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We look at a scroll of PG(6, q) that uses a projectivity to rule a conic and a
twisted cubic. We show this scroll is a ruled quintic surface V5

2 , and study its
geometric properties. The motivation in studying this scroll lies in its relation-
ship with an Fq -subplane of PG(2, q3) via the Bruck–Bose representation.

1. Introduction

In this article we consider a scroll of PG(6, q) that rules a conic and a twisted
cubic according to a projectivity. The motivation in studying this scroll lies in its
relationship with an Fq-subplane of PG(2, q3) via the Bruck–Bose representation
as described in Section 3. In PG(6, q), let C be a nondegenerate conic in a plane α;
C is called the conic directrix. Let N3 be a twisted cubic in a 3-space 53 with
α ∩53 =∅; N3 is called the twisted cubic directrix. Let φ be a projectivity from
the points of C to the points of N3. By this we mean that if we write the points of C
and N3 using a nonhomogeneous parameter, so C= {Cθ = (1, θ, θ2) | θ ∈ Fq∪{∞}}

and N3 = {Nε = (1, ε, ε2, ε3) | ε ∈ Fq ∪{∞}}, then φ ∈ PGL(2, q) is a projectivity
mapping (1, θ) to (1, ε). Let V be the set of points of PG(6, q) lying on the q + 1
lines joining each point of C to the corresponding point (under φ) of N3. These
q + 1 lines are called the generators of V . As the two subspaces α and 53 are
disjoint, V is not contained in a 5-space. We note that this construction generalises
the ruled cubic surface V3

2 in PG(4, q), a variety that has been well studied; see
[Vincenti 1983].

We work with normal rational curves in PG(6, q). Suppose that N is a normal
rational curve that generates an i-dimensional space. Then we call N an i -dim
nrc, and often use the notation Ni . See [Hirschfeld and Thas 1991] for details on
normal rational curves. As we will be looking at 5-dim nrcs contained in V , we
assume q ≥ 6 throughout.
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This article studies the geometric structure of V . In Section 2, we show that V
is a variety V5

2 of order 5 and dimension 2, and that all such scrolls are projectively
equivalent. Further, we show that V contains exactly q + 1 lines and one nondegen-
erate conic. In Section 3, we describe the Bruck–Bose representation of PG(2, q3)

in PG(6, q), and discuss how V corresponds to an Fq-subplane of PG(2, q3). We
use the Bruck–Bose setting to show that V contains exactly q2 twisted cubics, and
that each can act as a directrix of V . In Section 4, we count the number of 4- and
5-dim nrcs contained in V . Further, we determine how 5-spaces meet V , and count
the number of 5-spaces of each intersection type. The main result is Theorem 4.8.
In Section 5, we determine how 5-spaces meet V in relation to the regular 2-spread
in the Bruck–Bose setting.

2. Simple properties of V

Theorem 2.1. Let V be a scroll of PG(6, q) that rules a conic and a twisted cubic
according to a projectivity. Then V is a variety of dimension 2 and order 5, denoted
V5

2 and called a ruled quintic surface. Further, any two ruled quintic surfaces are
projectively equivalent.

Proof. Let V be a scroll of PG(6, q) with conic directrix C in a plane α, twisted
cubic directrix N3 in a 3-space 53, and ruled by a projectivity as described in
Section 1. The group of collineations of PG(6, q) is transitive on planes, and
transitive on 3-spaces. Further, all nondegenerate conics in a projective plane are
projectively equivalent, and all twisted cubics in a 3-space are projectively equiva-
lent. Hence, without loss of generality, we can coordinatise V as follows.

Let α be the plane which is the intersection of the four hyperplanes x0 = 0,
x1 = 0, x2 = 0, and x3 = 0. Let C be the nondegenerate conic in α with points
Cθ = (0, 0, 0, 0, 1, θ, θ2) for θ ∈ Fq ∪ {∞}. Note that the points of C are the exact
intersection of α with the quadric of equation x2

5 = x4x6. Let 53 be the 3-space
which is the intersection of the three hyperplanes x4= 0, x5= 0, and x6= 0. Let N3

be the twisted cubic in 53 with points Nθ = (1, θ, θ2, θ3, 0, 0, 0) for θ ∈ Fq ∪{∞}.
Note that the points of N3 are the exact intersection of 53 with the three quadrics
with equations x2

1 = x0x2, x2
2 = x1x3, and x0x3 = x1x2. A projectivity in PGL(2, q)

is uniquely determined by the image of three points, so without loss of generality,
let V have generator lines `θ = {Vθ,t = Nθ + tCθ , t ∈ Fq ∪ {∞}} for θ ∈ Fq ∪ {∞}.
That is, Vθ,t = (1, θ, θ2, θ3, t, tθ, tθ2). Equivalently, V consists of the points

Vx,y,z = (x3, x2 y, xy2, y3, zx2, zxy, zy2)

for x, y ∈ Fq not both 0 and z ∈ Fq ∪ {∞}. It is straightforward to verify that the
pointset of V is the exact intersection of the following ten quadrics:
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x0x5 = x1x4, x0x6 = x1x5 = x2x4, x1x6 = x2x5 = x3x4, x2x6 = x3x5,

x2
1 = x0x2, x2

2 = x1x3, x2
5 = x4x6, x0x3 = x1x2.

Hence the points of V form a variety.
We follow [Semple and Roth 1949] to calculate the dimension and order of V .

The following map defines an algebraic one-to-one correspondence between the
plane π of PG(3, q) with points (x, y, z, 0), x, y, z ∈ Fq not all 0, and the points
of V:

σ : π→ V, (x, y, z, 0) 7→ (x3, x2 y, xy2, y3, x2z, xyz, y2z).

Thus V is an absolutely irreducible variety of dimension 2 and so we are justified
in calling it a surface. Now consider a generic 4-space of PG(6, q) with equation
given by the two hyperplanes61 :a0x0+· · ·+a6x6=0 and62 :b0x0+· · ·+b6x6=0
for ai , bi ∈ Fq . The point Vx,y,z = (x3, x2 y, xy2, y3, x2z, xyz, y2z) lies on 61 if
a0x3
+a1x2 y+a2xy2

+a3 y3
+a4x2z+a5xyz+a6 y2z = 0. This corresponds to a

cubic K in the plane π . Moreover, K contains the point P = (0, 0, 1, 0), and P is
a double point of K. Similarly the set of points Vx,y,z ∈62 corresponds to a cubic
in π with a double point (0, 0, 1, 0). Two cubics in a plane meet generically in
nine points. As (0, 0, 1, 0) lies in the kernel of σ , in PG(6, q) the 4-space 61 ∩62

meets V in five points, and so V has order 5. �

Theorem 2.2. Let V5
2 be a ruled quintic surface in PG(6, q).

