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On triples of ideal chambers in A2-buildings

Anne Parreau

We investigate the geometry in a real Euclidean building X of type A2 of some
simple configurations in the associated projective plane at infinity P, seen as
ideal configurations in X , and relate it with the projective invariants (from
the cross ratio on P). In particular we establish a geometric classification of
generic triples of ideal chambers of X and relate it with the triple ratio of
triples of flags.

Introduction

The triples of objects in the boundaries of geometric spaces X are basic tools, for
example in the study of surface group representations. For instance, in the case
where X = H2, the hyperbolic plane, ideal triples of points may be used to define
the notion of Euler class [Goldman 1980], and Penner–Thurston shear coordinates
on the Teichmüller space. In the case where X =H2

C
, the ideal triples are classified

by Cartan’s angular invariant, see for example [Goldman 1999, §7.1], and they
may be for instance used to define Toledo’s invariant and maximal representations
[Toledo 1989]. See for instance [Clerc and Neeb 2006; Burger et al. 2010] for
generalization to higher rank Hermitian symmetric spaces X , and triples in their
Shilov boundary.

For higher rank symmetric spaces X of type AN−1, corresponding to the group
PGLN (R), ideal configurations in X may be seen as configurations in the projective
space P= P(RN ). In particular, ideal chambers of X correspond to complete flags
in P, and opposite pairs of flags (or generic N -tuples of points) in P correspond to
maximal flats in X . This is still true in the non-Archimedean setting, i.e., replacing
R by an ultrametric valued field K, in which case X is a Euclidean building of
type AN−1.
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Configurations in projective spaces P(RN ) have been widely studied and used.
In particular, triples of flags in P(RN ) and their classical invariants (the triple ratio
for N = 3), are the basic building blocks used by Fock and Goncharov [2006] to
define generalized shearing coordinates for higher Teichmüller space, parametriz-
ing positive representations of punctured surface groups in G = SLN (R). But
the geometric properties in the symmetric space or Euclidean building X of these
configurations remain mysterious.

In this article, we investigate the geometry of some simple ideal configurations
in a (not necessarily discrete) Euclidean building X of type A2, mainly the generic
triples of ideal chambers, and the relationship with their projective geometry in the
projective plane P. Our first motivation is to use it to study actions of surface groups
on Euclidean buildings of type A2, and degenerations of Hitchin representations in
SL3(R) (see [Parreau 2015]).

The main result is a classification of ideal triples of chambers by the geometry
of the five naturally associated flats in X , in relation with their triple ratio as triples
of flags in P. In the case where X is a real tree (e.g., a Euclidean building of
type A1), any generic ideal triple bounds a tripod in X , that is a convex subset
consisting of union of three rays from a point x ∈ X (the center of the tripod). This
is no longer the case in general in higher rank buildings like A2-buildings, and
many types of configurations are possible. A special case was studied by A. Balser
[2008], who established a characterization of triples of points in ∂∞X bounding a
tripod in X , and used it to study convex rank 1 subsets in A2-buildings. We give
here a complete and precise description.

We now get into more details. Let X be a real Euclidean building of (vectorial)
type A2, i.e., with model flat the Euclidean plane

A =

{
λ= (λ1, λ2, λ3) ∈ R3/

∑
i

λi = 0
}

endowed with the finite reflection group W =S3 acting by permutation of the co-
ordinates. Note that X is not necessarily discrete (simplicial) nor locally compact,
and possibly exotic.

The boundary at infinity of X may be identified with the incidence graph of
an associated projective plane P = P∞(X), equipped with an R-valued additive
cross ratio β (called a projective valuation in [Tits 1986]) defined on quadruples of
pairwise distinct collinear points in P [Tits 1986]. In the algebraic case, i.e., when
X is the Bruhat–Tits building X (K3) associated with the group PGL(K3) for some
ultrametric field K, the projective plane P is P(K3) and β is the logarithm

β = log|b|
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of the absolute value of the usual K-valued cross ratio b on P(K3), where conven-
tions on cross ratios are taken such that

b(∞,−1, 0, Z)= Z

in P1K=K∪{∞} (following [Fock and Goncharov 2006]). We will then call β the
geometric cross ratio and b the algebraic cross ratio to distinguish between them.

We now turn to ideal triples of chambers. Let T = (F1, F2, F3) be a triple of
chambers at infinity of X . We denote by Fi = (pi , Di ) the corresponding flag of P,
with pi the point and Di the line. The set {1, 2, 3} of indices will be canonically
identified with Z/3Z. A triple T = (F1, F2, F3) will be called generic if the flags
(Fi )i are pairwise opposite, the points (pi )i are not collinear and the lines (Di )i

are not concurrent.
In the algebraic case P = P(K3) generic triples of flags T = (F1, F2, F3) are

classified by one K-valued invariant, the (algebraic) triple ratio (see for example
[Fock and Goncharov 2006, §9.4]), that may be defined by:

Tri(F1, F2, F3)= b(D1, p1 p2, p1 p23, p1 p3) (0-1)

where pi j = Di ∩ D j . We recall that it is invariant under cyclic permutations of T ,
and that reversing the order inverses the algebraic triple ratio: Tri(T )= Tri(T )−1,
where T = (F3, F2, F1).

In the general case, we introduce an invariant for generic triples of flags in P,
analogous to the algebraic triple ratio: the geometric triple ratio, which still make
sense when the building X is exotic (nonalgebraic), whereas the algebraic triple
ratio is not defined anymore. We define it as the triple

tri(T )= (trim(T ))m=1,2,3

of the following cross ratios in P, which are the cross ratios obtained from the four
lines D1, p1 p2, p1 p23, p1 p3 by cyclic permutation of the three last one:

tri1(F1, F2, F3)= β(D1, p1 p2, p1 p23, p1 p3)

tri2(F1, F2, F3)= β(D1, p1 p3, p1 p2, p1 p23)

tri3(F1, F2, F3)= β(D1, p1 p23, p1 p3, p1 p2).

To simplify notations, we denote from now on

zm = trim(T ) and z = (z1, z2, z3)= tri(T )

In the algebraic case, we have P= P(K3) and the geometric triple ratio is obtained
from the algebraic cross ratio Z = Tri(T ) ∈ K by:

z1 = log|Z |, z2 = log
∣∣∣∣ 1
1+ Z

∣∣∣∣=− log|1+ Z |, z3 = log|1+ Z−1
|.
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The geometric triple ratio z enjoys the following properties. It is invariant by cyclic
permutations of the flags, and changed to (−z1,−z3,−z2) by permutations revers-
ing the cyclic order. We also have z1 + z2 + z3 = 0, and the stronger following
property: for all m ∈Z/3Z, if zm > 0 then zm−1= 0 and zm+1=−zm < 0. Note that
the three natural cases: z ∈ R+(0, 1,−1), z ∈ R+(−1, 0, 1), and z ∈ R+(1,−1, 0)
subdivide in two types, as the case z1 = 0 is invariant under reversing the order of
T , whereas the two other cases are exchanged.

We now turn to the geometry inside the Euclidean building X . A generic triple
T = (F1, F2, F3) of ideal chambers defines five natural flats in X : the three flats
Ai j = A(Fi , F j ) containing the opposite chambers Fi and F j in their bound-
aries, the flat Ap = A(p1, p2, p3) containing the triple of ideal singular points
(p1, p2, p3) in its boundary, and the similarly defined flat AD = A(D1, D2, D3).
We will show that there are also six particular points in X naturally associated with
the triple T , that may be defined as the orthogonal projections yi and y∗i (which
happen to be unique) of pi and Di on the flat A jk where j = i + 1 and k = i + 2.

We say that (F1, F2, F3) is of type “tripod” if there exists a tripod in X joining
the three (middle points of the) ideal chambers (F1, F2, F3). The set of centers of
such tripods is the intersection I of the three flats Ai j .

We show that either the three flats Ai j have a nonempty intersection, that is
(F1, F2, F3) is of type “tripod”, or the two flats Ap and AD have non empty inter-
section1, which is then a flat singular triangle (that is, a triangle in A with singular
sides) (we then say that (F1, F2, F3) is of type “flat”). The two following results
describe more precisely the two possible types, and relate them with the points
yi , y∗i and the geometric triple ratio z. We denote by C= {λ∈A/ λ1 >λ2 >λ3} the
model Weyl chamber of A and we use the corresponding simple roots coordinates
on A, that is λ= (λ1− λ2, λ2− λ3).

Theorem 0.1 (type “tripod”). The intersection I = A12 ∩ A23 ∩ A31 is nonempty
if and only if z1 = 0. Then z2 ≥ 0 and there exist a unique pair (x, x∗) in X such
that:

(i) y1 = y2 = y3 = x and y∗1 = y∗2 = y∗3 = x∗.

(ii) I is the segment [x, x∗].

(iii) [x, x∗] is the unique shortest segment joining Ap to AD .

(iv) Identifying Ai j with A by a marked flat f : A 7→ Ai j sending C to F j , in
simple roots coordinates, we have−→xx∗ = (−z2, z2). In particular x∗ is on the
ray [x, pi j ) from x to pi j .

Theorem 0.2 (type “flat”). The intersection Ap ∩ AD is nonempty if and only if
(z2 = 0 or z3 = 0), or, equivalently, if and only if z2 ≤ 0. Then there exists a unique
flat singular triangle 1⊂ X with vertices x1, x2, x3 such that:
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Figure 1. Type “tripod”. Bottom row: projections in the flat Ai j

(left), in the flat Ap (middle) and in the flat AD .

(i) Ap ∩ AD =1.

(ii) Ai j ∩ Aik is the Weyl chamber from xi to Fi .

(iii) Let i ∈ {1, 2, 3} and j = i+1. In a marked flat f :A 7→ Ai j sending C to F j , in
simple roots coordinates, we have−−→xi x j = (z1

+, z1
−) where z1

+
=max(z1, 0)

and z1
−
=max(−z1, 0). In particular x j is on the ray from xi to p j (if z1 ≥ 0)

or D j (if z1 ≥ 0).

(iv) The germs of Weyl chambers at xi respectively defined by 1 and Fi are oppo-
site (in the spherical building of directions at xi ). In particular there exists a
flat containing 1, and containing Fi in its boundary.

Furthermore if z1 ≥ 0 we have xi = yi−1 = y∗i+1 for all i , and if z1 ≤ 0 we have
xi = yi+1 = y∗i−1 for all i .

The intersections of each flat with the four other flats form a partition (i.e., a
covering with disjoint interiors), which is described in Figure 1 for the type “tri-
pod”, and in Figure 2 for the type “flat” (see Proposition 4.2, Corollary 4.3 and
Proposition 4.5).

The special case where the hypotheses of both Theorems 0.1 and 0.2 are satisfied
corresponds to the case where z1 = z2 = z3 = 0. Then the five flats intersect in
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Figure 2. Type “flat”, in the case where z1 ≥ 0. Bottom row: projec-
tions in Ai j , with j = i+1. (left), in Ap (middle) and in AD . The case
z1 ≤ 0 is obtained from the case z1 ≥ 0 by reversing the order of the
flags Fi , that is, by exchanging 1 and 3 and i and j in the diagrams.

a unique point x , and, in the spherical building of directions at x , the triple of
chambers induced by T = (F1, F2, F3) is generic.

