Innovations in Incidence Geometry

Algebraic, Topological and Combinatorial

msp

Vol. 17 No. 1 2019

Innovations in Incidence Geometry Algebraic, Topological and Combinatorial

vol. 17, no. 1, 2019 dx.doi.org/10.2140/iig.2019.17.25

Ruled quintic surfaces in PG(6, q)

Susan G. Barwick

We look at a scroll of PG(6, q) that uses a projectivity to rule a conic and a twisted cubic. We show this scroll is a ruled quintic surface V_2^5 , and study its geometric properties. The motivation in studying this scroll lies in its relationship with an \mathbb{F}_q -subplane of PG(2, q^3) via the Bruck–Bose representation.

1. Introduction

In this article we consider a scroll of PG(6, q) that rules a conic and a twisted cubic according to a projectivity. The motivation in studying this scroll lies in its relationship with an \mathbb{F}_q -subplane of PG(2, q^3) via the Bruck–Bose representation as described in Section 3. In PG(6, q), let C be a nondegenerate conic in a plane α ; C is called the *conic directrix*. Let \mathcal{N}_3 be a twisted cubic in a 3-space Π_3 with $\alpha \cap \Pi_3 = \emptyset$; \mathcal{N}_3 is called the *twisted cubic directrix*. Let ϕ be a projectivity from the points of C to the points of \mathcal{N}_3 . By this we mean that if we write the points of C and \mathcal{N}_3 using a nonhomogeneous parameter, so $C = \{C_{\theta} = (1, \theta, \theta^2) \mid \theta \in \mathbb{F}_q \cup \{\infty\}\}$ and $\mathcal{N}_3 = \{N_{\epsilon} = (1, \epsilon, \epsilon^2, \epsilon^3) \mid \epsilon \in \mathbb{F}_q \cup \{\infty\}\}$, then $\phi \in \text{PGL}(2, q)$ is a projectivity mapping $(1, \theta)$ to $(1, \epsilon)$. Let \mathcal{V} be the set of points of PG(6, q) lying on the q + 1 lines joining each point of C to the corresponding point (under ϕ) of \mathcal{N}_3 . These q + 1 lines are called the *generators* of \mathcal{V} . As the two subspaces α and Π_3 are disjoint, \mathcal{V} is not contained in a 5-space. We note that this construction generalises the ruled cubic surface \mathcal{V}_2^3 in PG(4, q), a variety that has been well studied; see [Vincenti 1983].

We work with normal rational curves in PG(6, q). Suppose that \mathcal{N} is a normal rational curve that generates an *i*-dimensional space. Then we call \mathcal{N} an *i*-dim *nrc*, and often use the notation \mathcal{N}_i . See [Hirschfeld and Thas 1991] for details on normal rational curves. As we will be looking at 5-dim nrcs contained in \mathcal{V} , we assume $q \ge 6$ throughout.

MSC2010: 51E20.

Keywords: projective space, varieties, scroll, Bruck-Bose representation.

This article studies the geometric structure of \mathcal{V} . In Section 2, we show that \mathcal{V} is a variety \mathcal{V}_2^5 of order 5 and dimension 2, and that all such scrolls are projectively equivalent. Further, we show that \mathcal{V} contains exactly q + 1 lines and one nondegenerate conic. In Section 3, we describe the Bruck–Bose representation of PG(2, q^3) in PG(6, q), and discuss how \mathcal{V} corresponds to an \mathbb{F}_q -subplane of PG(2, q^3). We use the Bruck–Bose setting to show that \mathcal{V} contains exactly q^2 twisted cubics, and that each can act as a directrix of \mathcal{V} . In Section 4, we count the number of 4- and 5-dim nrcs contained in \mathcal{V} . Further, we determine how 5-spaces meet \mathcal{V} , and count the number of 5-spaces of each intersection type. The main result is Theorem 4.8. In Section 5, we determine how 5-spaces meet \mathcal{V} in relation to the regular 2-spread in the Bruck–Bose setting.

2. Simple properties of \mathcal{V}

Theorem 2.1. Let V be a scroll of PG(6, q) that rules a conic and a twisted cubic according to a projectivity. Then V is a variety of dimension 2 and order 5, denoted V_2^5 and called a ruled quintic surface. Further, any two ruled quintic surfaces are projectively equivalent.

Proof. Let \mathcal{V} be a scroll of PG(6, q) with conic directrix \mathcal{C} in a plane α , twisted cubic directrix \mathcal{N}_3 in a 3-space Π_3 , and ruled by a projectivity as described in Section 1. The group of collineations of PG(6, q) is transitive on planes, and transitive on 3-spaces. Further, all nondegenerate conics in a projective plane are projectively equivalent, and all twisted cubics in a 3-space are projectively equivalent. Hence, without loss of generality, we can coordinatise \mathcal{V} as follows.

Let α be the plane which is the intersection of the four hyperplanes $x_0 = 0$, $x_1 = 0$, $x_2 = 0$, and $x_3 = 0$. Let C be the nondegenerate conic in α with points $C_{\theta} = (0, 0, 0, 0, 1, \theta, \theta^2)$ for $\theta \in \mathbb{F}_q \cup \{\infty\}$. Note that the points of C are the exact intersection of α with the quadric of equation $x_5^2 = x_4x_6$. Let Π_3 be the 3-space which is the intersection of the three hyperplanes $x_4 = 0$, $x_5 = 0$, and $x_6 = 0$. Let \mathcal{N}_3 be the twisted cubic in Π_3 with points $N_{\theta} = (1, \theta, \theta^2, \theta^3, 0, 0, 0)$ for $\theta \in \mathbb{F}_q \cup \{\infty\}$. Note that the points of \mathcal{N}_3 are the exact intersection of Π_3 with the three quadrics with equations $x_1^2 = x_0x_2$, $x_2^2 = x_1x_3$, and $x_0x_3 = x_1x_2$. A projectivity in PGL(2, q) is uniquely determined by the image of three points, so without loss of generality, let \mathcal{V} have generator lines $\ell_{\theta} = \{V_{\theta,t} = N_{\theta} + tC_{\theta}, t \in \mathbb{F}_q \cup \{\infty\}\}$ for $\theta \in \mathbb{F}_q \cup \{\infty\}$. That is, $V_{\theta,t} = (1, \theta, \theta^2, \theta^3, t, t\theta, t\theta^2)$. Equivalently, \mathcal{V} consists of the points

$$V_{x,y,z} = (x^3, x^2y, xy^2, y^3, zx^2, zxy, zy^2)$$

for $x, y \in \mathbb{F}_q$ not both 0 and $z \in \mathbb{F}_q \cup \{\infty\}$. It is straightforward to verify that the pointset of \mathcal{V} is the exact intersection of the following ten quadrics:

$$x_0x_5 = x_1x_4, \quad x_0x_6 = x_1x_5 = x_2x_4, \quad x_1x_6 = x_2x_5 = x_3x_4, \quad x_2x_6 = x_3x_5,$$

$$x_1^2 = x_0x_2, \quad x_2^2 = x_1x_3, \quad x_5^2 = x_4x_6, \quad x_0x_3 = x_1x_2.$$

Hence the points of \mathcal{V} form a variety.

We follow [Semple and Roth 1949] to calculate the dimension and order of \mathcal{V} . The following map defines an algebraic one-to-one correspondence between the plane π of PG(3, q) with points $(x, y, z, 0), x, y, z \in \mathbb{F}_q$ not all 0, and the points of \mathcal{V} :

$$\sigma: \pi \to \mathcal{V}, \quad (x, y, z, 0) \mapsto (x^3, x^2y, xy^2, y^3, x^2z, xyz, y^2z)$$

Thus \mathcal{V} is an absolutely irreducible variety of dimension 2 and so we are justified in calling it a surface. Now consider a generic 4-space of PG(6, q) with equation given by the two hyperplanes $\Sigma_1 : a_0x_0 + \cdots + a_6x_6 = 0$ and $\Sigma_2 : b_0x_0 + \cdots + b_6x_6 = 0$ for $a_i, b_i \in \mathbb{F}_q$. The point $V_{x,y,z} = (x^3, x^2y, xy^2, y^3, x^2z, xyz, y^2z)$ lies on Σ_1 if $a_0x^3 + a_1x^2y + a_2xy^2 + a_3y^3 + a_4x^2z + a_5xyz + a_6y^2z = 0$. This corresponds to a cubic \mathcal{K} in the plane π . Moreover, \mathcal{K} contains the point P = (0, 0, 1, 0), and P is a double point of \mathcal{K} . Similarly the set of points $V_{x,y,z} \in \Sigma_2$ corresponds to a cubic in π with a double point (0, 0, 1, 0). Two cubics in a plane meet generically in nine points. As (0, 0, 1, 0) lies in the kernel of σ , in PG(6, q) the 4-space $\Sigma_1 \cap \Sigma_2$ meets \mathcal{V} in five points, and so \mathcal{V} has order 5.

Theorem 2.2. Let \mathcal{V}_2^5 be a ruled quintic surface in PG(6, q).

