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A characterization of Clifford parallelism
by automorphisms

Rainer Löwen

Betten and Riesinger have shown that Clifford parallelism on real projective
space is the only topological parallelism that is left invariant by a group of dimen-
sion at least 5. We improve the bound to 4. Examples of different parallelisms
admitting a group of dimension ≤ 3 are known, so 3 is the “critical dimension”.

Consider R4 as the quaternion skew field H. Then the orthogonal group SO(4, R)

may be described as the product of two commuting copies 3̃, 8̃ of the unitary
group U(2, C), consisting of the maps q 7→ aq and q 7→ qb, respectively, where a, b
are quaternions of norm one and multiplication is quaternion multiplication. The
intersection of the two factors is of order two, containing the map −id. Thus,
passing to projective space, we get PSO(4, R) = 3×8, a direct product of two
copies of SO(3, R). The left and right Clifford parallelisms are defined as the
equivalence relations on the line space of PG(3, R) formed by the orbits of 3

and 8, respectively.
The two Clifford parallelisms are equivalent under quaternion conjugation q→ q̄;

this is immediate from their definition in view of the fact that conjugation does not
change the norm and is an antiautomorphism, i.e., that pq = q̄ p̄. Note that both
3 and 8 are transitive on the point set of projective space. Since they centralize
one another, each acts transitively on the parallelism defined by the other, and the
group PSO(4, R) leaves both parallelisms invariant (we say that it consists of auto-
morphisms of these parallelisms). For more information on Clifford parallels, see
[Berger 1987; Klingenberg 1984; Betten and Riesinger 2012]. For generalizations
to other dimensions, compare also [Tyrrell and Semple 1971].

The notion of a topological parallelism on real projective 3-space PG(3, R)

generalizes this example. A spread is a set C of lines such that every point is
incident with exactly one of them, and a topological parallelism may be defined
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as a compact set 5 of compact spreads such that every line belongs to exactly one
of them; see, e.g., [Betten and Riesinger 2014b] for details. Many examples of
different topological parallelisms have been constructed in a series of papers by
Betten and Riesinger, see, e.g., [Betten and Riesinger 2009].

The group 6 = Aut 5 of automorphisms of a topological parallelism is a closed
subgroup of the Lie group PGL(4, R), hence it is a Lie group, as well. In par-
ticular, the identity component 61 is an open subgroup of 6 and has the same
(manifold) dimension as 6. We know that 61 is compact [Betten and Löwen
2017], and hence (conjugate to) a subgroup of PSO(4, R)∼= SO(3, R)×SO(3, R).
The group SO(3, R) does not have any 2-dimensional closed subgroups, because
its Lie algebra is R3 with the vector product × and x × y is always orthogonal to
both x and y. Moreover, the 1-dimensional closed subgroups of SO(3, R) form
a single conjugacy class. It follows easily that there are no closed 5-dimensional
subgroups of SO(3, R)× SO(3, R) and all 4-dimensional ones are isomorphic to
SO(3, R)×SO(2, R).

We see that in the case of the Clifford parallelism, 61 is the 6-dimensional group
PSO(4, R) that we used to define the parallelism. Betten and Riesinger [2014b]
proved that no other topological parallelism has a group of dimension dim 6 ≥ 5.
Examples of parallelisms with 1-, 2- or 3-dimensional automorphism groups are
known; see [Betten and Riesinger 2014a; 2009; 2011] . Here we consider paral-
lelisms with a 4-dimensional group.

Theorem 1. Let 6 be the automorphism group of a topological parallelism 5 on
PG(3, R). If dim 6 ≥ 4, then 5 is equivalent to the Clifford parallelism.

Proof. Recall that a topological parallelism 5 is homeomorphic to the real projec-
tive plane in the Hausdorff topology on the space of compact sets of lines, and that
every equivalence class is a compact spread and homeomorphic to the 2-sphere;
compare [Betten and Riesinger 2014b].

The remarks preceding the theorem show that a group 6 of dimension at least 4
contains a 4-dimensional connected closed subgroup 1, and it will suffice for our
proof to use this group. Further, up to equivalence, we may assume that 1=3 ·0,
where 0 ≤8 is the subgroup defined by restricting the factor b to be a complex
number (here we use the notation of the introduction). Since 3 does not have
any one-dimensional coset spaces, we know that 3 acts on 5 either transitively
or trivially. If it acts trivially, then the classes of 5 are the 3-orbits of lines, and
we have the Clifford parallelism. Observe here that every 3-orbit is contained in
a single class, and both the orbit and the class are 2-spheres.

In what follows, assume therefore that 3 acts transitively on 5. There is only
one possibility for this action, namely, the standard transitive action of SO(3, R) on
the real projective plane. Every 2-dimensional subgroup of 1 contains 0. Hence,
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there is no effective action of 1 on the projective plane 5, and the kernel can only
be 0 since the only other proper normal subgroup is 3, which is transitive. If
C ∈5 is any equivalence class, then the stabilizer 3C is a product of a 1-torus and
a group of order two. Hence 1C contains a 2-torus T. There is only one conjugacy
class of 2-tori in 1, represented by the group

T0 = {〈q〉 7→ 〈aqb〉 | a, b ∈ C, |a| = |b| = 1}.

Here, 〈q〉 denotes the 1-dimensional real vector space spanned by q. We may
assume that T = T0. Write quaternions as pairs of complex numbers with multipli-
cation (x, y)(u, v)= (xu− v̄y, vx+ yū); see 11.1 of [Salzmann et al. 1995]. Then
complex numbers become pairs (a, 0), and the elements of T are now given by

〈(z, w)〉 7→ 〈(azb, awb̄)〉.

The kernel of ineffectivity of T on the 2-sphere C must be a 1-torus 4, and the
elements of the kernel other than the identity cannot have eigenvalue 1 — otherwise
they would be axial collineations of the translation plane defined by the spread C
and would act nontrivially on C. There are only two subgroups of the 2-torus
satisfying these conditions, given by b = 1 and by a = 1, respectively. In other
words, the kernel 4 is a subgroup either of 3 or of 8. In both cases, C consists
of the fixed lines of 4. If 4 ≤ 8, then 3 permutes these lines, contrary to the
transitivity of 3 on 5. If 4 ≤ 3, then 8 permutes the fixed lines, which means
that C is a 8-orbit. Now 3 is transitive both on 5 and on the set of 8-orbits,
hence 5 equals the Clifford parallelism formed by the 8-orbits. �
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