(1) No two generators of V5
2 lie in a plane.

(2) No three generators of V5
2 lie in a 4-space.

(3) No four generators of V5
2 lie in a 5-space.

Proof. Let V5
2 be a ruled quintic surface of PG(6, q) with conic directrix C in

a plane α, and twisted cubic directrix N3 lying in a 3-space 53. Suppose two
generator lines `0, `1 of V5

2 lie in a plane. Let m be the line in α joining the
distinct points `0 ∩ α, `1 ∩ α. Let m′ be the line in 53 joining the distinct points
`0 ∩53, `1 ∩53. The lines m,m′ lie in the plane 〈`0, `1〉 and so meet in a point,
contradicting disjointness of α and53. Hence the generator lines of V5

2 are pairwise
skew.

For (2), suppose a 4-space 54 contains three distinct generators of V5
2 . As dis-

tinct generators meet C in distinct points, 54 contains three distinct points of C,
and so contains the plane α. Further, distinct generators meet N3 in distinct points,
hence 54 contains three points of N3, and so 54 ∩53 has dimension at least 2.
Hence 〈54,53〉 has dimension at most 4+ 3− 2= 5. However, V5

2 ⊆ 〈54,53〉, a
contradiction as V5

2 is not contained in a 5-space.
For (3), suppose a 5-space 55 contains four distinct generators of V5

2 . Distinct
generators meet53 in distinct points of N3, so55 contains four points of N3 which
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do not lie in a plane. Hence 55 contains 53. Similarly 55 contains α, and so 55

contains V5
2 , a contradiction as V5

2 is not contained in a 5-space. �

Corollary 2.3. No two generators of V5
2 lie in a 3-space containing α.

Proof. Suppose a 3-space 53 contained α and two generators of V5
2 . Let P be a

point of V5
2 not in 53 and ` the generator of V5

2 through P . Then 54 = 〈53, P〉
contains two distinct points of `, namely P and `∩ C, and so 54 contains `. That
is, 54 is a 4-space containing three generators, contradicting Theorem 2.2. �

We now show that the only lines on V5
2 are the generators, and the only non-

degenerate conic on V5
2 is the conic directrix. We show later in Theorem 3.2 that

there are exactly q2 twisted cubics on V5
2 , and that each is a directrix.

Theorem 2.4. Let V5
2 be a ruled quintic surface in PG(6, q). A line of PG(6, q)

meets V5
2 in 0, 1, 2, or q+1 points. Further, V5

2 contains exactly q+1 lines, namely
the generator lines.

Proof. Let V5
2 be a ruled quintic surface of PG(6, q) with conic directrix C lying

in a plane α, and twisted cubic directrix N3 lying in the 3-space 53. Let m be a
line of PG(6, q) that is not a generator of V5

2 , and suppose m meets V5
2 in three

points P, Q, R. As m is not a generator of V5
2 , the points P, Q, R lie on distinct

generator lines denoted `P , `Q, `R , respectively. As C is a nondegenerate conic, m
is not a line of α and so at most one of the points P, Q, R lie in C. Suppose firstly
that P, Q, R /∈ C. Then 〈α,m〉 is a 3- or 4-space that contains the three generators
`P , `Q, `R , contradicting Theorem 2.2. Now suppose P ∈ C and Q, R /∈ C. Then
63=〈α,m〉 is a 3-space which contains the two generator lines `Q, `R . So 63∩53

contains the distinct points `R∩N3, `Q∩N3, and so has dimension at least 1. Hence
〈63,53〉 has dimension at most 3+ 3− 1= 5, a contradiction as V5

2 ⊂ 〈63,53〉,
but V5

2 is not contained in a 5-space. Hence a line of PG(6, q) is either a generator
line of V5

2 , or meets V5
2 in 0, 1, or 2 points. �

Theorem 2.5. The ruled quintic surface V5
2 contains exactly one nondegenerate

conic.

Proof. Let V5
2 be a ruled quintic surface with conic directrix C in a plane α. Suppose

V5
2 contains another nondegenerate conic C′ in a plane α′ 6= α. If C′ contains two

points on a generator ` of V5
2 , then α′∩V5

2 contains C′ and `. However, by the proof
of Theorem 2.1, V5

2 is the intersection of quadrics, and the configuration C′ ∪ ` is
not contained in any planar quadric. Hence C′ contains exactly one point on each
generator of V5

2 .
We consider the three cases where α ∩ α′ is either empty, a point, or a line.

Suppose α ∩ α′ = ∅. Then 〈α, α′〉 is a 5-space that contains C and C′, and so
contains two distinct points on each generator of V5

2 . Hence 〈α, α′〉 contains each
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generator of V5
2 and so contains V5

2 , a contradiction as V5
2 is not contained in a 5-

space. Suppose α ∩α′ is a point P . Then 〈α, α′〉 is a 4-space that contains at least
q generators of V5

2 , contradicting Theorem 2.2 as q ≥ 6. Finally, suppose α∩α′ is a
line. Then 〈α, α′〉 is a 3-space that contains at least q − 1 generators, contradicting
Theorem 2.2 as q ≥ 6. So V5

2 contains exactly one nondegenerate conic. �

We aim to classify how 5-spaces meet V5
2 , so we begin with a simple description.

Remark 2.6. Let 55 be a 5-space. Then 55 ∩ V5
2 contains a set of q + 1 points,

one on each generator.

Lemma 2.7. A 5-space meets V5
2 in either (a) a 5-dim nrc, (b) a 4-dim nrc and 0

or 1 generators, (c) a 3-dim nrc and 0, 1, or 2 generators, or (d) the conic directrix
and 0, 1, 2, or 3 generators.