In particular we recover the characterization of [Balser 2008] for triples of points
in ∂∞X bounding a tripod in X . Note that M. Talbi [2006] established some analo-
gous geometric classification for interior triangles in discrete Euclidean buildings
of type A2.

Theorem 0.2 will be used in [Parreau 2015] to study actions of punctured surface
groups on Euclidean buildings of type A2. It allows us to give a metric interpreta-
tion, in the building, of Fock–Goncharov parameters associated with ideal triangu-
lations. We are then able to construct in X an invariant weakly convex cocompact
2-complex for large families of actions. Theorem 0.2 enables us to associate to
each triangle of the triangulation a flat singular triangle in X , the complex is then
obtained by connecting them gluing flat strips. This allows to describe length spec-
tra for large families of degenerations of convex projective structures on surfaces.

We also show that generic quadruples of points in P (which will be called
projective frames) define a nice center in X , with various characterizations, see
Proposition 2.4 (this result generalizes to higher rank R-buildings of type AN−1).
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1. Preliminaries

1A. The model flat (A,W) of type AN−1. Let N ≥ 2 be an integer. The model flat
of type AN−1 is the vector space A= RN/R(1, . . . , 1), endowed with the action of
the Weyl group W =SN acting on A by permutation of coordinates (finite reflection
group). We denote by [λ] the projection in A of a vector λ in RN . The vector space
A may be identified with the hyperplane {λ= (λ1, . . . , λN ) ∈ RN

/∑
i λi = 0} of

RN . Recall that a vector in A is called singular if it belongs to one the hyperplanes
λi = λ j , and regular otherwise. A (open) (vectorial) Weyl chamber of A is a
connected component of regular vectors. We will call a sector a more general
convex cone in A, in particular the closed convex cone formed by the union of the
closed Weyl chambers containing a given singular ray. The model Weyl chamber
is the simplicial cone

C= {λ ∈ A/ λ1 > · · ·> λN }.

Its closure C is a strict fundamental domain for the action of W on A. Recall that
two nonzero vectors λ and λ′ of A are called opposite if λ′ =−λ. Similarly, two
Weyl chambers C and C ′ of A are opposite if C ′ =−C . The type of a vector λ ∈ A

is its projection (modulo W ) in C.
We denote by ∂A the sphere of unitary vectors in A, identified with the set

P+(A) = (A − {0})/R>0 of rays issued from 0, and by ∂ : A − {0} → ∂A the
corresponding projection. The type (of direction) of a nonzero vector λ ∈ A is its
canonical projection in ∂C.

We denote by (ε1, . . . , εN ) the canonical basis of RN . For d = 1, . . . , N − 1,
we will say that a nonzero vector in A (or a point in the sphere ∂A) is singular of
type d if its canonical projection in ∂C is [ε1+ · · ·+ εd ].

The simple roots (associated with C) are the following linear forms on A

ϕi : λ 7→ λi − λi+1

for i = 1, . . . , N − 1. The set of simple roots is denoted by 3. We will also use
the root ϕN : λ 7→ λN − λ1 satisfying

ϕ1+ · · ·+ϕN = 0.

The vector space A is endowed with the unique W -invariant Euclidean scalar
product, which is well defined up to homothety (induced by the standard Euclidean
scalar product of RN ). We will normalize it by requiring that the simple roots have
unit norm, i.e., the distance between the two hyperplanes with equation ϕi = 0 and
ϕi = 1 is 1 for one (all) i . When dim A = 1, we will identify A with R by the basis
{[ε1]}, i.e., by the map from s 7→ [(s, 0)] from R to A, which is an isometry in the
above normalization.
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[ε1]

[ε2]

[ε3]

λ1 = λ2
λ2 = λ3
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ϕ1(λ)

ϕ2(λ) C

λ

Figure 3. The model flat A of type A2 (for N = 3), and simple
roots coordinates. The arrows denote the singular directions of
type 1.

1B. Projective spaces. We here collect the notations and vocabulary for projective
spaces, which will be used throughout this article. We refer to [Tits 1974, §6.2].
Let P be a projective space of dimension N − 1, with N ≥ 2. We denote by
Flags(P) the set of flags of P, that is increasing sequences (V1, . . . , VM) of proper
linear subspaces of P. We denote by P∗ the dual projective space, whose set of
points is the set of hyperplanes of P.

Two maximal flags (V1, . . . , VN−1) and (V ′1, . . . , V ′N−1) are opposite if they are
in generic position, that is if Vi⊕V ′n−i =P for all i . A finite subset p1, . . . , pM in P,
with 2≤ M ≤ N , is called independent if it is not contained in any linear subspace
of dimension M − 2 of P. Then it is contained in a unique (M − 1)-dimensional
linear subspace of P, which will be denoted by p1⊕ · · ·⊕ pM . When M = 2, we
will also denote the line p⊕ q by pq .

A frame of P is an independent N -tuple. A projective frame in P is a (N + 1)-
tuple (p0, p1, . . . , pN ) of points in P in generic position, i.e., such that the induced
N -tuple (p0, . . . , p̂i , . . . , pN ) is a frame in P for all i .

If p is a point in P, we denote by P/p the set of lines through p, which is a
projective space of dimension N−2 whose linear subspaces are the linear subspaces
of P containing p. The projection at p is the corresponding projection projp : q 7→
pq from P−{p} to P/p. If p is a point of P and H ⊂P an hyperplane with p /∈ H ,
then the projection projp induces a canonical isomorphism projH p : H −→∼ P/p
(called perspectivity).

Note that if F=(p1, . . . , pM) is independent in P, then its projection projp1
(F)=

(p1 p2, . . . , p1 pM) at p1 is independent in P/p1. In particular the projection of a
(projective) frame at one of its points is a (projective) frame.
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1C. Spherical buildings of type AN−1 and associated projective spaces. See [Tits
1974, §6]. A spherical building B of type AN−1 is the building of flags of an
associated projective space P=P(B) of dimension N−1. For d = 0, 1, . . . , N−1,
the set of linear subspaces of dimension d of P identifies with the subset of vertices
of type d + 1 of B. In particular, the projective space P itself is identified with the
set of vertices of type 1 of B, and the dual projective space P∗ is identified with
the set of vertices of type N − 1.

In the algebraic case, that is when B is the spherical building of flags of some
vector space V of dimension N over a field K, then P= P(V ).

A basic fact is that frames in P correspond to apartments of B.
Recall that, in (the geometric realization modeled on (∂A,W ) of) a spherical

building, any two points (resp. chambers) are contained in a common apartment,
and that they are opposite if they are opposite in that apartment, that is, for two
points ξ and ξ ′, if and only if ^(ξ, ξ ′)= π for the canonical metric ^ on B. Note
that p ∈P and H ∈P∗ are opposite if and only if ^(p, H)=π , if and only if p /∈ H .
Two chambers are opposite if and only if they are opposite as maximal flags in P.
In particular, in the type A2 case, two chambers F1 = (p1, D1), F2 = (p2, D2) are
opposite if and only if p1 /∈ D2 and p2 /∈ D1.

For any simplex σ of B the residue St(σ ) of σ is the spherical building formed by
the simplices of B containing σ . If H is a hyperplane of P, the residue St(H) of H
in B is the subset of flags of P containing H . It canonically identifies with the spher-
ical building Flags(H) of flags of H by the map (V1, . . . , VM , H) 7→ (V1, . . . , VM).
The residue St(p) of a point p in P identifies canonically with the flag building
Flags(P/p) of P/p by the map (V1= p, . . . , VM) 7→ (V2/p, . . . , VM/p). If p /∈ H
then the projection projp induces a canonical isomorphism projH p :St(H)−→∼ St(p)
of spherical buildings (perspectivity).

1D. Euclidean buildings. Euclidean buildings considered in this article are (not
necessarily discrete) Euclidean buildings of type AN−1. We refer for example to
[Parreau 2000] for the definition and properties of Euclidean buildings we use
below (see also [Tits 1986; Kleiner and Leeb 1997; Rousseau 2009]). Recall that
a Euclidean building of type AN−1 is a CAT(0) metric space X endowed with a
(maximal) collection A of isometric embeddings f : A→ X called marked apart-
ments, or marked flats by analogy with Riemannian symmetric spaces, satisfying
the following properties:

(A1) A is invariant by precomposition by Waff.

(A2) If f and f ′ are two marked flats, then the transition map f −1
◦ f ′ is the

restriction of an element of Waff.

(A3 ′ ) Any two rays of X are initially contained in a common marked flat.
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Where Waff denotes the subgroup of all affine isomorphisms of A with linear part
in W . The flats and the Weyl chambers of X are the images of A and C by the
marked flats, respectively.

Algebraic case. Let K be an ultrametric field, i.e., a field endowed with an ultramet-
ric absolute value |·| (not necessarily discrete). When V is a finite N -dimensional
vector space over K, we denote by X = X (V ) the Euclidean building associated
with G = PGL(V ). We refer for example to [Parreau 2000] for the model of norms
for X (see [Goldman and Iwahori 1963; Bruhat and Tits 1984]). To each basis v of
V is then associated a marked flat fv :A→ Av ⊂ X , such that, if a is an element of
G with diagonal matrix diag(a1, . . . , aN ) in the basis v, then a translates the flat
Av by the vector

ν(a)= [(log|ai |)i ]

in A (identifying the flat Av with the model flat A through the marking fv).
From now to Section 1H, X will denote a Euclidean building of type AN−1.

1E. Spherical building and projective space at infinity. The CAT(0) boundary
∂∞X of X is the geometric realization modeled on (∂A,W ) of a spherical building
of type AN−1 whose chambers are the boundaries of the Weyl chambers of X , and
whose apartments are the boundaries of the flats of X . It will be identified with the
building of flags on the associated projective space P= P∞(X), whose points are
the vertices of type 1 of ∂∞X . If c+ and c− are opposite ideal chambers, then we
denote by A(c−, c+) the unique flat joining c− to c+ in X , that is, containing c−
and c+ in its boundary. If F is a frame of P or P∗, then there is a unique flat A(F)
of X containing F in its boundary.

1F. Local spherical building and projective space at a point. Recall that, in Eu-
clidean buildings, two (unit speed) geodesic segments issued from a common point
x have zero angle if and only if they have same germ at x (i.e., coincide in a
neighborhood of x). A direction at x ∈ X is a germ of nontrivial geodesic segment
from x . A direction, geodesic segment, ray or line has a well-defined type (of
direction) in ∂C, which is its canonical projection (through a marked flat) in ∂C. It
is called singular or regular accordingly.

The space of directions at x of X is the quotient space of non trivial geodesic
segments from x for this relation, with the induced angular metric, and is denoted
by 6x X . We denote by 6x : X−{x}→6x X , y→6x y, the associated projection.
Its extension to the boundary at infinity will also be denoted by 6x : ∂∞X→6x X ,
ξ →6x ξ and called the canonical projection.

