is itself a residue of a non-empty singular

space A4, and so is a strong parapolar space. But in that case, by Lemma 2.3(3),

each of its point-residuals are parapolar spaces of point-diameter 2. We already

know that if 3 ≤ k ≤ n/2, this Grassmann space has point-diameter at least k. In
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the case of the A2a+1,a+1/〈σ〉, the point-diameter is at least five (Lemma 3.2).

Thus we see that all point-residuals in Σ4 are isomorphic to the same line-

Grassmannian An,2. But in this case, if (x̄, S̄) is a non-incident point-symplecton

pair of Σ4(p), then x̄⊥∩ S̄ is either empty or a maximal singular subspace of S̄, a

plane. Noting that each Σ4(p) is connected, we see that Σ4 is locally connected.

We now have all the hypotheses of Theorem 2.6 in place, with Σ4 in the role

of the Σ of that theorem and the parameter k of that theorem equal to three.

We therefore conclude that Σ4 is a strong parapolar space of uniform symplectic

rank 4.

Now the rank 4 geometry of points, lines and the two distinct classes of maxi-

mal singular spaces (an enrichment of Σ4) possesses a chamber connected sheaf

by Theorem 11.3.2 of [9], and so is the truncation of a homomorphic image of

a building geometry with the diagram Dn (see [9, Theorem 11.7.1]). Since a

building geometry of type Dn supports a polar space this homomorphism is an

isomorphism. In this case Σ4 is a half-spin geometry of type Dn,n, n ≥ 5.

4.4 The case k = 5

Here we choose any A5 ∈ A5 and set Σ5 = ResΣ(A5). Now for each point p,

the point-residual Σ5(p) is a strong parapolar space of the form ResΣ(A4) for

some A4 ∈ A4. By the previous subsection, Σ4(p) is isomorphic to Dn,n for

some n that may depend on p. But the parameter n is determined by the largest

dimension, n− 1, of a singular subspace of Σ5(p) and so is shared by the point-

residuals of all its neighbors in the point-collinearity graph of Σ5. Since the

latter is connected, all point-residuals of Σ5 are half-spin geometries Dn,n for

fixed n.

At this point Σ5 is a parapolar space whose symplecta are either quads or

have polar rank 5. We will show that Σ5 has constant symplectic rank 5 by an

argument similar to that of the previous subsection.

First, if A5 = ∅ so that Σ5 = Σ, then no quads can exist since Σ has symplectic

rank at least three by hypothesis.

So we consider the case that A5 6= ∅. In this case Σ5, being the residue of

a nontrivial subspace A5, is a strong parapolar space. In this case, its point-

residuals must have point-diameter two. But this is only possible if all point-

residuals are of the same type D5,5. These geometries possess the property that

for any non-incident point-symplecton pair (x̄, S̄), x̄⊥ ∩ S̄ is either empty, or is

a maximal singular subspace of S̄. Now, since all point-residuals are connected

and have constant symplectic rank, we may apply Theorem 2.6 to conclude that

Σ5 has constant symplectic rank 5, and that x⊥ ∩ S is either empty, a single

point or a maximal singular subspace. It follows from Theorem 2 of Cohen and
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Cooperstein [4], that Σ5 is the Lie incidence geometry E6,1 in this case.

Let us return to the general case, where Σ = Σ5 and every point-residual is

the geometry Dn,n for fixed n ≥ 5. Here, when n > 5, Σ is not a strong para-

polar space, and when n > 7, it is extreme. Now, by the same sheaf-theoretic

arguments encountered in the case k = 4, we see that Σ5 is a truncation of a ho-

momorphic image of the building geometry with diagram En+1. When n = 6, 7

or 8, the building geometries support a long-root geometry and so the homo-

morphism in question is an isomorphism in these cases yielding Σ isomorphic to

E6,1, E7,1 and E8,1. For n > 8, a proper homomorphism of a building geometry

with diagram En may support Σ. In these cases, the resulting parapolar space

is extreme. Only in the case of E6,1 is the geometry a strong parapolar space.

4.5 The case k = 6

Again choose A6 ∈ A6 and set Σ6 = ResΣ(A6). Now consider any point-residual

Σ6(p) := ResΣ6
(A5), where p is represented by a space A5 ∈ A5 containing A6.

Then Σ6(p), being a strong parapolar space, must be isomorphic to E6,1, by the

analysis for the case k = 5.

Again, we must show that Σ6 has uniform symplectic rank. From the uniform

nature of its point-residuals, we see that the symplecta of Σ6 are either of type

D6,1 or are quads.

Now Σ6 is a locally connected parapolar space whose point-residuals, be-

ing isomorphic to E6,1, have property (K), so that for any non-incident point-

symplecton pair (x̄, S̄), x̄⊥∩ S̄ is either empty, or is a maximal singular subspace

of S̄. Now Theorem 2.6 implies that Σ6 is a strong parapolar space of symplec-

tic rank at least three. Thus no quads can be present, and so Σ6 has uniform

symplectic rank.

Since all of the following seven types of objects —points, lines, planes, PG(3)’s,

PG(5)’s, symplecta, and PG(6)’s— are present in the enriched geometry Σ∗
6

of the parapolar space Σ6, a perusal of its rank two residues reveals the dia-

gram E7. By Remark 2.9, we see that Σ6 is the strong parapolar space E7,7 of

point-diameter 3.

4.6 The case k = 7

For any A7 ∈ A7, Σ7 = ResΣ(A7) is a parapolar space whose enriched point-

residuals are geometries of type E7,7. Since these point-residuals have point-

diameter 3, Σ7 cannot be a strong parapolar space (Lemma 2.3(2)). Thus A8

contains only one singular subspace, namely the empty set, forcing Σ = Σ7.
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Since Σ has symplectic rank at least three, there are no quads and so all sym-

plecta of E7 are of type D7,1.

In the enriched geometry Σ∗
7 there are 8 apparent types of objects: points,

lines, planes, PG(3)’s, PG(4)’s, PG(6)’s, PG(7)’s and the symplecta.

The PG(6)’s are a class of maximal singular subspaces which lie in a sym-

plecton. The PG(7)’s are also a class of maximal singular spaces, but they do

not lie in a symplecton. A PG(7) is incident with a symplecton if and only if it

intersects it at one of its maximal singular subspaces (which obviously cannot

belong to the class of maximal PG(6)’s). A maximal PG(7) is incident with a

maximal PG(6) if and only if they intersect at a PG(4). All of the other inci-

dences are containment relationships of subspaces. One then sees that these

types of objects form a diagram geometry of type E8. From Remark 2.9, Σ is

the long-root geometry E8,8.

Since Σ = Σ7 was forced on us, and there are no further cases, this concludes

the proof of Theorem 1.3.

Remark 4.6. The proof of uniform symplectic rank succeeds because of a cer-

tain serendipity:

Among the Lie incidence geometries which are strong parapolar spaces of

point-diameter 2 (the line Grassmannians, D5,5 and E6,1) it happens that

for each non-incident point-symplecton pair (x, S), x⊥ ∩S is either empty

or a maximal singular subspace of S.

The author is unaware of any theoretical reason for this implication among

general parapolar spaces.
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