- (1) No two generators of \mathcal{V}_2^5 lie in a plane.
- (2) No three generators of \mathcal{V}_2^5 lie in a 4-space.
- (3) No four generators of V_2^5 lie in a 5-space.

Proof. Let \mathcal{V}_2^5 be a ruled quintic surface of PG(6, q) with conic directrix \mathcal{C} in a plane α , and twisted cubic directrix \mathcal{N}_3 lying in a 3-space Π_3 . Suppose two generator lines ℓ_0 , ℓ_1 of \mathcal{V}_2^5 lie in a plane. Let *m* be the line in α joining the distinct points $\ell_0 \cap \alpha$, $\ell_1 \cap \alpha$. Let *m'* be the line in Π_3 joining the distinct points $\ell_0 \cap \Pi_3$, $\ell_1 \cap \Pi_3$. The lines *m*, *m'* lie in the plane $\langle \ell_0, \ell_1 \rangle$ and so meet in a point, contradicting disjointness of α and Π_3 . Hence the generator lines of \mathcal{V}_2^5 are pairwise skew.

For (2), suppose a 4-space Π_4 contains three distinct generators of \mathcal{V}_2^5 . As distinct generators meet \mathcal{C} in distinct points, Π_4 contains three distinct points of \mathcal{C} , and so contains the plane α . Further, distinct generators meet \mathcal{N}_3 in distinct points, hence Π_4 contains three points of \mathcal{N}_3 , and so $\Pi_4 \cap \Pi_3$ has dimension at least 2. Hence $\langle \Pi_4, \Pi_3 \rangle$ has dimension at most 4 + 3 - 2 = 5. However, $\mathcal{V}_2^5 \subseteq \langle \Pi_4, \Pi_3 \rangle$, a contradiction as \mathcal{V}_2^5 is not contained in a 5-space.

For (3), suppose a 5-space Π_5 contains four distinct generators of \mathcal{V}_2^5 . Distinct generators meet Π_3 in distinct points of \mathcal{N}_3 , so Π_5 contains four points of \mathcal{N}_3 which

do not lie in a plane. Hence Π_5 contains Π_3 . Similarly Π_5 contains α , and so Π_5 contains \mathcal{V}_2^5 , a contradiction as \mathcal{V}_2^5 is not contained in a 5-space.

Corollary 2.3. No two generators of V_2^5 lie in a 3-space containing α .

Proof. Suppose a 3-space Π_3 contained α and two generators of \mathcal{V}_2^5 . Let *P* be a point of \mathcal{V}_2^5 not in Π_3 and ℓ the generator of \mathcal{V}_2^5 through *P*. Then $\Pi_4 = \langle \Pi_3, P \rangle$ contains two distinct points of ℓ , namely *P* and $\ell \cap C$, and so Π_4 contains ℓ . That is, Π_4 is a 4-space containing three generators, contradicting Theorem 2.2.

We now show that the only lines on \mathcal{V}_2^5 are the generators, and the only nondegenerate conic on \mathcal{V}_2^5 is the conic directrix. We show later in Theorem 3.2 that there are exactly q^2 twisted cubics on \mathcal{V}_2^5 , and that each is a directrix.

Theorem 2.4. Let \mathcal{V}_2^5 be a ruled quintic surface in PG(6, q). A line of PG(6, q) meets \mathcal{V}_2^5 in 0, 1, 2, or q + 1 points. Further, \mathcal{V}_2^5 contains exactly q + 1 lines, namely the generator lines.

Proof. Let \mathcal{V}_2^5 be a ruled quintic surface of PG(6, q) with conic directrix \mathcal{C} lying in a plane α , and twisted cubic directrix \mathcal{N}_3 lying in the 3-space Π_3 . Let m be a line of PG(6, q) that is not a generator of \mathcal{V}_2^5 , and suppose m meets \mathcal{V}_2^5 in three points P, Q, R. As m is not a generator of \mathcal{V}_2^5 , the points P, Q, R lie on distinct generator lines denoted ℓ_P, ℓ_Q, ℓ_R , respectively. As \mathcal{C} is a nondegenerate conic, mis not a line of α and so at most one of the points P, Q, R lie in \mathcal{C} . Suppose firstly that $P, Q, R \notin \mathcal{C}$. Then $\langle \alpha, m \rangle$ is a 3- or 4-space that contains the three generators ℓ_P, ℓ_Q, ℓ_R , contradicting Theorem 2.2. Now suppose $P \in \mathcal{C}$ and $Q, R \notin \mathcal{C}$. Then $\Sigma_3 = \langle \alpha, m \rangle$ is a 3-space which contains the two generator lines ℓ_Q, ℓ_R . So $\Sigma_3 \cap \Pi_3$ contains the distinct points $\ell_R \cap \mathcal{N}_3, \ell_Q \cap \mathcal{N}_3$, and so has dimension at least 1. Hence $\langle \Sigma_3, \Pi_3 \rangle$ has dimension at most 3 + 3 - 1 = 5, a contradiction as $\mathcal{V}_2^5 \subset \langle \Sigma_3, \Pi_3 \rangle$, but \mathcal{V}_2^5 is not contained in a 5-space. Hence a line of PG(6, q) is either a generator line of \mathcal{V}_2^5 , or meets \mathcal{V}_2^5 in 0, 1, or 2 points.

Theorem 2.5. The ruled quintic surface V_2^5 contains exactly one nondegenerate conic.

Proof. Let \mathcal{V}_2^5 be a ruled quintic surface with conic directrix \mathcal{C} in a plane α . Suppose \mathcal{V}_2^5 contains another nondegenerate conic \mathcal{C}' in a plane $\alpha' \neq \alpha$. If \mathcal{C}' contains two points on a generator ℓ of \mathcal{V}_2^5 , then $\alpha' \cap \mathcal{V}_2^5$ contains \mathcal{C}' and ℓ . However, by the proof of Theorem 2.1, \mathcal{V}_2^5 is the intersection of quadrics, and the configuration $\mathcal{C}' \cup \ell$ is not contained in any planar quadric. Hence \mathcal{C}' contains exactly one point on each generator of \mathcal{V}_2^5 .

We consider the three cases where $\alpha \cap \alpha'$ is either empty, a point, or a line. Suppose $\alpha \cap \alpha' = \emptyset$. Then $\langle \alpha, \alpha' \rangle$ is a 5-space that contains C and C', and so contains two distinct points on each generator of \mathcal{V}_2^5 . Hence $\langle \alpha, \alpha' \rangle$ contains each generator of \mathcal{V}_2^5 and so contains \mathcal{V}_2^5 , a contradiction as \mathcal{V}_2^5 is not contained in a 5space. Suppose $\alpha \cap \alpha'$ is a point *P*. Then $\langle \alpha, \alpha' \rangle$ is a 4-space that contains at least *q* generators of \mathcal{V}_2^5 , contradicting Theorem 2.2 as $q \ge 6$. Finally, suppose $\alpha \cap \alpha'$ is a line. Then $\langle \alpha, \alpha' \rangle$ is a 3-space that contains at least q - 1 generators, contradicting Theorem 2.2 as $q \ge 6$. So \mathcal{V}_2^5 contains exactly one nondegenerate conic.

We aim to classify how 5-spaces meet \mathcal{V}_2^5 , so we begin with a simple description. **Remark 2.6.** Let Π_5 be a 5-space. Then $\Pi_5 \cap \mathcal{V}_2^5$ contains a set of q + 1 points, one on each generator.

Lemma 2.7. A 5-space meets \mathcal{V}_2^5 in either (a) a 5-dim nrc, (b) a 4-dim nrc and 0 or 1 generators, (c) a 3-dim nrc and 0, 1, or 2 generators, or (d) the conic directrix and 0, 1, 2, or 3 generators.

Proof. Using properties of varieties (see, for example, [Semple and Roth 1949]) we have $\mathcal{V}_2^5 \cap \mathcal{V}_5^1 = \mathcal{V}_1^5$, that is, the variety \mathcal{V}_2^5 meets a 5-space \mathcal{V}_5^1 in a curve of degree 5. Denote this curve of PG(6, q) by \mathcal{K} . The degree of \mathcal{K} can be partitioned as

$$5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1$$

By Theorem 2.4, the only lines on V_2^5 are the generators. By Theorem 2.2, \mathcal{K} does not contain more than 3 generators. By Remark 2.6, \mathcal{K} contains at least one point on each generator. Hence \mathcal{K} is not empty, and is not the union of 1, 2, or 3 generators, so the partition 1 + 1 + 1 + 1 + 1 for the degree of \mathcal{K} does not occur.

Suppose that the degree of \mathcal{K} is partitioned as either (a) 2+2+1 or (b) 2+1+1+1. By Remark 2.6, \mathcal{K} contains a point on each generator, so \mathcal{K} contains an irreducible conic. By Theorem 2.5, this conic is the conic directrix \mathcal{C} of \mathcal{V}_2^5 , and case (a) does not occur. Hence \mathcal{K} consists of \mathcal{C} and 0, 1, 2, or 3 generators of \mathcal{V}_2^5 .