Proof. Using properties of varieties (see, for example, [Semple and Roth 1949]) we
have V5

2 ∩V
1
5 = V5

1 , that is, the variety V5
2 meets a 5-space V1

5 in a curve of degree 5.
Denote this curve of PG(6, q) by K. The degree of K can be partitioned as

5= 4+ 1= 3+ 2= 3+ 1+ 1= 2+ 2+ 1= 2+ 1+ 1+ 1= 1+ 1+ 1+ 1+ 1.

By Theorem 2.4, the only lines on V5
2 are the generators. By Theorem 2.2, K

does not contain more than 3 generators. By Remark 2.6, K contains at least one
point on each generator. Hence K is not empty, and is not the union of 1, 2, or 3
generators, so the partition 1+ 1+ 1+ 1+ 1 for the degree of K does not occur.

Suppose that the degree of K is partitioned as either (a) 2+2+1 or (b) 2+1+1+1.
By Remark 2.6, K contains a point on each generator, so K contains an irreducible
conic. By Theorem 2.5, this conic is the conic directrix C of V5

2 , and case (a) does
not occur. Hence K consists of C and 0, 1, 2, or 3 generators of V5

2 .
Suppose that the degree of K is partitioned as 3 + 1 + 1. So K consists of

at most 2 generators, and an irreducible cubic K′. By Remark 2.6, K contains a
point on each generator, so K′ contains a point on at least q − 1 generators. If K′

generates a 3-space, then it is a 3-dim nrc of PG(6, q). If not, K′ is an irreducible
cubic contained in a plane 52. By the proof of Theorem 2.1, K′ is contained in a
quadric, so K′ is not an irreducible planar cubic. Thus K′ is a 3-dim nrc of PG(6, q).
Hence K consists of a 3-dim nrc and 0, 1, or 2 generators of V5

2 .
Suppose that the degree of K is partitioned as 2+3. By Remark 2.6, K contains a

point on each generator. As argued above, K does not contain an irreducible planar
cubic. Suppose K contained both an irreducible conic C and a twisted cubic N3.
Then there is at least one generator ` that meets C and N3 in distinct points. In this
case ` lies in the 5-space and so lies in K, a contradiction. So K is not the union
of an irreducible conic and a twisted cubic.

Suppose that the degree of K is partitioned as 4+ 1. So K consists of at most 1
generator, and an irreducible quartic K′. By Remark 2.6, K contains a point on each
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generator, so K′ contains a point on at least q generators. If K′ generates a 4-space,
then it is a 4-dim nrc of PG(6, q). If not, K′ is an irreducible quartic contained
in a 3-space 53. Let `,m be two generators not in K. Then by Remark 2.6 they
meet K′. So 〈53, `,m〉 has dimension at most 5, and meets V5

2 in an irreducible
quartic and 2 lines, which is a curve of degree 6, a contradiction. Thus K′ is a 4-dim
nrc of PG(6, q). That is, K consists of a 4-dim nrc and 0 or 1 generators of V5

2 .
Suppose the curve K is irreducible. By Remark 2.6, K contains a point on each

generator. So either K is a 5-dim nrc of PG(6, q), or K lies in a 4-space. Suppose
K lies in a 4-space 54, and let ` be a generator. Then 〈54, `〉 has dimension at
most 5 and meets V5

2 in a curve of degree 6, a contradiction. So K is a 5-dim nrc
of PG(6, q). �

Corollary 2.8. Let 5r be an r-space for r = 3, 4, 5 that contains an r-dim nrc
of V5

2 . Then 5r contains 0 generators of V5
2 .

Proof. First suppose r = 3. By Lemma 2.7, a 5-space containing a twisted cubic
N3 of V5

2 contains at most two generators of V5
2 . Hence a 4-space containing N3

contains at most one generator of V5
2 . Hence the 3-space 53 containing N3 contains

no generator of V5
2 .

If r = 4, by Lemma 2.7, a 5-space containing a 4-dim nrc N4 of V5
2 contains

at most one generator of V5
2 . Hence the 4-space 54 containing N4 contains no

generators of V5
2 . If r = 5, then by Lemma 2.7, 55 contains 0 generators of V5

2 . �

Theorem 2.9. Let Nr be an r-dim nrc lying on V5
2 for r = 3, 4, 5. Then Nr contains

exactly one point on each generator of V5
2 .

Proof. Let Nr be an r -dim nrc lying on V5
2 for r = 3, 4, 5, and denote the r -space

containing Nr by 5r . If 5r contained 2 points of a generator of V5
2 , then it contains

the whole generator, so by Corollary 2.8, the q + 1 points of Nr consist of one on
each generator of V5

2 . �

3. V5
2 and Fq-subplanes of PG(2, q3)

To study V5
2 in more detail, we use the linear representation of PG(2, q3) in PG(6, q)

developed independently by André [1954] and Bruck and Bose [1964; 1966]. Let S
be a regular 2-spread of PG(6, q) in a 5-space 6∞. Let I be the incidence structure
with the points of PG(6, q) \6∞ as points, the 3-spaces of PG(6, q) that contain
a plane of S and are not in 6∞ as lines, and inclusion as incidence. Then I is
isomorphic to AG(2, q3). We can uniquely complete I to PG(2, q3), the points on
`∞ correspond to the planes of S. We call this the Bruck–Bose representation of
PG(2, q3) in PG(6, q); see [Barwick and Jackson 2012] for a detailed discussion
on this representation. Of particular interest is the relationship between the ruled
quintic surface of PG(6, q) and the Fq -subplanes of PG(2, q3).
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To describe this relationship, we need to use the cubic extension of PG(6, q)
to PG(6, q3). The regular 2-spread S has a unique set of three conjugate transversal
lines in this cubic extension, denoted g, gq , gq2

, which meet each extended plane
of S; for more details on regular spreads and transversals, see [Hirschfeld and
Thas 1991, Section 25.6]. An r-space 5r of PG(6, q) lies in a unique r-space
of PG(6, q3), denoted 5?

r . An nrc N of PG(6, q) lies in a unique nrc of PG(6, q3),
denoted N ?. Let V5

2 be a ruled quintic surface with conic directrix C, twisted cubic
directrix N3, and associated projectivity φ. Then we can extend V5

2 to a unique ruled
quintic surface V5

2
? of PG(6, q3) with conic directrix C?, twisted cubic directrix N ?

3 ,
and the same associated projectivity, that is, extend φ from acting on PG(1, q) to
acting on PG(1, q3). We need the following characterisations.