The space of directions 6x X inherits the structure of a spherical AN−1-building,
whose apartments are the germs6x A at x of the flats A of X passing through x , and
whose chambers are the germs 6x C at x of the Weyl chambers C of X with vertex
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x (see for example [Parreau 2000]). The canonical projection 6x : ∂∞X→6x X
sends chambers to chambers (and, more generally, simplices to simplices) and
preserves the type of points.

The local projective space Px =Px(X) at x is the projective space of dimension
N − 1 associated with the spherical building 6x X of type AN−1 (see Section 1C).
Its underlying set is the set of vertices of type 1 of 6x X .

The canonical projection 6x : ∂∞X→6x X induces (by restriction to vertices)
a surjective morphism (of projective spaces) 6x :P→Px from the projective space
at infinity P to the local projective space Px at x . Note that, in particular, if F is
a frame of P, then x belongs to the associated flat A(F) if and only if 6x(F) is a
frame of Px .

1G. Transverse spaces at infinity. See for example [Tits 1986, §8; Leeb 2000,
1.2.3; Mühlherr et al. 2014, §4]. Let ξ be a vertex of ∂∞X of type 1 or N − 1, i.e.,
either a point p in the projective plane at infinity P or a hyperplane H of P.

The transverse space Xξ at ξ may be defined, from the metric viewpoint (as
in [Leeb 2000, 1.2.3]), as the quotient space of the set of all rays to ξ by the
pseudodistance dξ given by

dξ (r1, r2)= inf
t1,t2

d(r1(t1), r2(t2)).

We denote by πξ : X→ Xξ the canonical projection (which maps x to the class of
the unique ray from x to ξ ). The space Xξ is a Euclidean building of type AN−2,
whose flats are the projections to Xξ of the flats of X containing a ray to ξ . In
particular, when X is of type A2, the transverse space Xξ is an R-tree, and we will
call it the transverse tree at ξ .

In the algebraic case, i.e., when X = X (V ), the transverse space X H canonically
identifies with the building X (H) of H , where H is seen as an hyperplane of V ,
and X p identifies with X (V/p), where p is seen as a 1-dimensional subspace of V .

The spherical building ∂∞Xξ at infinity of Xξ identifies canonically with the
residue St(ξ) of ξ . In particular, if p is a point in P, the projective space at infinity
of X p identifies with P/p, and if H is an hyperplane of P, the projective space at
infinity of X H identifies with H .

If F = (p1, . . . , pN ) is a frame in P⊂ ∂∞X , then the projection on X p1 of the flat
A(p1, . . . , pN ) is the flat defined by the projection projp1

(F)= (p1 p2, . . . , p1 pN )

of the frame F , i.e., πp1(A(F))= A(projp1
(F)).

We now describe the canonical isomorphism πξ−ξ+ : Xξ− −→∼ Xξ+ for oppo-
site points ξ− and ξ+ of ∂∞X . The union Fξ−ξ+ of all geodesics joining ξ− to
ξ− is a convex closed subspace and a subbuilding, whose flats are the flats of
X containing a geodesic joining ξ− to ξ− (see [Kleiner and Leeb 1997, Propo-
sition 4.8.1] and [Parreau 2012, 2.2.1]). We denote by Fξ−ξ+ = X ξ−ξ+

× R the
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canonical decomposition (see [Parreau 2011, 1.2.10]). The restriction of the pro-
jection πξ+ to Fξ−ξ+ is surjective and factorizes through the projection on the first
factor, inducing a canonical isomorphism of Euclidean buildings X ξ−ξ+

−→∼ Xξ+ .
We similarly have a isomorphism X ξ−ξ+

−→∼ Xξ− , so it induces a canonical iso-
morphism πξ−ξ+ : Xξ− −→∼ Xξ+ . It is easy to see that the map πξ−ξ+ extends to the
boundaries at infinity of Xξ− and Xξ+ by the canonical isomorphism of spherical
buildings projξ−ξ+ : St(ξ−)−→∼ St(ξ+) (perspectivity).

1H. The A-valued Busemann cocycle. Let c be a chamber at infinity of X . We
now define the A-valued Busemann cocycle

Bc : X × X→ A

associated to c. It can be simply defined from canonical retractions as

Bc(x, y) := r(y)− r(x)

where r : X → A is any canonical retraction centered at c, sending c to ∂C (see
[Parreau 2000, Proposition 1.19]). More precisely, the Buseman cocycle at c is
characterized by the property:

Bc( f (λ), f ′(λ′))= λ′− λ

for any two marked flats f, f ′ : A→ X sending ∂C to c and such that f = f ′ on
some subchamber of C.

We clearly have
Bc(x, z)= Bc(x, y)+ Bc(y, z).

When dim A = 1, it coincides with the usual Busemann cocycle, which is defined
for ξ ∈ ∂∞X by

Bξ (x, y)= lim
z→ξ

d(x, z)− d(y, z).

In the type A2 case, the simple root coordinates of A-valued Busemann cocycles
may be determined by projecting in transverse trees at infinity, using the following
relations (using the normalization of the metric).

ϕ1(B(p,D)(x, y))= Bp(πD(x), πD(y)),

ϕ2(B(p,D)(x, y))= BD(πp(x), πp(y)).
(1-1)

We now turn to cross ratios.

1I. Cross ratio on the boundary of a tree. See [Tits 1986, §7], and in a more
general setting [Otal 1992; Bourdon 1996]. In this section, we suppose that X
is an R-tree. Given three distinct ideal points ξ1, ξ2, ξ3 in ∂∞X , we denote by
c(ξ1, ξ2, ξ3) the center of the ideal triple (ξ1, ξ2, ξ3), that is the unique common
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intersection point of the three geodesic lines joining two of the three points. Note
that c(ξ1, ξ2, ξ3) is the (orthogonal) projection of ξ3 on the geodesic joining ξ1 to ξ2.
We denote by Bξ (x, y) the Busemann cocycle (see Section 1H).

Define the cross ratio of four pairwise distinct points ξ1, ξ2, ξ3, ξ4 in ∂∞X by

β(ξ1, ξ2, ξ3, ξ4)=
1
2(`12− `23+ `34− `41)

where `i j is the length of the geodesic in X from ξi to ξ j

after removing disjoint fixed horoballs centered at each
ξk . It does not depended on the choice of the horoballs
since the horoballs centered at a given point are equidistant
along the rays to that point.

ξ1

ξ2
ξ3

ξ4

+
+

−

−

The cross ratio naturally extends to nondegenerate quadruples, that are quadru-
ples (ξ1, ξ2, ξ3, ξ4) without triple point (i.e., any three of the points are not equal),
which is equivalent to the following condition:

(ξ1 6= ξ4 and ξ2 6= ξ3) or (ξ1 6= ξ2 and ξ3 6= ξ4). (1-2)

We then set

β(ξ1, ξ2, ξ3, ξ4)=


0 when ξ1 = ξ3 or ξ2 = ξ4,

−∞ when ξ1 = ξ2 or ξ3 = ξ4,

+∞ when ξ1 = ξ4 or ξ2 = ξ3.

We now recall some basic properties that we will use.
The cross ratio may be read inside the tree on the oriented geodesic from ξ3

to ξ1, as the oriented distance−→xy from the center x of

x y
ξ1

ξ2

ξ3

ξ4the ideal triple (ξ3, ξ1, ξ2) to the center y of the ideal
triple (ξ3, ξ1, ξ4):

β(ξ1, ξ2, ξ3, ξ4)=
−→xy = Bξ1(x, y). (1-3)

The cocycle identity is

β(ξ1, ξ2, ξ3, ξ4)+β(ξ1, ξ4, ξ3, ξ5)= β(ξ1, ξ2, ξ3, ξ5).

The cross ratio β is left unchanged by the double transpositions and changed
to −β by the transpositions (13) and (24). We now consider the behavior under
cyclic permutations of the three last terms. We have

β(ξ1, ξ2, ξ3, ξ4)+β(ξ1, ξ4, ξ2, ξ3)+β(ξ1, ξ3, ξ4, ξ2)= 0. (1-4)
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Moreover, the following ultrametricity property (specific to the case of trees) is
easy to prove using (1-3) (see [Tits 1986, §7, Proposition 3]):

If β(ξ1, ξ2, ξ3, ξ4) > 0,

then β(ξ1, ξ3, ξ4, ξ2)= 0 and β(ξ1, ξ4, ξ2, ξ3)=−β(ξ1, ξ2, ξ3, ξ4). (1-5)

Note that (1-5) is equivalent (under (1-4)) to

β(ξ1, ξ2, ξ3, ξ4)≤max(0,−β(ξ1, ξ4, ξ2, ξ3)). (1-6)

which in the algebraic case follows from the symmetry properties of the cross ratio
under 3-cyclic permutations (1-9).

1J. Algebraic case: link with usual cross ratio. Suppose that X is the tree X (V )
associated with a 2-dimensional vector space V over an ultrametric field K (see
Section 1D). Then ∂∞X identifies with the projective line P(V ).

The usual cross ratio b on P(V ) of a nondegenerate quadruple of points (see
(1-2)) is defined by (following the convention of [Fock and Goncharov 2007], and
taking values in K∪ {∞})

b(a1, a2, a3, a4)=
(a1− a2)(a3− a4)

(a1− a4)(a2− a3)
(1-7)

in any affine chart P(V )−→∼ K∪ {∞}, so that b(∞,−1, 0, a)= a.
The cross ratio β defined in Section 1I will then be called the geometric cross

ratio, to distinguish it from b, which will be called the algebraic cross ratio. They
are then related as follows:

β(ξ1, ξ2, ξ3, ξ4)= log|b(ξ1, ξ2, ξ3, ξ4)|. (1-8)

Proof. Let x4 = c(ξ3, ξ1, ξ2) and x2 = c(ξ3, ξ1, ξ4). In a suitable basis v = (v1, v2)

of V , we have in homogeneous coordinates ξ1=[1 : 0], ξ3=[0 : 1], ξ2=[−1 : 1] and
ξ4 = [b : 1], where b = b(ξ1, ξ2, ξ3, ξ4). Then g =

(
−b
0

0
1

)
fixes ξ1 and ξ3 and sends

ξ2 to ξ4. Hence g(x4) = x2. In the flat A(ξ3, ξ1) identified with A = R2/R(1, 1)
by the marked flat fv , we have−−→x4x2 = ν(g)= [(log|b|, 0)], hence−−→x4x2 = log|b| as
needed. �

We recall that the algebraic cross ratio b satisfies the following symmetry prop-
erties: It is left unchanged by the double transpositions and changed to b−1 by the
transpositions (13) and (24). Furthermore we have an additional symmetry under
3-cycles not satisfied by the geometric cross ratio:

b(a1, a3, a4, a2)=−1− b(a1, a2, a3, a4)
−1,

b(a1, a4, a2, a3)=−(1+ b(a1, a2, a3, a4))
−1.

(1-9)
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1K. Cross ratio on the boundary of an A2-Euclidean building. See [Tits 1986].
Let X be a Euclidean building of type A2, and P the associated projective plane at
infinity.