Suppose that the degree of \mathcal{K} is partitioned as 3 + 1 + 1. So \mathcal{K} consists of at most 2 generators, and an irreducible cubic \mathcal{K}' . By Remark 2.6, \mathcal{K} contains a point on each generator, so \mathcal{K}' contains a point on at least q - 1 generators. If \mathcal{K}' generates a 3-space, then it is a 3-dim nrc of PG(6, q). If not, \mathcal{K}' is an irreducible cubic contained in a plane Π_2 . By the proof of Theorem 2.1, \mathcal{K}' is contained in a quadric, so \mathcal{K}' is not an irreducible planar cubic. Thus \mathcal{K}' is a 3-dim nrc of PG(6, q). Hence \mathcal{K} consists of a 3-dim nrc and 0, 1, or 2 generators of \mathcal{V}_2^5 .

Suppose that the degree of \mathcal{K} is partitioned as 2+3. By Remark 2.6, \mathcal{K} contains a point on each generator. As argued above, \mathcal{K} does not contain an irreducible planar cubic. Suppose \mathcal{K} contained both an irreducible conic \mathcal{C} and a twisted cubic \mathcal{N}_3 . Then there is at least one generator ℓ that meets \mathcal{C} and \mathcal{N}_3 in distinct points. In this case ℓ lies in the 5-space and so lies in \mathcal{K} , a contradiction. So \mathcal{K} is not the union of an irreducible conic and a twisted cubic.

Suppose that the degree of \mathcal{K} is partitioned as 4 + 1. So \mathcal{K} consists of at most 1 generator, and an irreducible quartic \mathcal{K}' . By Remark 2.6, \mathcal{K} contains a point on each

generator, so \mathcal{K}' contains a point on at least q generators. If \mathcal{K}' generates a 4-space, then it is a 4-dim nrc of PG(6, q). If not, \mathcal{K}' is an irreducible quartic contained in a 3-space Π_3 . Let ℓ , m be two generators not in \mathcal{K} . Then by Remark 2.6 they meet \mathcal{K}' . So $\langle \Pi_3, \ell, m \rangle$ has dimension at most 5, and meets \mathcal{V}_2^5 in an irreducible quartic and 2 lines, which is a curve of degree 6, a contradiction. Thus \mathcal{K}' is a 4-dim nrc of PG(6, q). That is, \mathcal{K} consists of a 4-dim nrc and 0 or 1 generators of \mathcal{V}_2^5 .

Suppose the curve \mathcal{K} is irreducible. By Remark 2.6, \mathcal{K} contains a point on each generator. So either \mathcal{K} is a 5-dim nrc of PG(6, q), or \mathcal{K} lies in a 4-space. Suppose \mathcal{K} lies in a 4-space Π_4 , and let ℓ be a generator. Then $\langle \Pi_4, \ell \rangle$ has dimension at most 5 and meets \mathcal{V}_2^5 in a curve of degree 6, a contradiction. So \mathcal{K} is a 5-dim nrc of PG(6, q).

Corollary 2.8. Let Π_r be an *r*-space for r = 3, 4, 5 that contains an *r*-dim nrc of \mathcal{V}_2^5 . Then Π_r contains 0 generators of \mathcal{V}_2^5 .

Proof. First suppose r = 3. By Lemma 2.7, a 5-space containing a twisted cubic \mathcal{N}_3 of \mathcal{V}_2^5 contains at most two generators of \mathcal{V}_2^5 . Hence a 4-space containing \mathcal{N}_3 contains at most one generator of \mathcal{V}_2^5 . Hence the 3-space Π_3 containing \mathcal{N}_3 contains no generator of \mathcal{V}_2^5 .

If r = 4, by Lemma 2.7, a 5-space containing a 4-dim nrc \mathcal{N}_4 of \mathcal{V}_2^5 contains at most one generator of \mathcal{V}_2^5 . Hence the 4-space Π_4 containing \mathcal{N}_4 contains no generators of \mathcal{V}_2^5 . If r = 5, then by Lemma 2.7, Π_5 contains 0 generators of \mathcal{V}_2^5 . \Box

Theorem 2.9. Let N_r be an *r*-dim nrc lying on V_2^5 for r = 3, 4, 5. Then N_r contains exactly one point on each generator of V_2^5 .

Proof. Let \mathcal{N}_r be an *r*-dim nrc lying on \mathcal{V}_2^5 for r = 3, 4, 5, and denote the *r*-space containing \mathcal{N}_r by Π_r . If Π_r contained 2 points of a generator of \mathcal{V}_2^5 , then it contains the whole generator, so by Corollary 2.8, the q + 1 points of \mathcal{N}_r consist of one on each generator of \mathcal{V}_2^5 .

3. \mathcal{V}_2^5 and \mathbb{F}_q -subplanes of PG(2, q^3)

To study \mathcal{V}_2^5 in more detail, we use the linear representation of PG(2, q^3) in PG(6, q) developed independently by André [1954] and Bruck and Bose [1964; 1966]. Let S be a regular 2-spread of PG(6, q) in a 5-space Σ_{∞} . Let J be the incidence structure with the points of PG(6, q) \ Σ_{∞} as *points*, the 3-spaces of PG(6, q) that contain a plane of S and are not in Σ_{∞} as *lines*, and inclusion as *incidence*. Then J is isomorphic to AG(2, q^3). We can uniquely complete J to PG(2, q^3), the points on ℓ_{∞} correspond to the planes of S. We call this the *Bruck–Bose representation* of PG(2, q^3) in PG(6, q); see [Barwick and Jackson 2012] for a detailed discussion on this representation. Of particular interest is the relationship between the ruled quintic surface of PG(6, q) and the \mathbb{F}_q -subplanes of PG(2, q^3).

To describe this relationship, we need to use the cubic extension of PG(6, q) to PG(6, q^3). The regular 2-spread S has a unique set of three conjugate *transversal* lines in this cubic extension, denoted g, g^q , g^{q^2} , which meet each extended plane of S; for more details on regular spreads and transversals, see [Hirschfeld and Thas 1991, Section 25.6]. An *r*-space Π_r of PG(6, q) lies in a unique *r*-space of PG(6, q^3), denoted Π_r^* . An nrc \mathcal{N} of PG(6, q) lies in a unique nrc of PG(6, q^3), denoted \mathcal{N}^* . Let \mathcal{V}_2^5 be a ruled quintic surface with conic directrix C, twisted cubic directrix \mathcal{N}_3 , and associated projectivity ϕ . Then we can extend \mathcal{V}_2^5 to a unique ruled quintic surface \mathcal{V}_2^{5*} of PG(6, q^3) with conic directrix \mathcal{C}^* , twisted cubic directrix \mathcal{N}_3^* , and the same associated projectivity, that is, extend ϕ from acting on PG(1, q) to acting on PG(1, q^3). We need the following characterisations.

Result 3.1 [Barwick and Jackson 2012; 2014]. Let *S* be a regular 2-spread in a 5-space Σ_{∞} in PG(6, q) and consider the Bruck–Bose plane PG(2, q³).

- (1) An \mathbb{F}_q -subline of PG(2, q^3) that meets ℓ_{∞} in a point corresponds in PG(6, q) to a line not in Σ_{∞} .
- (2) An \mathbb{F}_q -subline of PG(2, q^3) that is disjoint from ℓ_{∞} corresponds in PG(6, q) to a twisted cubic \mathcal{N}_3 lying in a 3-space about a plane of S such that the extension \mathcal{N}_3^{\star} to PG(6, q^3) meets each transversal of S in a point.
- (3) An \mathbb{F}_q -subplane of PG(2, q^3) tangent to ℓ_{∞} at the point T corresponds in PG(6, q) to a ruled quintic surface \mathcal{V}_2^5 with conic directrix in the spread plane corresponding to T such that in the cubic extension PG(6, q^3), the transversals g, g^q , g^{q^2} of S are generators of \mathcal{V}_2^{5*} .

Moreover, the converse of each is true.

We use this characterisation to show that \mathcal{V}_2^5 contains exactly q^2 twisted cubics.

Theorem 3.2. The ruled quintic surface V_2^5 contains exactly q^2 twisted cubics, and each is a directrix of V_2^5 .

Proof. By Theorem 2.1, all ruled quintic surfaces are projectively equivalent. So without loss of generality, we can position a ruled quintic surface so that it corresponds to an \mathbb{F}_q -subplane of PG(2, q^3), which we denote by \mathcal{B} . That is, by Result 3.1, \mathcal{S} is a regular 2-spread in a hyperplane Σ_{∞} , $\mathcal{V}_2^5 \cap \Sigma_{\infty}$ is the conic directrix \mathcal{C} of \mathcal{V}_2^5 , \mathcal{C} lies in a plane of \mathcal{S} , and in the cubic extension PG(6, q^3), the transversals g, g^q , g^{q^2} of \mathcal{S} are generators of $\mathcal{V}_2^{5^*}$.

