Innovations in Incidence Geometry

Algebraic, Topological and Combinatorial

A characterization of Clifford parallelism by automorphisms

Rainer Löwen

Vol. 17

No. 1

2019

Innovations in Incidence Geometry Algebraic, Topological and Combinatorial

A characterization of Clifford parallelism by automorphisms

Rainer Löwen

Betten and Riesinger have shown that Clifford parallelism on real projective space is the only topological parallelism that is left invariant by a group of dimension at least 5. We improve the bound to 4. Examples of different parallelisms admitting a group of dimension ≤ 3 are known, so 3 is the "critical dimension".

Consider \mathbb{R}^4 as the quaternion skew field \mathbb{H} . Then the orthogonal group SO(4, \mathbb{R}) may be described as the product of two commuting copies $\tilde{\Lambda}$, $\tilde{\Phi}$ of the unitary group U(2, \mathbb{C}), consisting of the maps $q \mapsto aq$ and $q \mapsto qb$, respectively, where a, b are quaternions of norm one and multiplication is quaternion multiplication. The intersection of the two factors is of order two, containing the map -id. Thus, passing to projective space, we get PSO(4, \mathbb{R}) = $\Lambda \times \Phi$, a direct product of two copies of SO(3, \mathbb{R}). The left and right Clifford parallelisms are defined as the equivalence relations on the line space of PG(3, \mathbb{R}) formed by the orbits of Λ and Φ , respectively.

The two Clifford parallelisms are equivalent under quaternion conjugation $q \rightarrow \bar{q}$; this is immediate from their definition in view of the fact that conjugation does not change the norm and is an antiautomorphism, i.e., that $\bar{pq} = \bar{q} \bar{p}$. Note that both Λ and Φ are transitive on the point set of projective space. Since they centralize one another, each acts transitively on the parallelism defined by the other, and the group PSO(4, \mathbb{R}) leaves both parallelisms invariant (we say that it consists of *automorphisms* of these parallelisms). For more information on Clifford parallels, see [Berger 1987; Klingenberg 1984; Betten and Riesinger 2012]. For generalizations to other dimensions, compare also [Tyrrell and Semple 1971].

The notion of a *topological parallelism* on real projective 3-space $PG(3, \mathbb{R})$ generalizes this example. A *spread* is a set C of lines such that every point is incident with exactly one of them, and a topological parallelism may be defined

MSC2010: 51H10, 51A15, 51M30.

Keywords: Clifford parallelism, automorphism group, topological parallelism.

as a compact set Π of compact spreads such that every line belongs to exactly one of them; see, e.g., [Betten and Riesinger 2014b] for details. Many examples of different topological parallelisms have been constructed in a series of papers by Betten and Riesinger, see, e.g., [Betten and Riesinger 2009].

The group $\Sigma = \operatorname{Aut} \Pi$ of automorphisms of a topological parallelism is a closed subgroup of the Lie group PGL(4, \mathbb{R}), hence it is a Lie group, as well. In particular, the identity component Σ^1 is an open subgroup of Σ and has the same (manifold) dimension as Σ . We know that Σ^1 is compact [Betten and Löwen 2017], and hence (conjugate to) a subgroup of PSO(4, \mathbb{R}) \cong SO(3, \mathbb{R}) \times SO(3, \mathbb{R}). The group SO(3, \mathbb{R}) does not have any 2-dimensional closed subgroups, because its Lie algebra is \mathbb{R}^3 with the vector product \times and $x \times y$ is always orthogonal to both x and y. Moreover, the 1-dimensional closed subgroups of SO(3, \mathbb{R}) form a single conjugacy class. It follows easily that there are no closed 5-dimensional subgroups of SO(3, \mathbb{R}) \times SO(3, \mathbb{R}) and all 4-dimensional ones are isomorphic to SO(3, \mathbb{R}) \times SO(2, \mathbb{R}).

We see that in the case of the Clifford parallelism, Σ^1 is the 6-dimensional group PSO(4, \mathbb{R}) that we used to define the parallelism. Betten and Riesinger [2014b] proved that no other topological parallelism has a group of dimension dim $\Sigma \geq 5$. Examples of parallelisms with 1-, 2- or 3-dimensional automorphism groups are known; see [Betten and Riesinger 2014a; 2009; 2011]. Here we consider parallelisms with a 4-dimensional group.