Let (p1, p2, p3, p4) be a nondegenerate quadruple of points of P on a common
line D. Then their cross ratio β(p1, p2, p3, p4) (i.e., projective valuation in [Tits
1986]) is by definition their cross ratio as ideal points of the transverse tree X D . The
cross ratio of a nondegenerate quadruple of lines in P passing through a common
point p is similarly defined as their cross ratio as ideal points of the transverse tree
X p.

The main additional property is that perspectivities preserve cross ratio, which
follows from the fact that perspectivities extend isometries between the transverse
trees (see Section 1G):

Proposition 1.1. Let p be a point of P and D a line of P with p /∈ D. The
canonical isomorphisms (perspectivities) projpD : St(D) −→∼ St(p), q 7→ pq and
projDp : St(p)−→∼ St(D), L 7→ D ∩ L , preserve the cross ratio β, i.e.,

β(p1, p2, p3, p4)= β(pp1, pp2, pp3, pp4),

β(D1, D2, D3, D4)= β(D ∩ D1, D ∩ D2, D ∩ D3, D ∩ D4) �

2. Some basic ideal configurations

2A. Extension of orthogonal projection to the boundary in CAT(0) spaces. In
this section X is a general CAT(0) metric space, and we prove the following basic
property: the usual orthogonal projection onto a proper convex subset Y ⊂ X ex-
tends to the boundary outside the closed π

2 -neighborhood of ∂∞Y for the Tits metric
(note that the projection is no longer unique). This property is quite elementary but
we did not see it in the classical literature, so we include the proof. We refer to the
book [Bridson and Haefliger 1999] for CAT(0) spaces.

We denote by ∂∞X the CAT(0) boundary of X , and by ^T its(ξ, η) the Tits
angle between two ideal points ξ, η ∈ ∂∞X . For a subset A of ∂∞X , we define
^T its(ξ, A)= infη∈A ^T its(ξ, η).

Definition 2.1. Let Y be a subspace of X and ξ ∈ ∂∞X an ideal point. We say
that a point x ∈ Y is an orthogonal projection of ξ on Y if ^x(ξ, y) ≥ π

2 for all
y ∈ Y −{x}.

Proposition 2.2. Let Y be a convex subspace of a CAT(0) space X which is proper
for the induced metric, and ξ in ∂∞X. Suppose that ^T its(ξ, ∂∞Y ) > π

2 . Then there
exists an orthogonal projection x of ξ on Y .

Proof. Consider a sequence (xn) converging to ξ in X , and let yn be the orthogonal
projection of xn on Y . If (yn)n∈N is not bounded then, up to passing to a subse-
quence, yn converges to η in ∂∞Y . Then for any fixed y in Y we have ^y(ξ, yn)≤

π
2
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for all n, hence ^y(ξ, η)≤
π
2 . Therefore ^T its(ξ, η)≤

π
2 . Thus (yn)n∈N is bounded,

hence, since Y is proper, it has a converging subsequence, and the limit point x is
then an orthogonal projection of ξ on Y . �

2B. Centers of generic (N + 1)-tuples. In this section, we show that the notion
of center of ideal triples in trees extends to Euclidean buildings of type AN−1, for
generic (N + 1)-tuples of points (or hyperplanes) in the associated projective space
at infinity (Proposition 2.4).

Let X be a Euclidean building of type AN−1, and P be its projective space at
infinity (i.e., the set of singular points of type 1 in ∂∞X , see Section 1). Recall
from Section 1B that a projective frame in a projective space of dimension N − 1
is a generic (N + 1)-tuple of points.

We first observe that the orthogonal projection of a point of P on a flat of X
exists under a simple necessary and sufficient condition.

Proposition 2.3. Let A be a flat of X and p ∈ P. Let (p1, . . . , pN ) = (∂∞A)∩P

be the points of type 1 in ∂∞A. Then p admits an orthogonal projection on A if
and only if (p, p1, . . . , pN ) is a projective frame.

The analogous property is also valid for points H ∈ P∗. Note that these proper-
ties also hold in symmetric spaces of type AN−1.

Proof. If p ∈ H for some hyperplane H in P∗ ∩ ∂∞A, then p and H are in a
common chamber of the spherical building ∂∞X , and, as the diameter d of the
model spherical Weyl chamber ∂C is strictly less that π/2 (for the angle metric),
we have ^T its(p, H) < π/2, hence the orthogonal projection does not exist. Else,
for every hyperplane H in P∗ ∩ ∂∞A, we have p /∈ H , hence ^T its(p, H) = π ,
which implies that since ^T its(p, η) ≥ π − d > π/2 for all η ∈ ∂∞A, and the
orthogonal projection exists by Proposition 2.2. �

We now turn to the main result of this section.

Proposition 2.4. Let F = (p0, p1, . . . , pN ) be a projective frame in P⊂ ∂∞X. For
each i ∈ {0, . . . , N } let Ai be the unique flat of X through (p0, . . . , p̂i , . . . , pN ).
There exists a unique point x ∈ X satisfying the following equivalent conditions:

(i) x ∈ ∩i Ai .

(ii) For all i and for all H in ∂∞Ai ∩P∗ the angle ^x(pi , H) is π .

(iii) The (N + 1)-tuple 6x F = (6x pi )i=0,...,N of directions at x form a projective
frame in Px .

(iv) For all i , the point x is an orthogonal projection of pi on the flat Ai .

(v) There exists i such that x is an orthogonal projection of pi on Ai .
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p1

p2

p3

p4

x

Figure 4. The center x ∈ X of a projective frame (p1, p2, p3, p4)

(for N = 3).

We will call x the center of the projective frame F = (p0, p1, . . . , pN ) and
denote it by c(p0, p1, . . . , pN ) or c(F).

Proof. The existence of x , as an orthogonal projection of p0 on A0, is ensured by
Proposition 2.3.

For i 6= j , denote by Hi j the hyperplane ⊕k 6=i, j pk in the projective space P. Let
x ∈ X . Conditions (iii) and (i) are equivalent (see Section 1F).

We first show (i)⇒ (ii): Fix i and H ∈P∗ in ∂∞Ai . The opposite of H in ∂∞Ai

is some p j . Then H = Hi j , so H is also the opposite of pi in the apartment ∂∞A j .
As x ∈ A j , we then have ^x(pi , H)=π . We now prove (ii)⇒ (iii): First recall that
for p ∈ P and H ∈ P∗, we have ^x(pi , H)= π if and only if 6x p /∈6x H in the
projective space Px . So (ii) means that 6x pi /∈6x Hi j for all i 6= j . Let Ui be the
minimal linear subspace of the projective space Px containing 6x p0, . . . , 6x pi .
Then, for i ≤ N − 1, we have that 6x pi is not in Ui−1, else 6x pi would belong
to 6x Hi,i+1. Hence (6x p0, . . . , 6x pi ) is independent in Px by induction on i .
Therefore (6x p0, . . . , 6x pN−1) is a frame, and (iii) follows by permuting the pi .

We now prove (ii)⇒ (iv). Let i ∈ {0, . . . , N }. Let v ∈6x Ai . Let C ⊂ Ai be a
closed Weyl chamber with vertex x containing v. Let H ∈ P∗ be the singular point
of type N − 1 in ∂∞C . Then ^x(pi , H)= π , hence ^x(pi , v)≥ π −d > π

2 , as the
diameter d of ∂C is strictly less that π/2.

(iv) ⇒ (v) is clear. Assume now that (v) holds. For j 6= i in {0, . . . , N }, as
^x(pi , Hi j )≥

π
2 , the direction 6x pi is not in a closed chamber of 6x X containing

6x Hi j . Hence by type considerations we must have ^x(pi , Hi j )= π . So (ii) holds.
So the equivalence of all assertions is proven. We now prove the uniqueness

of x . Suppose that x ′ is another point of X with the same properties, and x ′ 6= x .
We proved above that we have then ^x(pi , x ′) > π

2 and ^x ′(pi , x) > π
2 , which is

impossible. �

We now state some properties of centers of projective frames. Consider a pro-
jective frame F = (p0, p1, . . . , pN ) in P, and let x ∈ X be its center. Consider
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the N + 1 associated flats Ai = A(p0, . . . , p̂i , . . . , pN ) in X . We first describe the
intersections of the flats Ai with A0.

Proposition 2.5. For i = 1, . . . , N , let Si be the convex hull of the rays from x
to the points p1, . . . , p̂i , . . . , pN — in other words the sector on those points, with
basepoint x. Let Hi = p1⊕ · · ·⊕ p̂i ⊕ · · ·⊕ pN denote the point in ∂∞A0 opposite
to pi . For i ∈ {1, . . . , N }, we have:

(i) Let y be an interior point of Si . Then 6y p0 =6y pi .

(ii) For y ∈ A0, we have y ∈ A0 ∩ Ai if and only if 6y p0 is opposite to 6y Hi .

(iii) A0 ∩ Ai = Si .

In particular, the intersections A0 ∩ Ai , i = 1, . . . , N , form a partition (i.e., a
covering with disjoint interiors) of Ai .

Note that the sector Si is the union of the Weyl chambers of the flat A0 based
at x and containing the singular ray to Hi .

Proof. The inclusion Si ⊂ A0 ∩ Ai is clear since x ∈ A0 ∩ Ai and p j is in both
∂∞A0 and ∂∞Ai for j 6= i in {1, . . . , N }.

If y is an interior point of Si , then in the local spherical building 6y X at y, we
have that 6y p0 ∈ 6y A0. Moreover, y ∈ Ai as previously observed, so 6y p0 is
opposite to 6y Hi (in 6y Ai ). Hence 6y p0 is equal to the opposite of 6y Hi in
6y A0, which is 6y pi , proving (i).

We now prove (ii): In Py , the points (6y p1, . . . , 6y pN ) form a frame (since
y ∈ A0). Hence the N − 1 points (6y p1, . . . , 6̂y pi , . . . , 6y pN ) are independent
Therefore (6y p0, . . . , 6̂y pi , . . . , 6y pN ) is a frame in Py (i.e., y ∈ Ai ) if and
only if 6y p0 /∈6y Hi .

We finish by proving the remaining inclusion A0 ∩ Ai ⊂ Si : The Si clearly form
a partition of A0. So it is enough to prove that A0∩ Ai does not meet the interior of
S j for j 6= i . Else, at such a point y, by (i), we would have 6y p0 =6y p j , which
is not opposite to 6y Hi , providing a contradiction. �

The following proposition shows that the notion of center of projective frames
behaves well with respect to projections to transverse spaces at infinity.

Proposition 2.6. For each i , the projection of x in the transverse building at in-
finity X pi is the center of the projective frame of ∂∞X pi formed by the projections
projpi

(p j )= pi p j of the p j , j 6= i , that is:

πpi (c(p0, p1, . . . , pN ))= c
(

pi p0, pi p1, . . . , p̂i pi , . . . , pi pN
)
.

Proof. For all j 6= i , the ray from x to pi is in the flat A j hence its projection
πpi (x) in the transverse building X pi is in πpi (A j ), which is the flat defined by the
frame projpi

(pk)= pi pk , k 6= i, j . �
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In the algebraic case, i.e., when X is the Euclidean building X (V ) associated
with some vector space V of dimension N over an ultrametric field K, we have the
following characterization of the center as a norm on V .