Result 3.1 [Barwick and Jackson 2012; 2014]. Let S be a regular 2-spread in a
5-space 6∞ in PG(6, q) and consider the Bruck–Bose plane PG(2, q3).

(1) An Fq -subline of PG(2, q3) that meets `∞ in a point corresponds in PG(6, q)
to a line not in 6∞.

(2) An Fq-subline of PG(2, q3) that is disjoint from `∞ corresponds in PG(6, q)
to a twisted cubic N3 lying in a 3-space about a plane of S such that the
extension N ?

3 to PG(6, q3) meets each transversal of S in a point.

(3) An Fq-subplane of PG(2, q3) tangent to `∞ at the point T corresponds in
PG(6, q) to a ruled quintic surface V5

2 with conic directrix in the spread plane
corresponding to T such that in the cubic extension PG(6, q3), the transver-
sals g, gq , gq2

of S are generators of V5
2
?.

Moreover, the converse of each is true.

We use this characterisation to show that V5
2 contains exactly q2 twisted cubics.

Theorem 3.2. The ruled quintic surface V5
2 contains exactly q2 twisted cubics, and

each is a directrix of V5
2 .

Proof. By Theorem 2.1, all ruled quintic surfaces are projectively equivalent. So
without loss of generality, we can position a ruled quintic surface so that it cor-
responds to an Fq-subplane of PG(2, q3), which we denote by B. That is, by
Result 3.1, S is a regular 2-spread in a hyperplane 6∞, V5

2 ∩ 6∞ is the conic
directrix C of V5

2 , C lies in a plane of S, and in the cubic extension PG(6, q3), the
transversals g, gq , gq2

of S are generators of V5
2
?.

Let N3 be a twisted cubic contained in V5
2 , and denote the 3-space containing

N3 by 53. As V5
2 ∩6∞ = C, 53 meets 6∞ in a plane; we show this is a plane

of S. In PG(6, q3), V5
2
? is a ruled quintic surface that contains the twisted cu-

bic N ?
3 . Moreover, the transversals g, gq , gq2

of S are generators of V5
2
?. So by

Theorem 2.9, N ?
3 contains one point on each of g, gq , and gq2

. Hence the 3-space
5?

3 contains an extended plane of S, and so 53 meets 6∞ in a plane of S. Hence
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53 ∩ α = ∅. Further, by Theorem 2.9, N3 contains one point on each generator
of V5

2 , and thus N3 is a directrix of V5
2 .

By Result 3.1, N3 corresponds in PG(2, q3) to an Fq-subline of B disjoint
from `∞. Conversely, every Fq-subline of B disjoint from `∞ corresponds to a
twisted cubic on V5

2 . Thus the twisted cubics in V5
2 are in one-to-one correspon-

dence with the Fq-sublines of B that are disjoint from `∞. As there are q2 such
Fq -sublines, there are q2 twisted cubics on V5

2 . �

Suppose we position V5
2 so that it corresponds via the Bruck–Bose representation

to a tangent Fq-subplane B of PG(2, q3). So we have a regular 2-spread S in a
hyperplane 6∞, and the conic directrix of V5

2 lies in a plane α ∈ S. We define
the splash of B to be the set of q2

+ 1 points on `∞ that lie on an extended line
of B. The splash of V5

2 is defined to be the corresponding set of q2
+ 1 planes of S.

We denote the splash of V5
2 by S. Note that α is a plane of S. We show that the

remaining q2 planes of S are related to the q2 twisted cubics of V5
2 .

Corollary 3.3. Let S be a regular 2-spread in a hyperplane 6∞ of PG(6, q). With-
out loss of generality, we can position V5

2 so that it corresponds via the Bruck–Bose
representation to a tangent Fq-subplane of PG(2, q3). Then the conic directrix of
V5

2 lies in a plane α ∈ S, the q2 3-spaces containing a twisted cubic of V5
2 meet 6∞

in distinct planes of S, and these planes together with α form the splash S of V5
2 .

Proof. By Theorem 2.1, all ruled quintic surfaces are projectively equivalent, so
without loss of generality, let V5

2 be positioned so that it corresponds to an Fq-
subplane B of PG(2, q3) which is tangent to `∞. Let b be an Fq-subline of B

disjoint from `∞, so the extension of b meets `∞ in a point R which lies in the
splash of B. By Result 3.1, b corresponds in PG(6, q) to a twisted cubic of V5

2
which lies in a 3-space that meets 6∞ in the plane of S corresponding to the
point R. �

Using this Bruck–Bose setting, we describe the 3-spaces of PG(6, q) that contain
a plane of the regular 2-spread S.

Corollary 3.4. Position V5
2 as in Corollary 3.3, so S is a regular 2-spread in the

hyperplane 6∞, and the conic directrix of V5
2 lies in a plane α contained in the

splash S⊂ S of V5
2 .

(1) Let β ∈ S \ α. Then there exists a unique 3-space containing β that meets
V5

2 in a twisted cubic. The remaining 3-spaces containing β (and not in 6∞)
meet V5

2 in 0 or 1 point.

(2) Let γ ∈ S \S. Then each 3-space containing γ and not in 6∞ meets V5
2 in 0

or 1 point.

Proof. By Corollary 3.3, we can position V5
2 so that it corresponds to an Fq -subplane

B of PG(2, q3) which is tangent to `∞. The 3-spaces that contain a plane of S (and
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do not lie in 6∞) correspond to lines of PG(2, q3). Each point on `∞ not in B

but in the splash of B lies on a unique line that meets B in an Fq-subline. By
Result 3.1, this corresponds to a twisted cubic in V5

2 . The remaining lines meet B
in 0 or 1 point, so the remaining 3-spaces meet V5

2 in 0 or 1 point. �

As V5
2 corresponds to an Fq -subplane, we have the following result.

Theorem 3.5. Let V5
2 be a ruled quintic surface in PG(6, q).

(1) Two twisted cubics on V5
2 meet in a unique point.

(2) Let P, Q be points lying on different generators of V5
2 , and not in the conic

directrix. Then P, Q lie on a unique twisted cubic of V5
2 .

Proof. Without loss of generality, let V5
2 be positioned as described in Corollary 3.3.