Theorem 1. Let Σ be the automorphism group of a topological parallelism Π on PG(3, \mathbb{R}). If dim $\Sigma \ge 4$, then Π is equivalent to the Clifford parallelism.

Proof. Recall that a topological parallelism Π is homeomorphic to the real projective plane in the Hausdorff topology on the space of compact sets of lines, and that every equivalence class is a compact spread and homeomorphic to the 2-sphere; compare [Betten and Riesinger 2014b].

The remarks preceding the theorem show that a group Σ of dimension at least 4 contains a 4-dimensional connected closed subgroup Δ , and it will suffice for our proof to use this group. Further, up to equivalence, we may assume that $\Delta = \Lambda \cdot \Gamma$, where $\Gamma \leq \Phi$ is the subgroup defined by restricting the factor *b* to be a complex number (here we use the notation of the introduction). Since Λ does not have any one-dimensional coset spaces, we know that Λ acts on Π either transitively or trivially. If it acts trivially, then the classes of Π are the Λ -orbits of lines, and we have the Clifford parallelism. Observe here that every Λ -orbit is contained in a single class, and both the orbit and the class are 2-spheres.

In what follows, assume therefore that Λ acts transitively on Π . There is only one possibility for this action, namely, the standard transitive action of SO(3, \mathbb{R}) on the real projective plane. Every 2-dimensional subgroup of Δ contains Γ . Hence,

there is no effective action of Δ on the projective plane Π , and the kernel can only be Γ since the only other proper normal subgroup is Λ , which is transitive. If $C \in \Pi$ is any equivalence class, then the stabilizer Λ_C is a product of a 1-torus and a group of order two. Hence Δ_C contains a 2-torus *T*. There is only one conjugacy class of 2-tori in Δ , represented by the group

$$T_0 = \{ \langle q \rangle \mapsto \langle aqb \rangle \mid a, b \in \mathbb{C}, |a| = |b| = 1 \}.$$

Here, $\langle q \rangle$ denotes the 1-dimensional real vector space spanned by q. We may assume that $T = T_0$. Write quaternions as pairs of complex numbers with multiplication $(x, y)(u, v) = (xu - \bar{v}y, vx + y\bar{u})$; see 11.1 of [Salzmann et al. 1995]. Then complex numbers become pairs (a, 0), and the elements of T are now given by

$$\langle (z, w) \rangle \mapsto \langle (azb, awb) \rangle.$$

The kernel of ineffectivity of *T* on the 2-sphere *C* must be a 1-torus Ξ , and the elements of the kernel other than the identity cannot have eigenvalue 1 — otherwise they would be axial collineations of the translation plane defined by the spread *C* and would act nontrivially on *C*. There are only two subgroups of the 2-torus satisfying these conditions, given by b = 1 and by a = 1, respectively. In other words, the kernel Ξ is a subgroup either of Λ or of Φ . In both cases, *C* consists of the fixed lines of Ξ . If $\Xi \leq \Phi$, then Λ permutes these lines, contrary to the transitivity of Λ on Π . If $\Xi \leq \Lambda$, then Φ permutes the fixed lines, which means that *C* is a Φ -orbit. Now Λ is transitive both on Π and on the set of Φ -orbits, hence Π equals the Clifford parallelism formed by the Φ -orbits.