Proposition 2.7. Let F = (p0, p1, . . . , pN ) be a projective frame in P=P(V ). The
center of F is the norm η on V canonically associated to any basis v = (vi )i=1,...N

of V such that pi = [vi ] for 1≤ i ≤ N and p0 = [v1+ · · ·+ vN ] in P(V ), i.e., the
norm defined by

η

( N∑
i=1

aivi

)
= max

1≤i≤N
|ai |.

Proof. Let v = (v1, . . . , vN ) be a basis of V such that p0 = [v1 + · · · + vN ] in
P(V ) and pi = [vi ]. Let η be the associated canonical norm on V . We clearly
have η ∈ A0 by the definition of marked flats in the model of norms. Let g be the
element of GL(V ) sending the basis v to the basis (v1, . . . , vN−1, v1+ · · · + vN ).
Then g preserves the norm η and sends A0 to AN and hence η is in the flat AN .
Permuting the basis v, we similarly get that η is in the flat Ai for all i 6= 0. �

Remark 2.8. By duality, the similar properties hold for generic (N + 1)-tuples
(projective frames) in P∗ ⊂ ∂∞X .

2C. Projecting two ideal points onto a flat. From now on we return to the case
where N = 3 (type A2).

Proposition 2.9. Let (p1, p2, p3) be a independent triple in P. Let p, q be two
points in P, in generic position relatively to the pi (i.e., not on any of the lines
pi p j ). Denote by x and y the respective orthogonal projections of p and q on the
flat A= A(p1, p2, p3). Identify A with A by a marked flat sending ∂C to (p1, p1 p2).
Then the roots coordinates of−→xy are given by the three natural cross ratios at the
vertices of the triangle:

ϕ1(
−→xy)= β(p3 p1, p3 p, p3 p2, p3q),

ϕ2(
−→xy)= β(p1 p2, p1 p, p1 p3, p1q),

ϕ3(
−→xy)= β(p2 p3, p2 p, p2 p1, p2q).

The analogous dual result holds for projections of two lines of P on a flat (ex-
changing the roles of points and lines in P).

Proof. Projecting on the transverse tree X p1 in direction p1, we have

ϕ2(
−→xy)= ϕ2(B(p1,p1 p2)(x, y))= Bp1 p2(πp1(x), πp1(y))

by (1-1). Since the projections of x and y on the tree X p1 are the respective centers
of the ideal triples (p1 p2, p1 p3, p1 p) and (p1 p2, p1 p3, p1q) (Proposition 2.6), we
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have

Bp1 p2(πp1(x), πp1(y))= β(p1 p2, p1 p, p1 p3, p1q)

by (1-3), hence ϕ2(
−→xy)= β(p1 p2, p1 p, p1 p3, p1q). The remaining assertions fol-

low by applying cyclic permutation, since

ϕ1(B(p1,p1 p2)(x, y))= ϕ2(B(p3,p3 p1)(x, y)),

ϕ3(B(p1,p1 p2)(x, y))= ϕ2(B(p2,p2 p3)(x, y)). �

For the projections of a point and a line, we have the following result.

Proposition 2.10. Let F− = (p−, D−) and F+ = (p+, D+) be two opposite flags
in P and A the flat in X joining them, identified with A by a marked flat sending
∂C to F+. Let p be a point and D a line in P in generic position with respect to F−
and F+, (i.e., p does not belong to any of the lines p− p+, D−, D+, and D does
not contain any of the points D− ∩ D+, p−, p+).

Denote by x and x∗ the respective orthogonal projections of p and D on A.
Then in simple roots coordinates we have

−→xx∗ = (z−, z+),

with
z− = β(p+, D+ ∩ (p− p), D+ ∩ D−, D+ ∩ D)

= β(D−, p−⊕ (D+ ∩ D), p− p+, p− p),

z+ = β(p−, D− ∩ D, D− ∩ D+, D− ∩ (p+ p))

= β(D+, p+ p, p+ p−, p+⊕ (D− ∩ D))

Proof. See Figure 5. The projection of x on the transverse tree X p− is the center of
the ideal triple (p− p+, p−(D− ∩ D+), p− p), and the projection of x∗ on the tree
X D+ is the center of the ideal triple (p+, D+ ∩ D−, D+ ∩ D) (Proposition 2.6). As
x lies on a geodesic from p− to D+, we have

πD+(x)= πD+,p−(πp−(x))

= πD+,p−(c(p− p+, p−(D− ∩ D+), p− p))

= c(p+, D− ∩ D+, D+ ∩ (p− p)).

Then projecting on the transverse tree X D+ we have

ϕ1(
−→xx∗)= Bp+(πD+(x), πD+(x

∗))= β(p+, D+ ∩ (p− p), D+ ∩ D−, D+ ∩ D)

as needed. The remaining assertions have identical proofs. �
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p
D
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D+
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p+

p− x∗
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D+ ∩ D−
D+ ∩ (p− p)

D+ ∩ D

p+

z−

Figure 5. Projecting a point and a line on a flat. The left part of
the diagram represents the situation in X , and the right part the
situation in X D+ .

3. Triple ratio of a triple of ideal chambers

In this section, we introduce the (geometric) triple ratio of a nondegenerate triple
of ideal chambers in a real Euclidean building X of type A2, establish its basic
properties, and the links with the usual K-valued (algebraic) triple ratio of triples
of flags (see e.g., [Fock and Goncharov 2007]) in the algebraic case P= P(K3).

We first give a precise definition of nondegenerate and generic triples of flags
in an arbitrary projective plane P.

3A. Nondegenerate and generic triples of flags. Let P be a projective plane and
T = (F1, F2, F3) be a triple of flags Fi = (pi , Di ) in P. We will denote by pi j the
point Di ∩ D j (resp. Di j the line pi p j ), when defined.

The natural nondegeneracy condition on the triple (F1, F2, F3) for the triple
ratios to be well defined is the following:

either ∀i, pi /∈ Di+1 or ∀i, pi /∈ Di−1. (ND)

This condition is clearly equivalent to: the points are pairwise distinct, the lines are
pairwise distinct, none of the points is on the three lines (i.e., Di ∩ D j 6= pk for all
{i, j, k} = {1, 2, 3}) and none of the lines contains the three points (i.e., pi p j 6= Dk

for all i, j, k). We will then say that the triple (F1, F2, F3) is nondegenerate.
It is easy to check that the triple T defines then a nondegenerate quadruple

(Di , pi p j , pi p jk, pi pk) of lines through each point pi , and a nondegenerate quadru-
ple (pi , Di ∩ D j , Di ∩ D jk, Di ∩ Dk) of points on each line Di .

The triple of flags T = (F1, F2, F3) is generic if the flags Fi = (pi , Di ) are
pairwise opposite, the points (pi )i are not collinear and the lines (Di )i are not
concurrent. In particular, T is then nondegenerate, and the induced quadruples of
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points on each line (resp. of lines through each point) are generic (i.e., pairwise
distinct).

3B. Algebraic triple ratio. When P = P(K3) is the projective plane associated
with an arbitrary field K, the algebraic triple ratio of a nondegenerate triple of
flags T = (F1, F2, F3) (see Section 3A), with values in K∪{∞}, is defined by (see
[Fock and Goncharov 2006, §9.4])

Tri(F1, F2, F3)=
D̃1( p̃2)D̃2( p̃3)D̃3( p̃1)

D̃1( p̃3)D̃2( p̃1)D̃3( p̃2)
,

where p̃i is any vector in K3 representing pi and D̃i is any linear form in (K3)∗

representing Di , and Fi = (pi , Di ). It is invariant under cyclic permutation of the
flags and inverted by reversing the order

Tri(F3, F2, F1)= Tri(F1, F2, F3)
−1.

It may be expressed as the following cross ratio:

Tri(F1, F2, F3)= b(D1, p1 p2, p1 p23, p1 p3). (3-1)

3C. Geometric triple ratio. We suppose now that the projective plane P is the
projective plane at infinity of some a real Euclidean building X of type A2, possibly
exotic. Let β be the associated geometric cross ratio on P (see Section 1K). Let T =
(F1, F2, F3) be a nondegenerate triple of ideal chambers of X , i.e., a nondegenerate
triple of flags Fi = (pi , Di ) in P.

The idea is to define the geometric triple ratio of T by analogy with the ex-
pression of the algebraic triple ratio as a cross ratio (3-1), replacing b by β, in
such a way that, in the algebraic case, the geometric triple ratio of a triple T
with algebraic triple ratio Z should be log|Z |. But for the purpose of geometric
classification, this geometric cross ratio β(D1, p1 p2, p1 p23, p1 p3) alone will not
retain enough information. In particular, in contrast to the algebraic cross ratio, it
does not determine the geometric cross ratios obtained from the original 4-tuple
by cyclic permutations of the three last arguments, which in the algebraic case are
log|1+ Z−1

| and − log|1+ Z |, see (1-9), and have geometric significance. For
example, in the algebraic case, it will not distinguish between two triples T and T ′

with respective algebraic triple ratios Z =−1 and Z ′ =−1+ a with |a|< 1.
In order to retain this information we define the geometric triple ratio of T as

the triple

tri(T )= (trim(T ))m=1,2,3
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where
tri1(F1, F2, F3)= β(D1, p1 p2, p1 p23, p1 p3),

tri2(F1, F2, F3)= β(D1, p1 p3, p1 p2, p1 p23),

tri3(F1, F2, F3)= β(D1, p1 p23, p1 p3, p1 p2),

are the geometric cross ratios obtained from (D1, p1 p2, p1 p23, p1 p3) by cyclic
permutation of the three last lines. Note these cross ratios are well defined, since
the four lines D1, p1 p2, p1 p23, p1 p3 are well defined and form a nondegenerate
quadruple of lines through p1 (see Section 3A above).

The next proposition gathers the properties of the geometric triple ratio, and
show in particular that this invariant is in fact 1-dimensional, as it takes values in
one of the three rays R+(0, 1,−1), R+(−1, 0, 1), and R+(1,−1, 0).

Proposition 3.1. (i) The geometric triple ratio is invariant by cyclic permuta-
tions of the flags; i.e., for m = 1, 2, 3,

trim(F2, F3, F1)= trim(F1, F2, F3).

(ii) Exchanging two flags, we have

tri1(F1, F3, F2)=− tri1(F1, F2, F3), tri2(F1, F3, F2)=− tri3(F1, F2, F3).

(iii) We have tri1(T )+ tri2(T )+ tri3(T )= 0.

(iv) For all m ∈Z/3Z, if trim(T ) > 0, then we have trim−1(T )= 0 and trim+1(T )=
− trim(T ) < 0.

In order to prove this proposition, in particular, the invariance of the triple ratio
by cyclic permutation of the flags, we first introduce the natural dual invariants
given by the cross ratios of the natural induced quadruple of points on the line D1

(that is, exchanging the role of points and lines):

tri∗1(F1, F2, F3)= β(p1, D2 ∩ D1, D23 ∩ D1, D3 ∩ D1),

tri∗2(F1, F2, F3)= β(p1, D3 ∩ D1, D2 ∩ D1, D23 ∩ D1),

tri∗3(F1, F2, F3)= β(p1, D23 ∩ D1, D3 ∩ D1, D2 ∩ D1).