Let \mathcal{N}_3 be a twisted cubic contained in \mathcal{V}_2^5 , and denote the 3-space containing \mathcal{N}_3 by Π_3 . As $\mathcal{V}_2^5 \cap \Sigma_{\infty} = C$, Π_3 meets Σ_{∞} in a plane; we show this is a plane of S. In PG(6, q^3), \mathcal{V}_2^{5*} is a ruled quintic surface that contains the twisted cubic \mathcal{N}_3^* . Moreover, the transversals g, g^q, g^{q^2} of S are generators of \mathcal{V}_2^{5*} . So by Theorem 2.9, \mathcal{N}_3^* contains one point on each of g, g^q , and g^{q^2} . Hence the 3-space Π_3^* contains an extended plane of S, and so Π_3 meets Σ_{∞} in a plane of S. Hence

 $\Pi_3 \cap \alpha = \emptyset$. Further, by Theorem 2.9, \mathcal{N}_3 contains one point on each generator of \mathcal{V}_2^5 , and thus \mathcal{N}_3 is a directrix of \mathcal{V}_2^5 .

By Result 3.1, \mathcal{N}_3 corresponds in PG(2, q^3) to an \mathbb{F}_q -subline of \mathcal{B} disjoint from ℓ_∞ . Conversely, every \mathbb{F}_q -subline of \mathcal{B} disjoint from ℓ_∞ corresponds to a twisted cubic on \mathcal{V}_2^5 . Thus the twisted cubics in \mathcal{V}_2^5 are in one-to-one correspondence with the \mathbb{F}_q -sublines of \mathcal{B} that are disjoint from ℓ_∞ . As there are q^2 such \mathbb{F}_q -sublines, there are q^2 twisted cubics on \mathcal{V}_2^5 .

Suppose we position \mathcal{V}_2^5 so that it corresponds via the Bruck–Bose representation to a tangent \mathbb{F}_q -subplane \mathcal{B} of PG(2, q^3). So we have a regular 2-spread \mathcal{S} in a hyperplane Σ_{∞} , and the conic directrix of \mathcal{V}_2^5 lies in a plane $\alpha \in \mathcal{S}$. We define the *splash* of \mathcal{B} to be the set of $q^2 + 1$ points on ℓ_{∞} that lie on an extended line of \mathcal{B} . The *splash* of \mathcal{V}_2^5 is defined to be the corresponding set of $q^2 + 1$ planes of \mathcal{S} . We denote the splash of \mathcal{V}_2^5 by \mathbb{S} . Note that α is a plane of \mathbb{S} . We show that the remaining q^2 planes of \mathbb{S} are related to the q^2 twisted cubics of \mathcal{V}_2^5 .

Corollary 3.3. Let S be a regular 2-spread in a hyperplane Σ_{∞} of PG(6, q). Without loss of generality, we can position \mathcal{V}_2^5 so that it corresponds via the Bruck–Bose representation to a tangent \mathbb{F}_q -subplane of PG(2, q^3). Then the conic directrix of \mathcal{V}_2^5 lies in a plane $\alpha \in S$, the q^2 3-spaces containing a twisted cubic of \mathcal{V}_2^5 meet Σ_{∞} in distinct planes of S, and these planes together with α form the splash \mathbb{S} of \mathcal{V}_2^5 .

Proof. By Theorem 2.1, all ruled quintic surfaces are projectively equivalent, so without loss of generality, let \mathcal{V}_2^5 be positioned so that it corresponds to an \mathbb{F}_q -subplane \mathcal{B} of PG(2, q^3) which is tangent to ℓ_{∞} . Let *b* be an \mathbb{F}_q -subline of \mathcal{B} disjoint from ℓ_{∞} , so the extension of *b* meets ℓ_{∞} in a point *R* which lies in the splash of \mathcal{B} . By Result 3.1, *b* corresponds in PG(6, *q*) to a twisted cubic of \mathcal{V}_2^5 which lies in a 3-space that meets Σ_{∞} in the plane of \mathbb{S} corresponding to the point *R*.

Using this Bruck–Bose setting, we describe the 3-spaces of PG(6, q) that contain a plane of the regular 2-spread S.

Corollary 3.4. Position \mathcal{V}_2^5 as in Corollary 3.3, so S is a regular 2-spread in the hyperplane Σ_{∞} , and the conic directrix of \mathcal{V}_2^5 lies in a plane α contained in the splash $\mathbb{S} \subset S$ of \mathcal{V}_2^5 .

- (1) Let $\beta \in \mathbb{S} \setminus \alpha$. Then there exists a unique 3-space containing β that meets \mathcal{V}_2^5 in a twisted cubic. The remaining 3-spaces containing β (and not in Σ_{∞}) meet \mathcal{V}_2^5 in 0 or 1 point.
- (2) Let $\gamma \in S \setminus S$. Then each 3-space containing γ and not in Σ_{∞} meets V_2^5 in 0 or 1 point.

Proof. By Corollary 3.3, we can position \mathcal{V}_2^5 so that it corresponds to an \mathbb{F}_q -subplane \mathcal{B} of PG(2, q^3) which is tangent to ℓ_{∞} . The 3-spaces that contain a plane of \mathcal{S} (and

do not lie in Σ_{∞}) correspond to lines of PG(2, q^3). Each point on ℓ_{∞} not in \mathcal{B} but in the splash of \mathcal{B} lies on a unique line that meets \mathcal{B} in an \mathbb{F}_q -subline. By Result 3.1, this corresponds to a twisted cubic in \mathcal{V}_2^5 . The remaining lines meet \mathcal{B} in 0 or 1 point, so the remaining 3-spaces meet \mathcal{V}_2^5 in 0 or 1 point.

As \mathcal{V}_2^5 corresponds to an \mathbb{F}_q -subplane, we have the following result.

Theorem 3.5. Let \mathcal{V}_2^5 be a ruled quintic surface in PG(6, q).

- (1) Two twisted cubics on \mathcal{V}_2^5 meet in a unique point.
- Let P, Q be points lying on different generators of V₂⁵, and not in the conic directrix. Then P, Q lie on a unique twisted cubic of V₂⁵.

Proof. Without loss of generality, let \mathcal{V}_2^5 be positioned as described in Corollary 3.3. So the conic directrix lies in a plane α contained in a regular 2-spread S in Σ_{∞} , and \mathcal{V}_2^5 corresponds to an \mathbb{F}_q -subplane \mathcal{B} of PG(2, q^3) tangent to ℓ_{∞} . Let $\mathcal{N}_1, \mathcal{N}_2$ be two twisted cubics contained in \mathcal{V}_2^5 . By Result 3.1, they correspond in PG(2, q^3) to two \mathbb{F}_q -sublines of \mathcal{B} not containing $\mathcal{B} \cap \ell_{\infty}$, and so meet in a unique affine point P. This corresponds to a unique point $P \in \mathcal{V}_2^5 \setminus \alpha$ lying in both \mathcal{N}_1 and \mathcal{N}_2 , proving (1).

For (2), let P, Q be points lying on distinct generators of \mathcal{V}_2^5 , $P, Q \notin C$. If the line PQ met α , then $\langle \alpha, P, Q \rangle$ is a 3-space that contains α and the generators of \mathcal{V}_2^5 containing P and Q, contradicting Corollary 2.3. Hence the line PQ is skew to α . In PG(2, q^3), P, Q correspond to two affine points in the tangent \mathbb{F}_q -subplane \mathcal{B} , so they lie on a unique \mathbb{F}_q -subline b of \mathcal{B} . By Result 3.1, the generators of \mathcal{V}_2^5 correspond to the \mathbb{F}_q -sublines of \mathcal{B} through the point $\mathcal{B} \cap \ell_{\infty}$. As PQ is skew to α , we have $b \cap \ell_{\infty} = \emptyset$. Hence, by Result 3.1, in PG(6, q) the points P, Q lie on a unique twisted cubic of \mathcal{V}_2^5 .

4. Intersection types for 5-spaces meeting \mathcal{V}_2^5

In this section we determine how 5-spaces meet V_2^5 and count the different intersection types. A series of lemmas is used to prove the main result which is stated in Theorem 4.8.

Lemma 4.1. Let \mathcal{V}_2^5 be a ruled quintic surface of PG(6, q) with conic directrix C. Of the $q^3 + q^2 + q + 1$ 5-spaces of PG(6, q) containing C, r_i of them meet \mathcal{V}_2^5 in precisely C and i generators, where

$$r_3 = \frac{q^3 - q}{6}, \quad r_2 = q^2 + q, \quad r_1 = \frac{q^3}{2} + \frac{q}{2} + 1, \quad r_0 = \frac{q^3 - q}{3}$$

Proof. Let \mathcal{V}_2^5 be a ruled quintic surface of PG(6, q) with conic directrix \mathcal{C} lying in a plane α . By Lemma 2.7, a 5-space containing \mathcal{C} contains at most three generator

lines of \mathcal{V}_2^5 . By Theorem 2.2, three generators of \mathcal{V}_2^5 lie in a unique 5-space. Hence there are

$$r_3 = \binom{q+1}{3}$$

5-spaces that contain three generators of \mathcal{V}_2^5 . Such a 5-space contains three points of \mathcal{C} , and so contains \mathcal{C} and α .