So the conic directrix lies in a plane α contained in a regular 2-spread S in 6∞, and
V5

2 corresponds to an Fq-subplane B of PG(2, q3) tangent to `∞. Let N1,N2 be
two twisted cubics contained in V5

2 . By Result 3.1, they correspond in PG(2, q3)

to two Fq-sublines of B not containing B ∩ `∞, and so meet in a unique affine
point P . This corresponds to a unique point P ∈ V5

2 \α lying in both N1 and N2,
proving (1).

For (2), let P, Q be points lying on distinct generators of V5
2 , P, Q /∈ C. If the

line PQ met α, then 〈α, P, Q〉 is a 3-space that contains α and the generators of V5
2

containing P and Q, contradicting Corollary 2.3. Hence the line PQ is skew to α.
In PG(2, q3), P, Q correspond to two affine points in the tangent Fq-subplane B,
so they lie on a unique Fq-subline b of B. By Result 3.1, the generators of V5

2
correspond to the Fq -sublines of B through the point B∩ `∞. As PQ is skew to α,
we have b∩ `∞ =∅. Hence, by Result 3.1, in PG(6, q) the points P, Q lie on a
unique twisted cubic of V5

2 . �

4. Intersection types for 5-spaces meeting V5
2

In this section we determine how 5-spaces meet V5
2 and count the different inter-

section types. A series of lemmas is used to prove the main result which is stated
in Theorem 4.8.

Lemma 4.1. Let V5
2 be a ruled quintic surface of PG(6, q) with conic directrix C.

Of the q3
+ q2
+ q + 1 5-spaces of PG(6, q) containing C, ri of them meet V5

2 in
precisely C and i generators, where

r3 =
q3
− q
6

, r2 = q2
+ q, r1 =

q3

2
+

q
2
+ 1, r0 =

q3
− q
3

.

Proof. Let V5
2 be a ruled quintic surface of PG(6, q) with conic directrix C lying in

a plane α. By Lemma 2.7, a 5-space containing C contains at most three generator
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lines of V5
2 . By Theorem 2.2, three generators of V5

2 lie in a unique 5-space. Hence
there are

r3 =

(
q + 1

3

)
5-spaces that contain three generators of V5

2 . Such a 5-space contains three points
of C, and so contains C and α.

Denote the generator lines of V5
2 by `0, . . . , `q and consider two generators,

`0, `1 say. By Corollary 2.3,64=〈α, `0, `1〉 is a 4-space. By Theorem 2.2, 〈64, `i 〉

for i = 2, . . . , q are distinct 5-spaces. That is, q−1 of the 5-spaces about64 contain
3 generators, and hence the remaining two contain `0, `1 and no further generator
of V5

2 . Hence, by Lemma 2.7, q − 1 of the 5-spaces about 64 meet V5
2 in exactly

C and 3 generators; and the remaining two 5-spaces about 64 meet V5
2 in exactly

C and two generators. There are
(q+1

2

)
choices for 64, and hence the number of

5-spaces that meet V5
2 in precisely C and two generators is

r2 = 2×
(

q + 1
2

)
= (q + 1)q.

Next, let r1 be the number of 5-spaces that meet V5
2 in precisely C and one generator.

We count in two ways ordered pairs (`,55) where ` is a generator of V5
2 , and 55

is a 5-space that contains ` and α, giving

(q + 1)(q2
+ q + 1)= 3r3+ 2r2+ r1.

Hence r1 = q3/2+ q/2+ 1. Finally, the number of 5-spaces containing C and zero
generators is r0 = (q3

+ q2
+ q + 1)− r3− r2− r1 = (q3

− q)/3, as required. �

Lemma 4.2. Let V5
2 be a ruled quintic surface of PG(6, q) and let N3 be a twisted

cubic directrix of V5
2 .

(1) Of the q2
+ q + 1 5-spaces of PG(6, q) containing N3, si of them meet V5

2 in
precisely N3 and i generators, where

s2 =
q2
+ q
2

, s1 = q + 1, s0 =
q2
− q
2

.

(2) The total number of 5-spaces that meet V5
2 in a twisted cubic and i generators

is q2si , for i = 0, 1, 2.

Proof. Let V5
2 be a ruled quintic surface of PG(6, q) with a twisted cubic directrix

N3 lying in the 3-space 53. By Lemma 2.7, a 5-space containing N3 contains at
most two generators of V5

2 , so the number of 5-spaces that contain 53 and exactly
two generator lines is s2 =

(q+1
2

)
. Let ` be a generator of V5

2 and consider the 4-
space 54 = 〈53, `〉. For each generator m 6= `, 〈54,m〉 is a 5-space about 54 that
meets V5

2 in N3, `, and m, and in no further point by Lemma 2.7. This accounts for
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q of the 5-spaces containing 54. Hence the remaining 5-space containing 54 meets
V5

2 in exactly N3 and `. That is, exactly one of the 5-spaces about 54 = 〈53, `〉

meets V5
2 in precisely N3 and `. There are q + 1 choices for the generator `, and

hence s1 = q + 1. Finally s0 = (q2
+ q + 1)− s2− s1 = (q2

− q)/2, as required.
For (2), by Theorem 3.2, V5

2 contains q2 twisted cubics, so the total number of
5-spaces meeting V5

2 in a twisted cubic and i generators is q2si , i = 0, 1, 2. �

The next result looks at properties of 4-dim nrcs contained in V5
2 . In particular,

we show that there are no 5-spaces that meet V5
2 in a 4-dim nrc and 0 generator lines.

Lemma 4.3. Let V5
2 be a ruled quintic surface of PG(6, q) with conic directrix C

in the plane α, and let N4 be a 4-dim nrc contained in V5
2 .

(1) The q + 1 5-spaces containing N4 each contain a distinct generator line of V5
2 .

(2) The 4-space containing N4 meets α in a point P , and either P = C ∩N4 or q
is even and P is the nucleus of C.

Proof. Let V5
2 be a ruled quintic surface in PG(6, q) with conic directrix C lying

in a plane α. Let N4 be a 4-dim nrc contained in V5
2 , so N4 lies in a 4-space,

which we denote 54. By Corollary 2.8, 54 does not contain a generator of V5
2 .

By Lemma 2.7, a 5-space containing N4 can contain at most one generator of V5
2 .