The following property is straightforward.

tri∗1(F1, F3, F2)=− tri∗1(F1, F2, F3),

tri∗2(F1, F3, F2)=− tri∗3(F1, F2, F3).
(3-2)

We will need the following property showing that the invariants behave nicely
under duality.

Lemma 3.2. For m = 1, 2, 3, we have tri∗m(F1, F2, F3)= trim(F3, F2, F1).
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Proof of Lemma 3.2. By invariance under perspectivities and double transpositions,
we have

tri∗1(F1, F2, F3)= β(p1, D2 ∩ D1, D23 ∩ D1, D3 ∩ D1)

= β(p1 p3, p12 p3, D23, D3)

= β(D3, p2 p3, p12 p3, p1 p3)

= tri1(F3, F2, F1).

The proof of tri∗m(F1, F2, F3)= trim(F3, F2, F1) for m = 2, 3 is similar. �

We now turn to the proof of Proposition 3.1.

Proof of Proposition 3.1. Assertions (iii) and (iv) follow immediately from the
properties of the cross ratio β under cyclic permutation of the three last points (see
(1-4) and (1-5)).

Assertion (ii) follows immediately from the definition and from the symmetries
of the cross ratio.

We finally prove Proposition 3.1(i). Using (ii), Lemma 3.2 and (3-2), we have

tri1(F2, F3, F1)=− tri1(F2, F1, F3)

=− tri∗1(F3, F1, F2)= tri∗1(F3, F2, F1)= tri1(F1, F2, F3),

tri2(F2, F3, F1)=− tri3(F2, F1, F3)

=− tri∗3(F3, F1, F2)= tri∗2(F3, F2, F1)= tri2(F1, F2, F3).

The case where m = 3 is similar to the case m = 2. �

3D. Geometric triple ratio from algebraic triple ratio. When P is the projective
plane on some field K endowed with some ultrametric absolute value, and β =
log|b| where b is the usual K-valued cross ratio on P, the three geometric triple
ratios trim(T ), m = 1, 2, 3 of T are obtained from the single algebraic triple ratio
Z = Tri(T ) of T by the relations

tri1(T )= log |Z |,

tri2(T )= log
∣∣∣ 1
1+Z

∣∣∣=− log|1+ Z |,

tri3(T )= log |1+ Z−1
|,

(3-3)

which are easily derived from the expression of algebraic triple ratio as a cross
ratio (3-1) and from the symmetry properties of the algebraic cross ratio (1-9).

Remark 3.3. Note that the geometric invariants do not determine the triple of flags
up to automorphisms of P (unlike the usual (algebraic) triple ratio): for example in
the algebraic case P= P(K3), take T with triple ratio Z ∈ K with |Z |> 1 and T ′

with triple ratio Z ′ = Za where a ∈ K with |a| = 1 and a 6= 1. Then T and T ′ are
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not in the same PGL(K3)-orbit, but have the same three geometric invariants, as
tri1(T )= log|Z | = tri1(T ′), tri2(T )=− log|Z | = tri2(T ′), tri3(T )= 0= tri3(T ′).

4. Proof of the main result

In this section we prove Theorems 0.1 and 0.2. Let X be a Euclidean building of
type A2 and T = (F1, F2, F3) be a generic triple of flags in the projective plane
P at infinity of X . We denote by zm = trim(F1, F2, F3), m = 1, 2, 3, its geometric
triple ratio, and by Ai j = A(Fi , F j ), Ap = A(p1, p2, p3) and AD = A(D1, D2, D3)

the five associated flats.
We first define the six associated points in X .

4A. Associated points in the building. For {i, j, k} = {1, 2, 3}, denote by yk the
center in X of the projective frame (p1, p2, p3, pi j ), where pi j = Di ∩ D j , and
by y∗k the center of the projective frame (D1, D2, D3, Di j ), where Di j = pi p j , as
defined in Proposition 2.4. In particular the point yk is the orthogonal projection
of pi j on Ap, the point y∗k is the orthogonal projection of Di j on AD , the point yk

is the orthogonal projection of pk on Ai j = A(pi , p j , pi j ), and the point y∗k is the
orthogonal projection of Dk on Ai j = A(Di , D j , Di j ).

4B. In the flat Ai j . We now link the respective position of the points yk and y∗k in
the flat Ai j to the geometric triple ratio of T . Suppose that the indices i, j, k respect
the cyclic order, i.e., that (i, j, k)= (123) as cyclic permutations. We identify Ai j

with the model flat A by a marked flat fi j : A→ Ai j sending ∂C to F j . For x, y in
Ai j 'A, we define then−→xy= y−x = BF j (x, y). Recall that (ε1, ε2, ε3) denotes the
canonical basis of R3. In particular, the directions of pi , pi j and p j are respectively
identified with the directions of [ε1], [ε2], and [ε3] in A.

Proposition 4.1. (i) In simple roots coordinates, we have
−−→
y∗k yk = (z2, z3).

(ii) For m = 1, 2, 3, if zm > 0 then
−−→
yk y∗k = zm[εm]. In particular y∗k is on one of

the three singular rays of type 1 issued from yk (i.e the rays to pi , p j and pi j ).

Proof. As yk and y∗k are the respective orthogonal projections on the flat Ai j of pk

and Dk , by Proposition 2.10 and cyclic invariance of the geometric triple ratio, we
have

ϕ1(
−−→
y∗k yk)= β(Di , pi pk, pi p j , pi p jk)= tri2(Fi , F j , Fk)= z2 and

ϕ2(
−−→
y∗k yk)= β(D j , p j pki , p j pi , p j pk)= tri3(F j , Fk, Fi )= z3.

Assertion (ii) follows, since we have then zm−1 = 0 and zm+1 =−zm by ultra-
metricity of the geometric triple ratio (Proposition 3.1(iv)). �

We now describe the intersections of Ai j with the four other flats (see Figures 1
and 2 in the introduction). These intersections happen to be sectors in A bounded
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by two singular rays of same type, equivalently the union of two adjacent Weyl
chambers.

Proposition 4.2. Let x ∈ Ai j . Then:

(i) The intersection Ai j ∩ Ap is the sector at yk bounded by the rays to pi and p j .
That is,

x ∈ Ap if and only if
{
ϕ1(x)≥ ϕ1(yk),

ϕ2(x)≤ ϕ2(yk).

(ii) The intersection Ai j ∩ AD is the sector at y∗k bounded by the rays to Di and
D j . That is,

x ∈ AD if and only if
{
ϕ1(x)≤ ϕ1(y∗k ),
ϕ2(x)≥ ϕ2(y∗k ).

(iii) The intersection Ai j ∩ A jk is the intersection of the sector at yk bounded by
the rays to p j and Di ∩ D j , and the sector at y∗k bounded by the rays to D j

and pi p j . That is,

x ∈ A jk if and only if


ϕ1(x)≥ ϕ1(y∗k ),
ϕ2(x)≥ ϕ2(yk),

ϕ3(x)≤min(ϕ3(yk), ϕ3(y∗k )).

(iv) The intersection Ai j ∩ Aki is the intersection of the sector at yk bounded by
the rays to pi and Di ∩ D j , and the sector at y∗k bounded by the rays to Di

and pi p j . That is,

x ∈ Aki if and only if


ϕ1(x)≤ ϕ1(yk),

ϕ2(x)≤ ϕ2(y∗k ),
ϕ3(x)≥max(ϕ3(yk), ϕ3(y∗k )).

Proof. Since yk is the center of the projective frame (pi , p j , pi j , pk), assertion
(i) comes from Proposition 2.5, as Ai j = A(pi , p j , pi j ) and Ap = A(pi , p j , pk).
Assertion (ii) is similar. Assertion (iii): A point x ∈ Ai j lies in A jk if and only if,
in the spherical building of directions at 6x X , the direction 6x D j is opposite to
6x pk and 6x p j is opposite to 6x Dk . Moreover, 6x D j is opposite to 6x pk

if and only if x ∈ A(pk, p j , pi j ). As yk is the center of the projective frame
(pi , p j , pi j , pk) and Ai j = A(pi , p j , pi j ), the set of such x is the sector at yk

bounded by the rays to p j and Di ∩ D j (by Proposition 2.5). This is the subset
of x ∈ Ai j satisfying: ϕ2(x) ≥ ϕ2(yk) and ϕ3(x) ≤ ϕ3(yk). Similarly, as y∗k is the
center of the projective frame (Di , D j , Di j , Dk) and Ai j = A(Di , D j , Di j ), the
direction 6x p j is opposite to 6x Dk if and only if x is in the sector at y∗k bounded
by the rays to D j and Di j = pi p j . That is, if and only if ϕ1(x) ≥ ϕ1(y∗k ) and
ϕ3(x)≤ ϕ3(y∗k ), and we are done. Assertion (iv) is similar. �

In particular, as y∗k is on one of the three singular rays of type 1 issued from yk

by Propositions 4.1, from Proposition 4.2 we easily get the following result.
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Corollary 4.3. The intersections with Ai j of A jk ,Aki , Ap and AD form a partition
of Ai j . �

4C. In the flat A p. We now consider the flat Ap = A(p1, p2, p3). The following
proposition describes the respective positions in Ap of the points y1, y2, y3. We
identify Ap with A by a marked flat f p : A→ Ap sending ∂C to (p1, p1 p2) (hence
direction [εi ] to pi for i = 1, 2, 3). Recall that we then have −→xx ′ = x ′ − x =
B(p1,p1 p2)(x, x ′) for x, x ′ ∈ Ap.

Proposition 4.4. In the flat Ap we have:

(i) In simple roots coordinates, we have−−→y2 y3 = (z1, 0).

(ii) If z1 ≥ 0, the point yi+1 is in the ray [yi , pi+2) (for all i), and if z1 ≤ 0, the
point yi is in the ray [yi+1, pi+2) for all i .

In particular the triangle 1 ⊂ Ap with vertices y1, y2, y3 is singular, i.e., the
sides have singular type in C.

Proof. Recall that the point yk is the orthogonal projection on the flat Ap of the
singular boundary point pi j = Di ∩ D j . Then, by Proposition 2.6 the points y2

and y3 have the same projection in the transverse tree X p1 , that is the center of
the ideal triple (p1 p13, p1 p2, p1 p3) = (D1, p1 p2, p1 p3) = (p1 p23, p1 p2, p1 p3),
proving that ϕ2(

−−→y2 y3)= 0. Furthermore, by Proposition 2.9 we have

ϕ2(
−−→y3 y1)= β(p1 p2, p1 p12, p1 p3, p1 p23)

= β(p1 p2, D1, p1 p3, p1 p23)

= β(D1, p1 p2, p1 p23, p1 p3)

= z1,

proving that ϕ2(
−−→y3 y1) = z1. Applying this to the permuted triple (F3, F1, F2),

we obtain ϕ1(
−−→y2 y3) = z1 (by invariance of the geometric triple ratio z1 by cyclic

permutation). Assertion (ii) follows from (ii), applying cyclic permutations. �

We now describe the intersections of Ap with the other flats; see Figure 6.