Denote the generator lines of \mathcal{V}_2^5 by ℓ_0, \ldots, ℓ_q and consider two generators, ℓ_0, ℓ_1 say. By Corollary 2.3, $\Sigma_4 = \langle \alpha, \ell_0, \ell_1 \rangle$ is a 4-space. By Theorem 2.2, $\langle \Sigma_4, \ell_i \rangle$ for $i = 2, \ldots, q$ are distinct 5-spaces. That is, q - 1 of the 5-spaces about Σ_4 contain 3 generators, and hence the remaining two contain ℓ_0, ℓ_1 and no further generator of \mathcal{V}_2^5 . Hence, by Lemma 2.7, q - 1 of the 5-spaces about Σ_4 meet \mathcal{V}_2^5 in exactly C and 3 generators; and the remaining two 5-spaces about Σ_4 meet \mathcal{V}_2^5 in exactly C and two generators. There are $\binom{q+1}{2}$ choices for Σ_4 , and hence the number of 5-spaces that meet \mathcal{V}_2^5 in precisely C and two generators is

$$r_2 = 2 \times \binom{q+1}{2} = (q+1)q.$$

Next, let r_1 be the number of 5-spaces that meet \mathcal{V}_2^5 in precisely \mathcal{C} and one generator. We count in two ways ordered pairs (ℓ, Π_5) where ℓ is a generator of \mathcal{V}_2^5 , and Π_5 is a 5-space that contains ℓ and α , giving

$$(q+1)(q^2+q+1) = 3r_3 + 2r_2 + r_1.$$

Hence $r_1 = q^3/2 + q/2 + 1$. Finally, the number of 5-spaces containing C and zero generators is $r_0 = (q^3 + q^2 + q + 1) - r_3 - r_2 - r_1 = (q^3 - q)/3$, as required. \Box

Lemma 4.2. Let \mathcal{V}_2^5 be a ruled quintic surface of PG(6, q) and let \mathcal{N}_3 be a twisted cubic directrix of \mathcal{V}_2^5 .

(1) Of the $q^2 + q + 1$ 5-spaces of PG(6, q) containing N_3 , s_i of them meet V_2^5 in precisely N_3 and i generators, where

$$s_2 = \frac{q^2 + q}{2}, \quad s_1 = q + 1, \quad s_0 = \frac{q^2 - q}{2}$$

(2) The total number of 5-spaces that meet V_2^5 in a twisted cubic and i generators is q^2s_i , for i = 0, 1, 2.

Proof. Let \mathcal{V}_2^5 be a ruled quintic surface of PG(6, q) with a twisted cubic directrix \mathcal{N}_3 lying in the 3-space Π_3 . By Lemma 2.7, a 5-space containing \mathcal{N}_3 contains at most two generators of \mathcal{V}_2^5 , so the number of 5-spaces that contain Π_3 and exactly two generator lines is $s_2 = \binom{q+1}{2}$. Let ℓ be a generator of \mathcal{V}_2^5 and consider the 4-space $\Pi_4 = \langle \Pi_3, \ell \rangle$. For each generator $m \neq \ell$, $\langle \Pi_4, m \rangle$ is a 5-space about Π_4 that meets \mathcal{V}_2^5 in \mathcal{N}_3 , ℓ , and m, and in no further point by Lemma 2.7. This accounts for

q of the 5-spaces containing Π_4 . Hence the remaining 5-space containing Π_4 meets \mathcal{V}_2^5 in exactly \mathcal{N}_3 and ℓ . That is, exactly one of the 5-spaces about $\Pi_4 = \langle \Pi_3, \ell \rangle$ meets \mathcal{V}_2^5 in precisely \mathcal{N}_3 and ℓ . There are q + 1 choices for the generator ℓ , and hence $s_1 = q + 1$. Finally $s_0 = (q^2 + q + 1) - s_2 - s_1 = (q^2 - q)/2$, as required.

For (2), by Theorem 3.2, \mathcal{V}_2^5 contains q^2 twisted cubics, so the total number of 5-spaces meeting \mathcal{V}_2^5 in a twisted cubic and *i* generators is q^2s_i , i = 0, 1, 2.

The next result looks at properties of 4-dim nrcs contained in \mathcal{V}_2^5 . In particular, we show that there are no 5-spaces that meet \mathcal{V}_2^5 in a 4-dim nrc and 0 generator lines.

Lemma 4.3. Let \mathcal{V}_2^5 be a ruled quintic surface of PG(6, q) with conic directrix C in the plane α , and let \mathcal{N}_4 be a 4-dim nrc contained in \mathcal{V}_2^5 .

- (1) The q + 1 5-spaces containing \mathcal{N}_4 each contain a distinct generator line of \mathcal{V}_2^5 .
- (2) The 4-space containing \mathcal{N}_4 meets α in a point P, and either $P = C \cap \mathcal{N}_4$ or q is even and P is the nucleus of C.

Proof. Let \mathcal{V}_2^5 be a ruled quintic surface in PG(6, q) with conic directrix \mathcal{C} lying in a plane α . Let \mathcal{N}_4 be a 4-dim nrc contained in \mathcal{V}_2^5 , so \mathcal{N}_4 lies in a 4-space, which we denote Π_4 . By Corollary 2.8, Π_4 does not contain a generator of \mathcal{V}_2^5 . By Lemma 2.7, a 5-space containing \mathcal{N}_4 can contain at most one generator of \mathcal{V}_2^5 . Hence each of the q + 1 5-spaces containing \mathcal{N}_4 contains a distinct generator. In particular, if we label the points of \mathcal{C} by Q_0, \ldots, Q_q , and the generator through Q_i by ℓ_{Q_i} , then the q + 1 5-spaces containing \mathcal{N}_4 are $\Sigma_i = \langle \Pi_4, \ell_{Q_i} \rangle$, for $i = 0, \ldots, q$.

If Π_4 met the plane α in a line, then $\langle \Pi_4, \alpha \rangle$ is a 5-space whose intersection with \mathcal{V}_2^5 contains \mathcal{N}_4 and \mathcal{C} , contradicting Lemma 2.7. Hence Π_4 meets α in a point P. There are three possibilities for the point $P = \Pi_4 \cap \alpha$, namely $P \in \mathcal{C}$, q even and P the nucleus of \mathcal{C} , or q even, $P \notin \mathcal{C}$, and P not the nucleus of \mathcal{C} .

<u>Case 1</u>. Suppose $P \in C$. For i = 0, ..., q, the 5-space $\Sigma_i = \langle \Pi_4, \ell_{Q_i} \rangle$ meets α in a line m_i . Label C so that $P = Q_0$, so the line m_0 is the tangent to C at P, and m_i for i = 1, ..., q, is the secant line PQ_i . We now show that $P = Q_0$ is a point of \mathcal{N}_4 . Let $i \in \{1, ..., q\}$. Then by Lemma 2.7, Σ_i meets \mathcal{V}_2^5 in precisely $\mathcal{N}_4 \cup \ell_{Q_i}$, and $\Sigma_i \cap \mathcal{V}_2^5 \cap \alpha$ is the two points P, Q_i . As $P \notin \ell_{Q_i}$ we have $P \in \mathcal{N}_4$. That is, $P = C \cap \mathcal{N}_4$.

<u>Case 2</u>. Suppose q is even and $P = \prod_4 \cap \alpha$ is the nucleus of C. For i = 0, ..., q, the 5-space $\Sigma_i = \langle \prod_4, \ell_{Q_i} \rangle$ meets α in the tangent to C through Q_i . In this case, $C \cap \mathcal{N}_4 = \emptyset$.

<u>Case 3</u>. Suppose $P = \Pi_4 \cap \alpha$ is not in C, and P is not the nucleus of C. Now P lies on some secant m = QR of C, for some points $Q, R \in C$. The intersection of the 5-space $\langle \Pi_4, m \rangle$ with \mathcal{V}_2^5 contains \mathcal{N}_4 and two points R, Q of C. As R, Q lie on distinct generators and are not in \mathcal{N}_4 , this contradicts Lemma 2.7. Hence this case cannot occur.

We can now describe how an nrc of V_2^5 meets the conic directrix, and note that Theorem 5.1 shows that each possibility in (3) below can occur.

Corollary 4.4. Let \mathcal{V}_2^5 be a ruled quintic surface of PG(6, q) with conic directrix C.

- (1) A twisted cubic $\mathcal{N}_3 \subseteq \mathcal{V}_2^5$ contains 0 points of \mathcal{C} .
- (2) A 4-dim nrc $\mathcal{N}_4 \subseteq \mathcal{V}_2^5$ contains either 1 point of \mathcal{C} , or 0 points of \mathcal{C} , in which case q is even and the 4-space containing \mathcal{N}_4 contains the nucleus of \mathcal{C} .
- (3) A 5-dim nrc $\mathcal{N}_5 \subseteq \mathcal{V}_2^5$ contains 0, 1, or 2 points of \mathcal{C} .