References

- [Betten and Löwen 2017] D. Betten and R. Löwen, "Compactness of the automorphism group of a topological parallelism on real projective 3-space", *Results Math.* **72**:1-2 (2017), 1021–1030. MR Zbl
- [Betten and Riesinger 2009] D. Betten and R. Riesinger, "Generalized line stars and topological parallelisms of the real projective 3-space", *J. Geom.* **91**:1-2 (2009), 1–20. MR Zbl
- [Betten and Riesinger 2011] D. Betten and R. Riesinger, "Parallelisms of PG(3, ℝ) composed of non-regular spreads", *Aequationes Math.* 81:3 (2011), 227–250. MR Zbl
- [Betten and Riesinger 2012] D. Betten and R. Riesinger, "Clifford parallelism: old and new definitions, and their use", *J. Geom.* **103**:1 (2012), 31–73. MR Zbl
- [Betten and Riesinger 2014a] D. Betten and R. Riesinger, "Automorphisms of some topological regular parallelisms of PG(3, \mathbb{R})", *Results Math.* **66**:3-4 (2014), 291–326. MR Zbl
- [Betten and Riesinger 2014b] D. Betten and R. Riesinger, "Collineation groups of topological parallelisms", *Adv. Geom.* **14**:1 (2014), 175–189. MR Zbl
- [Klingenberg 1984] W. Klingenberg, Lineare Algebra und Geometrie, Springer, 1984. MR Zbl
- [Salzmann et al. 1995] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, and M. Stroppel, *Compact projective planes*, De Gruyter Expositions in Mathematics 21, Walter de Gruyter & Co., Berlin, 1995. MR

[[]Berger 1987] M. Berger, Geometry II, Springer-Verlag, Berlin, 1987. MR

[Tyrrell and Semple 1971] J. A. Tyrrell and J. G. Semple, *Generalized Clifford parallelism*, Cambridge Tracts in Mathematics and Mathematical Physics **61**, Cambridge University Press, 1971. MR Zbl

Received 17 Feb 2017.

RAINER LÖWEN:

r.loewen@tu-bs.de

Institut für Analysis und Algebra, Technische Universität Braunschweig, Braunschweig, Germany

Innovations in Incidence Geometry

MANAGING EDITOR

Tom De Medts	Ghent University tom.demedts@ugent.be
Linus Kramer	Universität Münster linus.kramer@wwu.de
Klaus Metsch	Justus-Liebig Universität Gießen klaus.metsch@math.uni-giessen.de
Bernhard Mühlherr	Justus-Liebig Universität Gießen bernhard.m.muehlherr@math.uni-giessen.de
Joseph A. Thas	Ghent University thas.joseph@gmail.com
Koen Thas	Ghent University koen.thas@gmail.com
Hendrik Van Maldeghem	Ghent University hendrik.vanmaldeghem@ugent.be

HONORARY EDITORS

Jacques Tits Ernest E. Shult †

EDITORS

Peter Abramenko	University of Virginia
Francis Buekenhout	Université Libre de Bruxelles
Philippe Cara	Vrije Universiteit Brussel
Antonio Cossidente	Università della Basilicata
Hans Cuypers	Eindhoven University of Technology
Bart De Bruyn	University of Ghent
Alice Devillers	University of Western Australia
Massimo Giulietti	Università degli Studi di Perugia
James Hirschfeld	University of Sussex
Dimitri Leemans	Université Libre de Bruxelles
Oliver Lorscheid	Instituto Nacional de Matemática Pura e Aplicada (IMPA)
Guglielmo Lunardon	Università di Napoli "Federico II"
Alessandro Montinaro	Università di Salento
James Parkinson	University of Sydney
Antonio Pasini	Università di Siena (emeritus)
Valentina Pepe	Università di Roma "La Sapienza"
Bertrand Rémy	École Polytechnique
Tamás Szonyi	ELTE Eötvös Loránd University, Budapest

PRODUCTION

Silvio Levy

(Scientific Editor) production@msp.org

See inside back cover or msp.org/iig for submission instructions.

The subscription price for 2019 is US \$275/year for the electronic version, and \$325/year (+\$20, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial (ISSN pending) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

IIG peer review and production are managed by EditFlow[®] from MSP.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing http://msp.org/ © 2019 Mathematical Sciences Publishers

Innovation in Incidence Geometry

Vol. 17 No. 1	2019
The exterior splash in $PG(6, q)$: transversals	1
SUSAN G. BARWICK and WEN-AI JACKSON	
Ruled quintic surfaces in $PG(6, q)$	25
Susan G. Barwick	
A characterization of Clifford parallelism by automorphisms	43
Rainer Löwen	
Generalized quadrangles, Laguerre planes and shift planes of odd	
order	
GÜNTER F. STEINKE and MARKUS STROPPEL	
A new family of 2-dimensional Laguerre planes that admit	53
$PSL_2(\mathbb{R}) \times \mathbb{R}$ as a group of automorphisms	
Günter F. Steinke	