Proposition 4.5. Let Si = Ap ∩ Ai,i+1 and let 1 be the triangle with vertices
y1, y2, y3. Then:

(i) Si is the sector of Ap bounded by the rays from yi+2 to pi and pi+1.

(ii) S1, S2, S3 and 1 form a partition of Ap.

Proof. Assertion (i) follows from Proposition 4.2(i). In the case where z1 ≥ 0,
assertion (ii) then comes from the fact that for all i , yi+1 is in the ray [yi , pi+2)

(Proposition 4.4). The case where z1 ≤ 0 is similar. �
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Figure 6. Situation in the flat Ap: when z1 ≥ 0 (left) and when
z1 ≤ 0 (right).
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Figure 7. Situation in the flat AD: when z1 ≥ 0 (left) and when
z1 ≤ 0 (right).

4D. In the flat AD. We now state the similar properties in the dual flat AD =

A(D1, D2, D3), which have same proofs, exchanging the role of points and lines.

Proposition 4.6. In the flat AD identified with A by a marked flat sending ∂C to
(D1 ∩ D2, D1), we have:

(i)
−−→
y∗2 y∗3 = (0,−z1) in simple roots coordinates. In particular y∗2 and y∗3 are on a
common singular geodesic to D1.

(ii) The points y∗1 , y∗2 , y∗3 form a singular triangle 1∗ in AD .

(iii) For all i ∈ Z/3Z, S∗i = AD ∩ Ai,i+1 is the sector of AD bounded by the rays
from y∗i+2 to Di and Di+1.

(iv) S∗1 , S∗2 , S∗3 and 1∗ form a partition of AD . �

4E. The classification. We now combine the previous results to establish the clas-
sification in two geometric types, finishing to prove Theorems 0.1 and 0.2.

Proof of Theorem 0.1. Let x = y3 and x∗ = y∗3 . We identify the flat A12 with the
model flat A by a marked flat sending ∂C to F2, and 0 to y∗3 . By Proposition 4.2
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applied to the flat A12, we have ϕ1(y3) = z2, ϕ2(y3) = z3, and ϕ3(y3) = z1. By
Proposition 4.2 applied to the flat A12, the intersection I = A12 ∩ A23 ∩ A31 is the
subset of y ∈ A12 such that

0≤ ϕ1(y)≤ ϕ1(y3)= z2,

0≥ ϕ2(y)≥ ϕ2(y3)= z3,

max(ϕ3(y3), 0)≤ ϕ3(y)≤min(ϕ3(y3), 0).

In particular, if I is not empty, then z1 = ϕ3(y3)= 0.
Suppose from now on that z1= 0. Then z2≥ 0 and z3=−z2 by the ultrametricity

of the geometric triple ratio (Proposition 3.1(iv)). By the description above, I is
then the subset of the line ϕ3 = 0 (which contains y∗3 = 0 and y3) consisting of the
y such that 0 ≤ ϕ1(y) ≤ ϕ1(y3) (since ϕ2(y) = −ϕ1(y) when ϕ3(y) = 0). Hence
I is not empty and is the segment from 0= y∗3 to y3 i.e., [x, x∗]. Furthermore, as
z1 = 0, Proposition 4.4 implies that y1 = y2 = y3. Similarly, we have y∗1 = y∗2 = y∗3
by Proposition 4.6. Suppose now x 6= x∗. Since the segment [x, x∗] lies in the ray
[x, pi j ), and x = yk is the orthogonal projection of pi j on Ap, we have ^x(x∗, D)=
π for all lines D in ∂∞Ap (Proposition 2.4). Therefore we have ^x(x∗, y)≥ 2π

3 for
all y 6= x in Ap. Similarly, we have that ^x∗(x, y)≥ 2π

3 for all y 6= x in Ap. Hence
[x, x∗] is the unique segment of minimal length joining Ap to AD . Assertion (iv)
follows from Proposition 4.1. �

Proof of Theorem 0.2. If z2 > 0, then z1 = 0 by the ultrametricity of the geometric
triple ratio (Proposition 3.1(iv)), and Ap ∩ AD is empty by Theorem 0.1. Suppose
now that z2 ≤ 0. Since the case z1 ≤ 0 reduces to the case z1 ≥ 0 by exchanging
F2 and F3, it is enough to handle the case z1 ≥ 0. Then z3 = 0 and z2 = −z1.
Let xi = yi+2 for i ∈ Z/3Z. In Ai j identified with A in such a way that y∗k = 0,
by Proposition 4.1 we have ϕ1(yk) = z2 = −z1 ≤ 0, ϕ2(yk) = z3 = 0, hence
ϕ3(yk)= z1 ≥ 0. By Proposition 4.2(iv), Ai j ∩ Aik is the set of x ∈ Ai j ' A such
that ϕ1(x)≤ϕ1(yk), ϕ2(x)≤0=ϕ2(yk) and ϕ3(x)≥max(ϕ3(yk), 0)=ϕ3(yk). This
is the Weyl chamber yk −C, i.e., the Weyl chamber from yk = xi to Fi . Similarly,
Ai j ∩ A jk is the Weyl chamber from y∗k to F j . Applying a cyclic permutation
(i jk), i.e., working in the flat A jk , we also similarly get that Ai j ∩ A jk is the Weyl
chamber from yi to F j . Therefore y∗k = yi .

By Proposition 4.2 Ap ∩ AD ∩ Ai j is the intersection of the sector at y∗k bounded
by the rays to Di and D j , with the sector at yk bounded by the rays to pi and p j .
As the point yk is on the ray from yk to Di , this is equal to the segment [yk, y∗k ].
In particular Ap ∩ AD contains yk . Then Ap ∩ AD contains y1, y2 and y3, hence
the triangle 1 with vertices y1, y2 and y3, and since Ap ∩ AD ∩ Ai j = [yk, yi ] ⊂

1, Proposition 4.5(ii) provides the reverse inclusion. Assertion (iii) comes from
Proposition 4.1.
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We finally prove (iv). Let (i, j, k)= (123). Looking in the flat Ap, we see that
the singular triangle 1 is contained in the Weyl chamber of X with tip xi and that at
xi , we have6xi x j =6xi p j . Looking in the flat AD we get6xi xk =6xi Dk . Hence
6xi 1= (6xi p j , 6xi Dk). Since xi belongs to the flats A(Fi , F j ) and A(Fi , Fk),
we have that 6xi p j is opposite to 6xi Di and that 6xi Dk is opposite to 6xi pi .
Therefore the Weyl chambers 6xi 1 and 6xi Fi are opposite. It implies that 1
and the Weyl chamber from xi to Fi are contained in a common flat of X by basic
properties of real Euclidean buildings (see property (CO) of [Parreau 2000]). �

In the algebraic case the following remark provides an alternative proof of some
of the assertions of Theorem 0.2.

Remark 4.7. Let p̃i in V = K3 be a vector representing pi and D̃i in V ∗ be a
linear form representing Di . Let v = (v1, v2, v3) be the basis of V dual to the
basis (D̃1, D̃2, D̃3) of V ∗. Then in the projective plane [vi ] = D j ∩ Dk . We may
suppose that p̃1 = (0, 1, 1), p̃2 = (Z , 0, 1), p̃3 = (1, 1, 0) in the basis v, with
Z = Tri(F1, F2, F3). Then the element g ∈ GL(V ) whose matrix in the basis v is 1 1 0

0 1 1
1/Z 0 1


sends [vi ] to pi+1, hence AD to Ap. If |1+ Z | ≥ 1 and z = log|Z | ≥ 0, then the
fixed point set of g in AD is the image by the marked flat fv of the singular triangle
{λ ∈ C | λ1− λ3 ≤ log|Z |} (that is, 1).

4F. Complements. We add here for future use a simple description of the vertices
xi , x j , xk of the singular triangle 1 in Theorem 0.2 by the projections on transverse
trees at infinity.

Lemma 4.8. We keep the hypotheses and notation of Theorem 0.2.

(i) The projection πpi (xi ) of xi on the tree X pi is the center of the ideal tripod
(Di , pi p j , pi pk).

(ii) The projection πDi (xi ) of xi on the tree X Di is the center of the ideal tripod
(pi , Di ∩ D j , Di ∩ Dk).

(iii) The projection πpi (x j ) is the center of the ideal tripod (Di , pi p j , pi p jk).

(iv) The projection πDi (x j ) is the center of the ideal tripod (pi , Di∩D j , Di∩D jk).

Proof. As the point xi belongs to the three flats A(Fk, Fi ) and A(F j , Fi ) and
A(pi , p j , pk), its projection in the tree X pi belongs to the projection of A(F j , Fi ),
which is the line from Di to pi p j , to the projection of A(Fk, Fi ), which is the line
from Di to pi pk , and to the projection of A(pi , p j , pk), which is the line from
pi p j to pi pk . Hence (i) is proven. Assertion (ii) is proven in the same way.
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We now prove (iii). By (ii) applied to x j , we have that πD j (x j ) is the center
of the ideal tripod p j , p jk = D j ∩ Dk , D j ∩ Di . As x j is on a geodesic from D j

to pi , we may deduce that πpi (x j ) is the center of the ideal tripod pi p j , pi p jk ,
Di (using the canonical isomorphism X D j −→

∼ X pi ). The last assertion (iv) has
identical proof. �

Acknowledgments

I thank Frédéric Paulin for useful discussions and comments, and the members of
the Institut Fourier for their support.