Proof. Let \mathcal{V}_2^5 be a ruled quintic surface of PG(6, q) with conic directrix \mathcal{C} in a plane α . Let \mathcal{N}_3 be a twisted cubic of \mathcal{V}_2^5 , so by Theorem 3.2, \mathcal{N}_3 is a directrix of \mathcal{V}_2^5 , and so is disjoint from α , proving (1). Next let \mathcal{N}_4 be a 4-dim nrc on \mathcal{V}_2^5 , and let Π_4 be the 4-space containing \mathcal{N}_4 . By Lemma 4.3, $\Pi_4 \cap \alpha$ is a point P, and either $P = \mathcal{C} \cap \mathcal{N}_4$, or q is even and P is the nucleus of \mathcal{C} . Thus, $P \notin \mathcal{V}_2^5$ and so $P \notin \mathcal{N}_4$, proving (2). Let Π_5 be a 5-space containing a 5-dim nrc of \mathcal{V}_2^5 . By Lemma 2.7, Π_5 cannot contain α . Hence Π_5 meets α in a line, and so contains at most two points of \mathcal{C} , proving (3).

We now use the Bruck–Bose setting to count the 4-dim nrcs contained in \mathcal{V}_2^5 .

Lemma 4.5. Let S be a regular 2-spread in a 5-space Σ_{∞} in PG(6, q). Position \mathcal{V}_2^5 as in Corollary 3.3, so \mathcal{V}_2^5 has splash $\mathbb{S} \subset S$. Then a 4- or 5-space about a plane $\beta \in \mathbb{S}$ cannot contain a 4-dim nrc of \mathcal{V}_2^5 .

Proof. Position \mathcal{V}_2^5 as described in Corollary 3.3, so S is a regular 2-spread in a 5-space Σ_{∞} , the conic directrix of \mathcal{V}_2^5 lies in a plane $\alpha \in S$, and $\mathbb{S} \subset S$ denotes the splash of \mathcal{V}_2^5 . By Lemma 2.7, a 4-space containing α cannot contain a 4-dim nrc of \mathcal{V}_2^5 . Let $\beta \in \mathbb{S} \setminus \alpha$. Then by Corollary 3.4, β lies in exactly one 3-space that contains a twisted cubic of \mathcal{V}_2^5 . Denote these by Π_3 and \mathcal{N}_3 , respectively. By Theorem 3.2, \mathcal{N}_3 is a directrix of \mathcal{V}_2^5 , and so Π_3 is disjoint from α . So if ℓ_P is a generator of \mathcal{V}_2^5 , then $\Pi_4 = \langle \Pi_3, \ell_P \rangle$ is a 4-space and $\Pi_4 \cap \alpha$ is the point $P = \ell_P \cap C$. Let ℓ be a line of α through P and let $\Pi_5 = \langle \Pi_3, \ell \rangle$. If ℓ is tangent to C, then $\Pi_5 \cap \mathcal{V}_2^5$ is exactly $\mathcal{N}_3 \cup \ell_P$. If ℓ is a secant of C, so $\ell \cap C = \{P, Q\}$, then $\Pi_5 \cap \mathcal{V}_2^5$ consists of \mathcal{N}_3, ℓ_P , and the generator ℓ_Q through Q. Varying ℓ_P and ℓ , we get all the 5-spaces that contain β and contain 1 or 2 generators of \mathcal{V}_2^5 . That is, each 5-space containing β and 1 or 2 generators of \mathcal{V}_2^5 and meet α in an exterior line of C. Hence, by Lemma 4.3, none of the 5-spaces about β contain a 4-dim nrc of \mathcal{V}_2^5 .

Lemma 4.6. (1) The number of 4-dim nrcs contained in \mathcal{V}_2^5 is $q^4 - q^2$.

(2) The number of 5-spaces that meet \mathcal{V}_2^5 in a 4-dim nrc and one generator is $q^5 + q^4 - q^3 - q^2$.

Proof. Without loss of generality, position \mathcal{V}_2^5 as described in Corollary 3.3. That is, let S be a regular 2-spread in a 5-space Σ_{∞} , let the conic directrix of \mathcal{V}_2^5 lie in a plane $\alpha \in S$, and let $\mathbb{S} \subset S$ be the splash of \mathcal{V}_2^5 . Straightforward counting shows that a 5-space distinct from Σ_{∞} contains a unique spread plane. If this plane is in the splash S, then by Lemma 4.5, the 5-space does not contain a 4-dim nrc of \mathcal{V}_2^5 . So a 5-space containing a 4-dim nrc of \mathcal{V}_2^5 contains a unique plane of $\mathcal{S} \setminus \mathbb{S}$. Consider a plane $\gamma \in S \setminus S$. Let $P \in C$, let ℓ_P be the generator of \mathcal{V}_2^5 through P, and consider the 4-space $\Pi_4 = \langle \gamma, \ell_P \rangle$. Suppose first that Π_4 contains two generators of \mathcal{V}_2^5 . Then there is a 5-space Π_5 containing γ and two generators. By Lemma 2.7, Π_5 contains either C or a twisted cubic of \mathcal{V}_2^5 . A 5-space distinct from Σ_∞ cannot contain two planes of S, so Π_5 does not contain C. Moreover, by Corollary 3.3, Π_5 does not contain a twisted cubic of \mathcal{V}_2^5 . Hence Π_4 contains exactly one generator of \mathcal{V}_2^5 . If every generator of \mathcal{V}_2^5 contained at least one point of Π_4 , then the intersection of Π_4 with \mathcal{V}_2^5 contains at least ℓ_P and q further points, one on each generator. By Lemma 2.7 and Corollary 2.8, the only possibility is that $\Pi_4 \cap \mathcal{V}_2^5$ contains a twisted cubic, which is not possible by Corollary 3.3. Hence there is at least one generator which is disjoint from Π_4 ; denote this ℓ_Q . Label the points of ℓ_Q by X_0, \ldots, X_q . Then the q + 1 5-spaces containing Π_4 are $\Sigma_i = \langle \gamma, \ell_P, X_i \rangle$. For each i = 0, ..., q, the intersection of Σ_i with \mathcal{V}_2^5 contains the generator ℓ_P and the point X_i . By Corollary 3.3, Σ_i does not contain a twisted cubic of \mathcal{V}_2^5 . Hence, by Lemma 2.7, $\Sigma_i \cap \mathcal{V}_2^5$ is ℓ_P and a 4-dim nrc.

That is, there are $(q + 1)^2$ 5-spaces containing γ and one generator of \mathcal{V}_2^5 . Each contains a 4-dim nrc of \mathcal{V}_2^5 . Further, if Π_5 is a 5-space containing γ and zero generators of \mathcal{V}_2^5 , then by Lemma 4.3, Π_5 does not contain a 4-dim nrc of \mathcal{V}_2^5 . Hence, as there are $q^3 - q^2$ choices for γ , there are

$$(q+1)^2 \times (q^3 - q^2) = q^5 + q^4 - q^3 - q^2$$

5-spaces that meet \mathcal{V}_2^5 in one generator and a 4-dim nrc. By Lemma 4.3, every 4-dim nrc in \mathcal{V}_2^5 lies in q + 1 such 5-spaces. Hence the number of 4-dim nrcs contained in \mathcal{V}_2^5 is $(q^5 + q^4 - q^3 - q^2)/(q + 1)$ as required.

We now count the number of 5-dim nrcs contained in \mathcal{V}_2^5 .

Lemma 4.7. The number of 5-spaces meeting \mathcal{V}_2^5 in a 5-dim nrc is $q^6 - q^4$.

Proof. We show that the number of 5-spaces meeting \mathcal{V}_2^5 in a 5-dim nrc is $q^6 - q^4$ by counting in two ways the number x of incident pairs (A, Π_5) where A is a point of \mathcal{V}_2^5 and Π_5 is a 5-space containing A. The number of ways to choose a point A of \mathcal{V}_2^5 is $(q+1)^2$. The point A lies in $q^5 + q^4 + q^3 + q^2 + q + 1$ 5-spaces. So

$$x = (q+1)^2 \times (q^5 + q^4 + q^3 + q^2 + q + 1) = q^7 + 3q^6 + 4q^5 + 4q^4 + 4q^3 + 4q^2 + 3q + 1.$$

Alternatively, we count the 5-spaces first; there are several possibilities for Π_5 . By Lemma 2.7, $\Pi_5 \cap \mathcal{V}_2^5$ is either empty, or contains an *r*-dim nrc for some $r \in \{2, ..., 5\}$. Let n_r be the number of pairs (A, Π_5) with $A \in \mathcal{V}_2^5 \cap \Pi_5$ and Π_5 containing an *r*-dim nrc of \mathcal{V}_2^5 . Note that

$$x = n_2 + n_3 + n_4 + n_5. \tag{1}$$

We now calculate n_2 , n_3 , and n_4 , and then use (1) to determine the number of 5-spaces meeting V_2^5 in a 5-dim nrc.