Hence each of the q + 1 5-spaces containing N4 contains a distinct generator. In
particular, if we label the points of C by Q0, . . . , Qq , and the generator through Qi

by `Qi , then the q+1 5-spaces containing N4 are 6i = 〈54, `Qi 〉, for i = 0, . . . , q .
If 54 met the plane α in a line, then 〈54, α〉 is a 5-space whose intersection with

V5
2 contains N4 and C, contradicting Lemma 2.7. Hence 54 meets α in a point P .

There are three possibilities for the point P =54 ∩α, namely P ∈ C, q even and
P the nucleus of C, or q even, P /∈ C, and P not the nucleus of C.

Case 1. Suppose P ∈ C. For i = 0, . . . , q, the 5-space 6i = 〈54, `Qi 〉 meets α in
a line mi . Label C so that P = Q0, so the line m0 is the tangent to C at P , and mi

for i = 1, . . . , q, is the secant line PQi . We now show that P = Q0 is a point of
N4. Let i ∈ {1, . . . , q}. Then by Lemma 2.7, 6i meets V5

2 in precisely N4 ∪ `Qi ,
and 6i ∩ V5

2 ∩ α is the two points P, Qi . As P /∈ `Qi we have P ∈ N4. That is,
P = C ∩N4.

Case 2. Suppose q is even and P =54 ∩α is the nucleus of C. For i = 0, . . . , q,
the 5-space 6i = 〈54, `Qi 〉 meets α in the tangent to C through Qi . In this case,
C ∩N4 =∅.

Case 3. Suppose P =54 ∩ α is not in C, and P is not the nucleus of C. Now P
lies on some secant m = QR of C, for some points Q, R ∈ C. The intersection of
the 5-space 〈54,m〉 with V5

2 contains N4 and two points R, Q of C. As R, Q lie
on distinct generators and are not in N4, this contradicts Lemma 2.7. Hence this
case cannot occur. �
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We can now describe how an nrc of V5
2 meets the conic directrix, and note that

Theorem 5.1 shows that each possibility in (3) below can occur.

Corollary 4.4. Let V5
2 be a ruled quintic surface of PG(6, q) with conic directrix C.

(1) A twisted cubic N3 ⊆ V5
2 contains 0 points of C.

(2) A 4-dim nrc N4 ⊆ V5
2 contains either 1 point of C, or 0 points of C, in which

case q is even and the 4-space containing N4 contains the nucleus of C.

(3) A 5-dim nrc N5 ⊆ V5
2 contains 0, 1, or 2 points of C.

Proof. Let V5
2 be a ruled quintic surface of PG(6, q) with conic directrix C in a

plane α. Let N3 be a twisted cubic of V5
2 , so by Theorem 3.2, N3 is a directrix

of V5
2 , and so is disjoint from α, proving (1). Next let N4 be a 4-dim nrc on V5

2 ,
and let 54 be the 4-space containing N4. By Lemma 4.3, 54 ∩ α is a point P ,
and either P = C ∩N4, or q is even and P is the nucleus of C. Thus, P /∈ V5

2 and
so P /∈ N4, proving (2). Let 55 be a 5-space containing a 5-dim nrc of V5

2 . By
Lemma 2.7, 55 cannot contain α. Hence 55 meets α in a line, and so contains at
most two points of C, proving (3). �

We now use the Bruck–Bose setting to count the 4-dim nrcs contained in V5
2 .

Lemma 4.5. Let S be a regular 2-spread in a 5-space 6∞ in PG(6, q). Position
V5

2 as in Corollary 3.3, so V5
2 has splash S⊂ S. Then a 4- or 5-space about a plane

β ∈ S cannot contain a 4-dim nrc of V5
2 .

Proof. Position V5
2 as described in Corollary 3.3, so S is a regular 2-spread in a

5-space 6∞, the conic directrix of V5
2 lies in a plane α ∈ S, and S ⊂ S denotes

the splash of V5
2 . By Lemma 2.7, a 4-space containing α cannot contain a 4-dim

nrc of V5
2 . Let β ∈ S \ α. Then by Corollary 3.4, β lies in exactly one 3-space

that contains a twisted cubic of V5
2 . Denote these by 53 and N3, respectively. By

Theorem 3.2, N3 is a directrix of V5
2 , and so 53 is disjoint from α. So if `P is a

generator of V5
2 , then54=〈53, `P〉 is a 4-space and54∩α is the point P = `P∩C.

Let ` be a line of α through P and let55=〈53, `〉. If ` is tangent to C, then55∩V5
2

is exactly N3∪`P . If ` is a secant of C, so `∩C = {P, Q}, then 55∩V5
2 consists of

N3, `P , and the generator `Q through Q. Varying `P and `, we get all the 5-spaces
that contain β and contain 1 or 2 generators of V5

2 . That is, each 5-space containing
β and 1 or 2 generators of V5

2 also contains N3. The remaining 5-spaces about β
hence contain 0 generators of V5

2 and meet α in an exterior line of C. Hence, by
Lemma 4.3, none of the 5-spaces about β contain a 4-dim nrc of V5

2 . �

Lemma 4.6. (1) The number of 4-dim nrcs contained in V5
2 is q4

− q2.

(2) The number of 5-spaces that meet V5
2 in a 4-dim nrc and one generator is

q5
+ q4
− q3
− q2.
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Proof. Without loss of generality, position V5
2 as described in Corollary 3.3. That

is, let S be a regular 2-spread in a 5-space 6∞, let the conic directrix of V5
2 lie in a

plane α ∈ S, and let S⊂ S be the splash of V5
2 . Straightforward counting shows that

a 5-space distinct from 6∞ contains a unique spread plane. If this plane is in the
splash S, then by Lemma 4.5, the 5-space does not contain a 4-dim nrc of V5

2 . So a
5-space containing a 4-dim nrc of V5

2 contains a unique plane of S \S. Consider a
plane γ ∈S\S. Let P ∈ C, let `P be the generator of V5

2 through P , and consider the
4-space 54 = 〈γ, `P〉. Suppose first that 54 contains two generators of V5

2 . Then
there is a 5-space 55 containing γ and two generators. By Lemma 2.7, 55 contains
either C or a twisted cubic of V5

2 . A 5-space distinct from 6∞ cannot contain two
planes of S, so 55 does not contain C. Moreover, by Corollary 3.3, 55 does not
contain a twisted cubic of V5

2 . Hence 54 contains exactly one generator of V5
2 .

If every generator of V5
2 contained at least one point of 54, then the intersection

of 54 with V5
2 contains at least `P and q further points, one on each generator.