For n_2 , consider a 5-space Π_5 that contains the conic directrix C, so by Lemma 4.1, Π_5 contains 0, 1, 2, or 3 generators of \mathcal{V}_2^5 , and the number of 5-spaces meeting \mathcal{V}_2^5 in exactly the conic directrix and *i* generators is r_i . In this case the number of ways to pick a point of $\Pi_5 \cap \mathcal{V}_2^5$ is iq + q + 1. Hence the total number of pairs (A, Π_5) with Π_5 containing the conic directrix is

$$n_2 = \sum_{i=0}^{3} r_i (iq + q + 1) = 2q^4 + 4q^3 + 4q^2 + 3q + 1.$$

For n_3 , consider a 5-space Π_5 that contains a twisted cubic. Then by Lemma 4.2, Π_5 contains 0, 1, or 2 generators of \mathcal{V}_2^5 , and the number of 5-spaces meeting \mathcal{V}_2^5 in a given twisted cubic and *i* generators is s_i . In this case the number of ways to pick A in $\mathcal{V}_2^5 \cap \Pi_5$ is iq + q + 1. Hence the number of pairs (A, Π_5) with Π_5 containing a twisted cubic of \mathcal{V}_2^5 is

$$n_3 = q^2 \sum_{i=0}^2 s_i (iq + q + 1) = 2q^5 + 4q^4 + 3q^3 + q^2.$$

For n_4 , consider a 5-space Π_5 that contains a 4-dim nrc of \mathcal{V}_2^5 . By Lemma 4.3, Π_5 contains 1 generator of \mathcal{V}_2^5 . By Lemma 4.6, the number of 5-spaces meeting \mathcal{V}_2^5 in exactly a 4-dim nrc and one generator is $q^5 + q^4 - q^3 - q^2$. The number of ways to pick A in $\mathcal{V}_2^5 \cap \Pi_5$ is 2q + 1. So

$$n_4 = (q^5 + q^4 - q^3 - q^2) \times (2q + 1) = 2q^6 + 3q^5 - q^4 - 3q^3 - q^2.$$

Finally, denote the number of 5-spaces containing a 5-dim nrc of \mathcal{V}_2^5 by y. Then the number of pairs (A, Π_5) with Π_5 containing a 5-dim nrc of \mathcal{V}_2^5 is

$$n_5 = y \times (q+1).$$

Substituting the calculated values for x, n_2 , n_3 , n_4 , n_5 into (1) and rearranging gives $y = q^6 - q^4$ as required.

Summarising the preceding lemmas gives the following theorem describing \mathcal{V}_2^5 .

Theorem 4.8. Let \mathcal{V}_2^5 be the ruled quintic surface in PG(6, q), $q \ge 6$.

(1) \mathcal{V}_2^5 contains exactly

q+1	lines,
1	nondegenerate conic,
q^2	twisted cubics,
$q^4 - q^2$	4-dim nrcs,
$q^6 - q^4$	5-dim nrcs.

(2) A 5-space meets \mathcal{V}_2^5 in one of the following configurations:

number of 5-spaces	meeting \mathcal{V}_2^5 in the configuration
$q^{6} - q^{4}$	5-dim nrc,
$q^5 + q^4 - q^3 - q^2$	4-dim nrc and 1 generator,
$(q^4 - q^3)/2$	twisted cubic,
$q^3 + q^2$	twisted cubic and 1 generator,
$(q^4 + q^3)/2$	twisted cubic and 2 generators,
$(q^3 - q)/3$	conic,
$q^3/2 + q/2 + 1$	conic and 1 generator,
$q^2 + q$	conic and 2 generators,
$(q^3 - q)/6$	conic and 3 generators.

5. The Bruck-Bose spread and 5-spaces

Let S be a regular 2-spread in a 5-space Σ_{∞} in PG(6, q), and position \mathcal{V}_2^5 so that it corresponds to a tangent \mathbb{F}_q -subplane of PG(2, q^3). So \mathcal{V}_2^5 has splash $\mathbb{S} \subset S$, the conic directrix C lies in a plane $\alpha \in \mathbb{S}$, and each of the q^2 3-spaces containing a twisted cubic directrix of \mathcal{V}_2^5 meets Σ_{∞} in a distinct plane of $\mathbb{S} \setminus \alpha$. In Corollary 3.4, we looked at how 3-spaces containing a plane of S meet \mathcal{V}_2^5 . In Lemma 4.5, we looked at how 4-spaces containing a plane of S meet \mathcal{V}_2^5 . Next we look at how 5-spaces containing a plane of S meet \mathcal{V}_2^5 . Note that straightforward counting shows that a 5-space distinct from Σ_{∞} contains a unique plane π of S, and meets every other plane of S in a line. If $\pi = \alpha$, then Lemma 4.1 describes the possible intersections with \mathcal{V}_2^5 . The next theorem describes the possible intersections with \mathcal{V}_2^5 for the remaining cases $\pi \in \mathbb{S} \setminus \alpha$ and $\pi \in S \setminus \mathbb{S}$.

Theorem 5.1. Position \mathcal{V}_2^5 as in Corollary 3.3, so S is a regular 2-spread in a hyperplane Σ_{∞} , the conic directrix C lies in a plane $\alpha \in S$, and \mathcal{V}_2^5 has splash $\mathbb{S} \subset S$. Let ℓ be a line of α with $|\ell \cap C| = i$ and let $\pi \in S$, $\pi \neq \alpha$. Then the q 5-spaces containing π , ℓ and distinct from Σ_{∞} meet \mathcal{V}_2^5 as follows.

(1) If $\pi \in \mathbb{S} \setminus \alpha$, then q - 1 meet \mathcal{V}_2^5 in a 5-dim nrc, and 1 meets \mathcal{V}_2^5 in a twisted cubic and i generators.

SUSAN G. BARWICK

(2) If $\pi \in S \setminus S$, then q - i meet V_2^5 in a 5-dim nrc, and i meet V_2^5 in a 4-dim nrc and 1 generator.

Proof. By [Barwick and Jackson 2012], the group of collineations of PG(6, q) fixing S and \mathcal{V}_2^5 is transitive on the planes of $\mathbb{S} \setminus \alpha$ and on the planes of $S \setminus \mathbb{S}$. As this group fixes the conic directrix C, it is transitive on the lines of α tangent to C, the lines of α secant to C, and the lines of α exterior to C. So without loss of generality let ℓ_0 be a line of α exterior to C, let ℓ_1 be a line of α tangent to C, let ℓ_2 be a line of α secant to C, let β be a plane in $\mathbb{S} \setminus \alpha$, and let γ be a plane of $S \setminus \mathbb{S}$. For i = 0, 1, 2, label the 4-spaces $\Sigma_{4,i} = \langle \beta, \ell_i \rangle$ and $\Pi_{4,i} = \langle \gamma, \ell_i \rangle$. By Corollary 3.4, as $\beta \in \mathbb{S} \setminus \alpha$, there is a unique twisted cubic of \mathcal{V}_2^5 that lies in a 3-space about β . Denote this 3-space by Π_3 . Hence for i = 0, 1, 2, there is a unique 5-space containing $\Sigma_{4,i}$ whose intersection with \mathcal{V}_2^5 contains a twisted cubic, namely the 5-space $\langle \Pi_3, \ell_i \rangle$.

First consider the line ℓ_0 which is exterior to C. A 5-space meeting α in ℓ_0 contains 0 points of C, and so contains 0 generators of \mathcal{V}_2^5 . The 4-space $\Sigma_{4,0} = \langle \beta, \ell_0 \rangle$ lies in q 5-spaces distinct from Σ_{∞} , each containing 0 generators of \mathcal{V}_2^5 . Exactly one of these 5-spaces, namely $\langle \Pi_3, \ell_0 \rangle$, contains a twisted cubic of \mathcal{V}_2^5 . The remaining q - 1 5-spaces about $\Sigma_{4,0}$ contain 0 generators, and do not contain a conic or twisted cubic of \mathcal{V}_2^5 , so by Theorem 4.8, they meet \mathcal{V}_2^5 in a 5-dim nrc, proving (1) for i = 0. For (2), let $\Pi_5 \neq \Sigma_{\infty}$ be any 5-space containing $\Pi_{4,0} = \langle \gamma, \ell_0 \rangle$. As $\gamma \notin \mathbb{S}$, by Corollary 3.3, Π_5 cannot contain a twisted cubic of \mathcal{V}_2^5 . As Π_5 contains 0 generator lines of \mathcal{V}_2^5 and does not contain a conic or twisted cubic of \mathcal{V}_2^5 , by Theorem 4.8, Π_5 meets \mathcal{V}_2^5 in a 5-dim nrc. That is, the q 5-spaces (distinct from Σ_{∞}) containing $\Pi_{4,0}$ meet \mathcal{V}_2^5 in a 5-dim nrc, proving (2) for i = 0.