By Lemma 2.7 and Corollary 2.8, the only possibility is that 54 ∩ V5
2 contains

a twisted cubic, which is not possible by Corollary 3.3. Hence there is at least
one generator which is disjoint from 54; denote this `Q . Label the points of `Q

by X0, . . . , Xq . Then the q + 1 5-spaces containing 54 are 6i = 〈γ, `P , X i 〉. For
each i = 0, . . . , q , the intersection of 6i with V5

2 contains the generator `P and the
point X i . By Corollary 3.3, 6i does not contain a twisted cubic of V5

2 . Hence, by
Lemma 2.7, 6i ∩V5

2 is `P and a 4-dim nrc.
That is, there are (q + 1)2 5-spaces containing γ and one generator of V5

2 . Each
contains a 4-dim nrc of V5

2 . Further, if 55 is a 5-space containing γ and zero
generators of V5

2 , then by Lemma 4.3, 55 does not contain a 4-dim nrc of V5
2 .

Hence, as there are q3
− q2 choices for γ , there are

(q + 1)2× (q3
− q2)= q5

+ q4
− q3
− q2

5-spaces that meet V5
2 in one generator and a 4-dim nrc. By Lemma 4.3, every

4-dim nrc in V5
2 lies in q + 1 such 5-spaces. Hence the number of 4-dim nrcs

contained in V5
2 is (q5

+ q4
− q3
− q2)/(q + 1) as required. �

We now count the number of 5-dim nrcs contained in V5
2 .

Lemma 4.7. The number of 5-spaces meeting V5
2 in a 5-dim nrc is q6

− q4.

Proof. We show that the number of 5-spaces meeting V5
2 in a 5-dim nrc is q6

− q4

by counting in two ways the number x of incident pairs (A,55) where A is a point
of V5

2 and 55 is a 5-space containing A. The number of ways to choose a point A
of V5

2 is (q + 1)2. The point A lies in q5
+ q4
+ q3
+ q2
+ q + 1 5-spaces. So

x= (q+1)2×(q5
+q4
+q3
+q2
+q+1)=q7

+3q6
+4q5

+4q4
+4q3

+4q2
+3q+1.
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Alternatively, we count the 5-spaces first; there are several possibilities for 55. By
Lemma 2.7,55∩V5

2 is either empty, or contains an r -dim nrc for some r ∈{2, . . . , 5}.
Let nr be the number of pairs (A,55) with A ∈ V5

2 ∩55 and 55 containing an
r -dim nrc of V5

2 . Note that

x = n2+ n3+ n4+ n5. (1)

We now calculate n2, n3, and n4, and then use (1) to determine the number of
5-spaces meeting V5

2 in a 5-dim nrc.
For n2, consider a 5-space55 that contains the conic directrix C, so by Lemma 4.1,

55 contains 0, 1, 2, or 3 generators of V5
2 , and the number of 5-spaces meeting V5

2
in exactly the conic directrix and i generators is ri . In this case the number of ways
to pick a point of 55 ∩V5

2 is iq + q + 1. Hence the total number of pairs (A,55)

with 55 containing the conic directrix is

n2 =

3∑
i=0

ri (iq + q + 1)= 2q4
+ 4q3

+ 4q2
+ 3q + 1.

For n3, consider a 5-space 55 that contains a twisted cubic. Then by Lemma 4.2,
55 contains 0, 1, or 2 generators of V5

2 , and the number of 5-spaces meeting V5
2 in

a given twisted cubic and i generators is si . In this case the number of ways to pick
A in V5

2 ∩55 is iq+q+1. Hence the number of pairs (A,55) with 55 containing
a twisted cubic of V5

2 is

n3 = q2
2∑

i=0

si (iq + q + 1)= 2q5
+ 4q4

+ 3q3
+ q2.

For n4, consider a 5-space 55 that contains a 4-dim nrc of V5
2 . By Lemma 4.3,

55 contains 1 generator of V5
2 . By Lemma 4.6, the number of 5-spaces meeting

V5
2 in exactly a 4-dim nrc and one generator is q5

+ q4
− q3
− q2. The number of

ways to pick A in V5
2 ∩55 is 2q + 1. So

n4 = (q5
+ q4
− q3
− q2)× (2q + 1)= 2q6

+ 3q5
− q4
− 3q3

− q2.

Finally, denote the number of 5-spaces containing a 5-dim nrc of V5
2 by y. Then

the number of pairs (A,55) with 55 containing a 5-dim nrc of V5
2 is

n5 = y× (q + 1).

Substituting the calculated values for x, n2, n3, n4, n5 into (1) and rearranging
gives y = q6

− q4 as required. �

Summarising the preceding lemmas gives the following theorem describing V5
2 .
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Theorem 4.8. Let V5
2 be the ruled quintic surface in PG(6, q), q ≥ 6.

(1) V5
2 contains exactly

q + 1 lines,
1 nondegenerate conic,

q2 twisted cubics,
q4
− q2 4-dim nrcs,

q6
− q4 5-dim nrcs.

(2) A 5-space meets V5
2 in one of the following configurations:

number of 5-spaces meeting V5
2 in the configuration

q6
− q4 5-dim nrc,

q5
+ q4
− q3
− q2 4-dim nrc and 1 generator,

(q4
− q3)/2 twisted cubic,
q3
+ q2 twisted cubic and 1 generator,

(q4
+ q3)/2 twisted cubic and 2 generators,

(q3
− q)/3 conic,

q3/2+ q/2+ 1 conic and 1 generator,
q2
+ q conic and 2 generators,

(q3
− q)/6 conic and 3 generators.

5. The Bruck–Bose spread and 5-spaces

Let S be a regular 2-spread in a 5-space 6∞ in PG(6, q), and position V5
2 so that

it corresponds to a tangent Fq -subplane of PG(2, q3). So V5
2 has splash S⊂ S, the

conic directrix C lies in a plane α ∈ S, and each of the q2 3-spaces containing a
twisted cubic directrix of V5

2 meets 6∞ in a distinct plane of S\α. In Corollary 3.4,
we looked at how 3-spaces containing a plane of S meet V5

2 . In Lemma 4.5, we
looked at how 4-spaces containing a plane of S meet V5

2 . Next we look at how
5-spaces containing a plane of S meet V5

2 . Note that straightforward counting
shows that a 5-space distinct from 6∞ contains a unique plane π of S, and meets
every other plane of S in a line. If π = α, then Lemma 4.1 describes the possible
intersections with V5

2 . The next theorem describes the possible intersections with
V5

2 for the remaining cases π ∈ S \α and π ∈ S \S.

Theorem 5.1. Position V5
2 as in Corollary 3.3, so S is a regular 2-spread in a

hyperplane6∞, the conic directrix C lies in a plane α ∈S, and V5
2 has splash S⊂S.

Let ` be a line of α with |` ∩ C| = i and let π ∈ S, π 6= α. Then the q 5-spaces
containing π, ` and distinct from 6∞ meet V5

2 as follows.

(1) If π ∈ S \ α, then q − 1 meet V5
2 in a 5-dim nrc, and 1 meets V5

2 in a twisted
cubic and i generators.
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(2) If π ∈ S \S, then q − i meet V5
2 in a 5-dim nrc, and i meet V5

2 in a 4-dim nrc
and 1 generator.

Proof. By [Barwick and Jackson 2012], the group of collineations of PG(6, q)
fixing S and V5

2 is transitive on the planes of S \ α and on the planes of S \ S.
As this group fixes the conic directrix C, it is transitive on the lines of α tangent
to C, the lines of α secant to C, and the lines of α exterior to C. So without loss of
generality let `0 be a line of α exterior to C, let `1 be a line of α tangent to C, let `2

be a line of α secant to C, let β be a plane in S\α, and let γ be a plane of S \S. For
i = 0, 1, 2, label the 4-spaces 64,i =〈β, `i 〉 and54,i =〈γ, `i 〉. By Corollary 3.4, as
β ∈S\α, there is a unique twisted cubic of V5

2 that lies in a 3-space about β. Denote
this 3-space by 53. Hence for i = 0, 1, 2, there is a unique 5-space containing 64,i

whose intersection with V5
2 contains a twisted cubic, namely the 5-space 〈53, `i 〉.

First consider the line `0 which is exterior to C. A 5-space meeting α in `0 con-
tains 0 points of C, and so contains 0 generators of V5

2 . The 4-space 64,0 = 〈β, `0〉

lies in q 5-spaces distinct from 6∞, each containing 0 generators of V5
2 . Exactly

one of these 5-spaces, namely 〈53, `0〉, contains a twisted cubic of V5
2 . The re-

maining q−1 5-spaces about 64,0 contain 0 generators, and do not contain a conic
or twisted cubic of V5

2 , so by Theorem 4.8, they meet V5
2 in a 5-dim nrc, proving

(1) for i = 0. For (2), let 55 6=6∞ be any 5-space containing 54,0 = 〈γ, `0〉. As
γ /∈ S, by Corollary 3.3, 55 cannot contain a twisted cubic of V5

2 . As 55 contains
0 generator lines of V5

2 and does not contain a conic or twisted cubic of V5
2 , by

Theorem 4.8, 55 meets V5
2 in a 5-dim nrc. That is, the q 5-spaces (distinct from

6∞) containing 54,0 meet V5
2 in a 5-dim nrc, proving (2) for i = 0.

Next consider the line `1 which is tangent to C. Let P = `1 ∩ C and denote the
generator of V5

2 through P by `P . A 5-space meeting α in a tangent line contains
1 point of C, and so contains at most one generator of V5

2 . So exactly one 5-space
contains 64,1 and a generator, namely the 5-space 〈64,1, `P〉. Consider the 5-space
〈53, `1〉. It contains P and a twisted cubic of V5

2 , which by Corollary 4.4 is disjoint
from α. Hence 〈53, `1〉 contains the generator `P . That is, 〈53, `1〉 contains β,
`1, `P and so 〈53, `1〉 = 〈64,1, `P〉. That is, the intersection of 〈64,1, `P〉 with
V5

2 is a twisted cubic and one generator. Let 55 6= 6∞ be one of the remaining
q − 1 5-spaces (distinct from 6∞) that contains 64,1, so 55 contains 0 generators
of V5

2 and does not contain a conic or twisted cubic of V5
2 . So by Theorem 4.8, 55

meets V5
2 in a 5-dim nrc, proving (1) for i = 1. For (2), we consider 54,1 = 〈γ, `1〉.

By Corollary 3.3, as γ /∈ S, no 5-space containing 54,1 contains a twisted cubic
of V5

2 . The 5-space 〈54,1, `P〉 contains one generator of V5
2 , so by Theorem 4.8, it

meets V5
2 in exactly a 4-dim nrc and the generator `P . Let 55 6=6∞ be one of the

remaining q − 1 5-spaces containing 54,1. Then 55 contains 0 generators of V5
2 .

So by Theorem 4.8, 55 meets V5
2 in a 5-dim nrc, proving (2) for i = 1.
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Finally, consider the line `2 which is secant to C. Let C ∩ `2 = {P, Q} and let
`P , `Q be the generators of V5

2 through P, Q, respectively. The intersection of the
5-space 〈53, `2〉 and V5

2 contains a twisted cubic, and P and Q. By Corollary 4.4,
this twisted cubic is disjoint from α, so 〈53, `2〉 contains the two generators `P , `Q .
Thus 〈53, `2〉 = 〈64,2, `P〉 = 〈64,2, `Q〉 = 〈64,2, `P , `Q〉. The remaining q − 1
5-spaces (distinct from 6∞) about 64,2 contain 0 generators and two points of C.
By Lemma 4.3 they cannot contain a 4-dim nrc of V5

2 . So by Theorem 4.8, they
meet V5

2 in a 5-dim nrc, proving (1) for i = 2. For (2), let 55 6= 6∞ be a 5-
space containing 54,2 = 〈γ, `2〉. By Corollary 3.3, 55 does not contain a twisted
cubic of V5

2 , as γ /∈S. So by Theorem 4.8, 55 contains at most one generator of V5
2 .

Hence 〈54,2, `P〉, 〈54,2, `Q〉 are distinct 5-spaces about 54,2, and by Theorem 4.8,
they each meet V5

2 in a 4-dim nrc and one generator. Let 65 6=6∞ be one of the
remaining q − 2 5-spaces about 54,2. Then 65 contains 0 generators of V5

2 , and so
by Theorem 4.8, meets V5

2 in a 5-dim nrc, proving (2) for i = 2. �
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