Next consider the line ℓ_1 which is tangent to C. Let $P = \ell_1 \cap C$ and denote the generator of \mathcal{V}_2^5 through P by ℓ_P . A 5-space meeting α in a tangent line contains 1 point of C, and so contains at most one generator of \mathcal{V}_2^5 . So exactly one 5-space contains $\Sigma_{4,1}$ and a generator, namely the 5-space $\langle \Sigma_{4,1}, \ell_P \rangle$. Consider the 5-space $\langle \Pi_3, \ell_1 \rangle$. It contains P and a twisted cubic of \mathcal{V}_2^5 , which by Corollary 4.4 is disjoint from α . Hence $\langle \Pi_3, \ell_1 \rangle$ contains the generator ℓ_P . That is, $\langle \Pi_3, \ell_1 \rangle$ contains β , ℓ_1, ℓ_P and so $\langle \Pi_3, \ell_1 \rangle = \langle \Sigma_{4,1}, \ell_P \rangle$. That is, the intersection of $\langle \Sigma_{4,1}, \ell_P \rangle$ with \mathcal{V}_2^5 is a twisted cubic and one generator. Let $\Pi_5 \neq \Sigma_\infty$ be one of the remaining q-1 5-spaces (distinct from Σ_{∞}) that contains $\Sigma_{4,1}$, so Π_5 contains 0 generators of \mathcal{V}_2^5 and does not contain a conic or twisted cubic of \mathcal{V}_2^5 . So by Theorem 4.8, Π_5 meets \mathcal{V}_2^5 in a 5-dim nrc, proving (1) for i = 1. For (2), we consider $\Pi_{4,1} = \langle \gamma, \ell_1 \rangle$. By Corollary 3.3, as $\gamma \notin S$, no 5-space containing $\Pi_{4,1}$ contains a twisted cubic of \mathcal{V}_2^5 . The 5-space $\langle \Pi_{4,1}, \ell_P \rangle$ contains one generator of \mathcal{V}_2^5 , so by Theorem 4.8, it meets \mathcal{V}_2^5 in exactly a 4-dim nrc and the generator ℓ_P . Let $\Pi_5 \neq \Sigma_{\infty}$ be one of the remaining q - 1 5-spaces containing $\Pi_{4,1}$. Then Π_5 contains 0 generators of \mathcal{V}_2^5 . So by Theorem 4.8, Π_5 meets \mathcal{V}_2^5 in a 5-dim nrc, proving (2) for i = 1.

40

Finally, consider the line ℓ_2 which is secant to C. Let $C \cap \ell_2 = \{P, Q\}$ and let ℓ_P, ℓ_Q be the generators of \mathcal{V}_2^5 through P, Q, respectively. The intersection of the 5-space $\langle \Pi_3, \ell_2 \rangle$ and \mathcal{V}_2^5 contains a twisted cubic, and P and Q. By Corollary 4.4, this twisted cubic is disjoint from α , so $\langle \Pi_3, \ell_2 \rangle$ contains the two generators ℓ_P, ℓ_Q . Thus $\langle \Pi_3, \ell_2 \rangle = \langle \Sigma_{4,2}, \ell_P \rangle = \langle \Sigma_{4,2}, \ell_Q \rangle = \langle \Sigma_{4,2}, \ell_P, \ell_Q \rangle$. The remaining q - 1 5-spaces (distinct from Σ_{∞}) about $\Sigma_{4,2}$ contain 0 generators and two points of C. By Lemma 4.3 they cannot contain a 4-dim nrc of \mathcal{V}_2^5 . So by Theorem 4.8, they meet \mathcal{V}_2^5 in a 5-dim nrc, proving (1) for i = 2. For (2), let $\Pi_5 \neq \Sigma_{\infty}$ be a 5-space containing $\Pi_{4,2} = \langle \gamma, \ell_2 \rangle$. By Corollary 3.3, Π_5 does not contain a twisted cubic of \mathcal{V}_2^5 , as $\gamma \notin \mathbb{S}$. So by Theorem 4.8, Π_5 contains at most one generator of \mathcal{V}_2^5 . Hence $\langle \Pi_{4,2}, \ell_P \rangle, \langle \Pi_{4,2}, \ell_Q \rangle$ are distinct 5-spaces about $\Pi_{4,2}$, and by Theorem 4.8, they each meet \mathcal{V}_2^5 in a 4-dim nrc and one generator. Let $\Sigma_5 \neq \Sigma_{\infty}$ be one of the remaining q - 2 5-spaces about $\Pi_{4,2}$. Then Σ_5 contains 0 generators of \mathcal{V}_2^5 , and so by Theorem 4.8, meets \mathcal{V}_2^5 in a 5-dim nrc, proving (2) for i = 2.

References

- [André 1954] J. André, "Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe", *Math.* Z. **60** (1954), 156–186. MR Zbl
- [Barwick and Jackson 2012] S. G. Barwick and W.-A. Jackson, "Sublines and subplanes of PG(2, q^3) in the Bruck–Bose representation in PG(6, q)", *Finite Fields Appl.* **18**:1 (2012), 93–107. MR Zbl
- [Barwick and Jackson 2014] S. G. Barwick and W.-A. Jackson, "A characterisation of tangent subplanes of PG(2, q^3)", *Des. Codes Cryptogr.* **71**:3 (2014), 541–545. MR Zbl
- [Bruck and Bose 1964] R. H. Bruck and R. C. Bose, "The construction of translation planes from projective spaces", *J. Algebra* **1** (1964), 85–102. MR Zbl
- [Bruck and Bose 1966] R. H. Bruck and R. C. Bose, "Linear representations of projective planes in projective spaces", *J. Algebra* **4** (1966), 117–172. MR Zbl
- [Hirschfeld and Thas 1991] J. W. P. Hirschfeld and J. A. Thas, *General Galois geometries*, Oxford University Press, 1991. MR Zbl
- [Semple and Roth 1949] J. G. Semple and L. Roth, *Introduction to algebraic geometry*, Oxford University Press, 1949. MR Zbl
- [Vincenti 1983] R. Vincenti, "A survey on varieties of PG(4, q) and Baer subplanes of translation planes", pp. 775–779 in *Combinatorics '81* (Rome, 1981), edited by A. Barlotti et al., North-Holland Math. Stud. **78**, North-Holland, Amsterdam, 1983. MR Zbl

Received 15 Sep 2016.

SUSAN G. BARWICK:

susan.barwick@adelaide.edu.au School of Mathematical Sciences, University of Adelaide, Adelaide, Australia

Innovations in Incidence Geometry msp.org/iig

MANAGING EDITOR

Tom De Medts	Ghent University
	tom.demedts@ugent.be
Linus Kramer	Universität Münster
	linus.kramer@wwu.de
Klaus Metsch	Justus-Liebig Universität Gießen
	klaus.metsch@math.uni-giessen.de
Bernhard Mühlherr	Justus-Liebig Universität Gießen
	bernhard.m.muehlherr@math.uni-giessen.de
Joseph A. Thas	Ghent University
	thas.joseph@gmail.com
Koen Thas	Ghent University
	koen.thas@gmail.com
Hendrik Van Maldeghem	Ghent University
	hendrik.vanmaldeghem@ugent.be

HONORARY EDITORS

Jacques Tits Ernest E. Shult †

EDITORS

Peter Abramenko	University of Virginia
Francis Buekenhout	Université Libre de Bruxelles
Philippe Cara	Vrije Universiteit Brussel
Antonio Cossidente	Università della Basilicata
Hans Cuypers	Eindhoven University of Technology
Bart De Bruyn	University of Ghent
Alice Devillers	University of Western Australia
Massimo Giulietti	Università degli Studi di Perugia
James Hirschfeld	University of Sussex
Dimitri Leemans	Université Libre de Bruxelles
Oliver Lorscheid	Instituto Nacional de Matemática Pura e Aplicada (IMPA)
Guglielmo Lunardon	Università di Napoli "Federico II"
Alessandro Montinaro	Università di Salento
James Parkinson	University of Sydney
Antonio Pasini	Università di Siena (emeritus)
Valentina Pepe	Università di Roma "La Sapienza"
Bertrand Rémy	École Polytechnique
Tamás Szonyi	ELTE Eötvös Loránd University, Budapest

PRODUCTION

Silvio Levy (Scientific Editor) production@msp.org

See inside back cover or msp.org/iig for submission instructions.

The subscription price for 2019 is US \$275/year for the electronic version, and \$325/year (+\$20, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial (ISSN pending) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

IIG peer review and production are managed by EditFlow[®] from MSP.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing http://msp.org/ © 2019 Mathematical Sciences Publishers

Innovation in Incidence Geometry

VOI. 17 NO. 1	2019
The exterior splash in $PG(6, q)$: transversals	1
SUSAN G. BARWICK and WEN-AI JACKSON	
Ruled quintic surfaces in $PG(6, q)$	25
Susan G. Barwick	
A characterization of Clifford parallelism by automorphisms	43
RAINER LÖWEN	
Generalized quadrangles, Laguerre planes and shift planes of odd	47
order	
GÜNTER F. STEINKE and MARKUS STROPPEL	
A new family of 2-dimensional Laguerre planes that admit	53
$PSL_2(\mathbb{R}) \times \mathbb{R}$ as a group of automorphisms	
Günter F. Steinke	