References

[Balser 2008] A. Balser, “Convex rank 1 subsets of Euclidean buildings (of type A2)”, Geom. Dedi-
cata 131 (2008), 123–158. MR Zbl

[Bourdon 1996] M. Bourdon, “Sur le birapport au bord des CAT(−1)-espaces”, Inst. Hautes Études
Sci. Publ. Math. 83 (1996), 95–104. MR Zbl

[Bridson and Haefliger 1999] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curva-
ture, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences] 319, Springer, 1999. MR Zbl

[Bruhat and Tits 1984] F. Bruhat and J. Tits, “Schémas en groupes et immeubles des groupes clas-
siques sur un corps local”, Bull. Soc. Math. France 112:2 (1984), 259–301. MR Zbl

[Burger et al. 2010] M. Burger, A. Iozzi, and A. Wienhard, “Surface group representations with
maximal Toledo invariant”, Ann. of Math. (2) 172:1 (2010), 517–566. MR Zbl

[Clerc and Neeb 2006] J.-L. Clerc and K.-H. Neeb, “Orbits of triples in the Shilov boundary of a
bounded symmetric domain”, Transform. Groups 11:3 (2006), 387–426. MR Zbl

[Fock and Goncharov 2006] V. Fock and A. Goncharov, “Moduli spaces of local systems and higher
Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1–211. MR Zbl

[Fock and Goncharov 2007] V. Fock and A. B. Goncharov, “Moduli spaces of convex projective
structures on surfaces”, Adv. Math. 208:1 (2007), 249–273. MR Zbl

[Goldman 1980] W. M. Goldman, Discontinuous groups and the Euler class, Ph.D. thesis, Uni-
versity of California, Berkeley, 1980, Available at https://search.proquest.com/docview/302998874.
MR

[Goldman 1999] W. M. Goldman, Complex hyperbolic geometry, Oxford Mathematical Monographs,
The Clarendon Press Oxford University Press, New York, 1999. Oxford Science Publications. MR
Zbl

[Goldman and Iwahori 1963] O. Goldman and N. Iwahori, “The space of p-adic norms”, Acta Math.
109 (1963), 137–177. MR Zbl

[Kleiner and Leeb 1997] B. Kleiner and B. Leeb, “Rigidity of quasi-isometries for symmetric spaces
and Euclidean buildings”, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 115–197. MR Zbl

[Leeb 2000] B. Leeb, A characterization of irreducible symmetric spaces and Euclidean buildings
of higher rank by their asymptotic geometry, Bonner Mathematische Schriften [Bonn Mathematical
Publications] 326, Universität Bonn, Mathematisches Institut, 2000. MR Zbl

[Mühlherr et al. 2014] B. Mühlherr, K. Struyve, and H. Van Maldeghem, “Descent of affine buildings—
I, Large minimal angles”, Trans. Amer. Math. Soc. 366:8 (2014), 4345–4366. MR Zbl

http://dx.doi.org/10.1007/s10711-007-9221-1
http://msp.org/idx/mr/2369196
http://msp.org/idx/zbl/1162.53024
http://www.numdam.org/item?id=PMIHES_1996__83__95_0
http://msp.org/idx/mr/1423021
http://msp.org/idx/zbl/0883.53047
http://dx.doi.org/10.1007/978-3-662-12494-9
http://dx.doi.org/10.1007/978-3-662-12494-9
http://msp.org/idx/mr/1744486
http://msp.org/idx/zbl/0988.53001
http://www.numdam.org/item?id=BSMF_1984__112__259_0
http://www.numdam.org/item?id=BSMF_1984__112__259_0
http://msp.org/idx/mr/788969
http://msp.org/idx/zbl/0565.14028
http://dx.doi.org/10.4007/annals.2010.172.517
http://dx.doi.org/10.4007/annals.2010.172.517
http://msp.org/idx/mr/2680425
http://msp.org/idx/zbl/1208.32014
http://dx.doi.org/10.1007/s00031-005-1117-2
http://dx.doi.org/10.1007/s00031-005-1117-2
http://msp.org/idx/mr/2264460
http://msp.org/idx/zbl/1112.32010
http://dx.doi.org/10.1007/s10240-006-0039-4
http://dx.doi.org/10.1007/s10240-006-0039-4
http://msp.org/idx/mr/2233852
http://msp.org/idx/zbl/1099.14025
http://dx.doi.org/10.1016/j.aim.2006.02.007
http://dx.doi.org/10.1016/j.aim.2006.02.007
http://msp.org/idx/mr/2304317
http://msp.org/idx/zbl/1111.32013
https://search.proquest.com/docview/302998874
http://msp.org/idx/mr/2630832
http://msp.org/idx/mr/2000g:32029
http://msp.org/idx/zbl/0939.32024
http://dx.doi.org/10.1007/BF02391811
http://msp.org/idx/mr/0144889
http://msp.org/idx/zbl/0133.29402
http://www.numdam.org/item?id=PMIHES_1997__86__115_0
http://www.numdam.org/item?id=PMIHES_1997__86__115_0
http://msp.org/idx/mr/1608566
http://msp.org/idx/zbl/0910.53035
http://msp.org/idx/mr/1934160
http://msp.org/idx/zbl/1005.53031
http://dx.doi.org/10.1090/S0002-9947-2014-05985-0
http://dx.doi.org/10.1090/S0002-9947-2014-05985-0
http://msp.org/idx/mr/3206462
http://msp.org/idx/zbl/06345423


140 ANNE PARREAU

[Otal 1992] J.-P. Otal, “Sur la géometrie symplectique de l’espace des géodésiques d’une variété à
courbure négative”, Rev. Mat. Iberoamericana 8:3 (1992), 441–456. MR Zbl

[Parreau 2000] A. Parreau, “Immeubles affines: construction par les normes et étude des isométries”,
pp. 263–302 in Crystallographic groups and their generalizations (Kortrijk, 1999), edited by P.
Igodt et al., Contemp. Math. 262, Amer. Math. Soc., Providence, RI, 2000. MR Zbl

[Parreau 2011] A. Parreau, “Espaces de représentations complètement réductibles”, J. Lond. Math.
Soc. (2) 83:3 (2011), 545–562. MR Zbl

[Parreau 2012] A. Parreau, “Compactification d’espaces de représentations de groupes de type fini”,
Math. Z. 272:1-2 (2012), 51–86. MR Zbl

[Parreau 2015] A. Parreau, “Invariant subspaces for some surface groups acting on A2-euclidean
buildings”, preprint, 2015. arXiv

[Rousseau 2009] G. Rousseau, “Euclidean buildings”, pp. 77–116 in Géométries à courbure néga-
tive ou nulle, groupes discrets et rigidités, edited by L. Bessières et al., Sémin. Congr. 18, Soc. Math.
France, Paris, 2009. MR Zbl

[Talbi 2006] M. Talbi, “A Haagerup inequality, deformation of triangles and affine buildings”, J. Inst.
Math. Jussieu 5:2 (2006), 187–227. MR Zbl

[Tits 1974] J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics
386, Springer, Berlin, 1974. MR Zbl

[Tits 1986] J. Tits, “Immeubles de type affine”, pp. 159–190 in Buildings and the geometry of dia-
grams (Como, 1984), edited by L. A. Rosati, Lecture Notes in Math. 1181, Springer, 1986. MR
Zbl

[Toledo 1989] D. Toledo, “Representations of surface groups in complex hyperbolic space”, J. Dif-
ferential Geom. 29:1 (1989), 125–133. MR Zbl

Received 21 Jul 2016. Revised 10 Dec 2018.

ANNE PARREAU:

anne.parreau@univ-grenoble-alpes.fr
Université Grenoble Alpes, CNRS, IF, Grenoble, France

msp

http://dx.doi.org/10.4171/RMI/130
http://dx.doi.org/10.4171/RMI/130
http://msp.org/idx/mr/1202417
http://msp.org/idx/zbl/0777.53042
http://dx.doi.org/10.1090/conm/262/04180
http://msp.org/idx/mr/1796138
http://msp.org/idx/zbl/1060.20027
http://dx.doi.org/10.1112/jlms/jdq076
http://msp.org/idx/mr/2802498
http://msp.org/idx/zbl/1248.22006
http://dx.doi.org/10.1007/s00209-011-0921-8
http://msp.org/idx/mr/2968214
http://msp.org/idx/zbl/1322.22022
http://msp.org/idx/arx/1504.03775
http://msp.org/idx/mr/2655310
http://msp.org/idx/zbl/1206.51012
http://dx.doi.org/10.1017/S1474748005000241
http://msp.org/idx/mr/2225041
http://msp.org/idx/zbl/1172.43300
http://msp.org/idx/mr/0470099
http://msp.org/idx/zbl/0295.20047
http://dx.doi.org/10.1007/BFb0075514
http://msp.org/idx/mr/843391
http://msp.org/idx/zbl/0611.20026
http://dx.doi.org/10.4310/jdg/1214442638
http://msp.org/idx/mr/978081
http://msp.org/idx/zbl/0676.57012
mailto:anne.parreau@univ-grenoble-alpes.fr
http://msp.org


Innovations in Incidence Geometry
msp.org/iig

MANAGING EDITOR
Tom De Medts Ghent University

tom.demedts@ugent.be
Linus Kramer Universität Münster

linus.kramer@wwu.de
Klaus Metsch Justus-Liebig Universität Gießen

klaus.metsch@math.uni-giessen.de
Bernhard Mühlherr Justus-Liebig Universität Gießen

bernhard.m.muehlherr@math.uni-giessen.de
Joseph A. Thas Ghent University

thas.joseph@gmail.com
Koen Thas Ghent University

koen.thas@gmail.com
Hendrik Van Maldeghem Ghent University

hendrik.vanmaldeghem@ugent.be
HONORARY EDITORS

Jacques Tits
Ernest E. Shult †

EDITORS
Peter Abramenko University of Virginia

Francis Buekenhout Université Libre de Bruxelles
Philippe Cara Vrije Universiteit Brussel

Antonio Cossidente Università della Basilicata
Hans Cuypers Eindhoven University of Technology
Bart De Bruyn University of Ghent
Alice Devillers University of Western Australia

Massimo Giulietti Università degli Studi di Perugia
James Hirschfeld University of Sussex
Dimitri Leemans Université Libre de Bruxelles
Oliver Lorscheid Instituto Nacional de Matemática Pura e Aplicada (IMPA)

Guglielmo Lunardon Università di Napoli “Federico II”
Alessandro Montinaro Università di Salento

James Parkinson University of Sydney
Antonio Pasini Università di Siena (emeritus)
Valentina Pepe Università di Roma “La Sapienza”
Bertrand Rémy École Polytechnique

Tamás Szonyi ELTE Eötvös Loránd University, Budapest

PRODUCTION
Silvio Levy (Scientific Editor)

production@msp.org

See inside back cover or msp.org/iig for submission instructions.

The subscription price for 2019 is US $275/year for the electronic version, and $325/year (+$15, if shipping
outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address
should be sent to MSP.

Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial (ISSN 2640-7345 electronic, 2640-
7337 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley,
CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and addi-
tional mailing offices.

IIG peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY
mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/

© 2019 Mathematical Sciences Publishers

https://msp.org/iig/
tom.demedts@ugent.be
linus.kramer@wwu.de
klaus.metsch@math.uni-giessen.de
 bernhard.m.muehlherr@math.uni-giessen.de
thas.joseph@gmail.com
koen.thas@gmail.com
hendrik.vanmaldeghem@ugent.be
production@msp.org
http://dx.doi.org/10.2140/iig
http://msp.org/
http://msp.org/


Innovation in Incidence Geometry
Vol. 17 No. 2 2019

77Regular pseudo-hyperovals and regular pseudo-ovals in even
characteristic

JOSEPH A. THAS

85Conics in Baer subplanes
SUSAN G. BARWICK, WEN-AI JACKSON and PETER WILD

109On triples of ideal chambers in A2-buildings
ANNE PARREAU

141Opposition diagrams for automorphisms of small spherical buildings
JAMES PARKINSON and HENDRIK VAN MALDEGHEM

In
n

o
va

tio
n

in
In

c
id

e
n

c
e

G
e

o
m

e
try

17
:2

2019

http://dx.doi.org/10.2140/iig.2019.17.77
http://dx.doi.org/10.2140/iig.2019.17.77
http://dx.doi.org/10.2140/iig.2019.17.85
http://dx.doi.org/10.2140/iig.2019.17.109
http://dx.doi.org/10.2140/iig.2019.17.141

	Introduction
	1. Preliminaries
	1A. The model flat (A,W) of type A_N 
	1B. Projective spaces
	1C. Spherical buildings of type A_N-1 and associated projective spaces
	1D. Euclidean buildings
	1E. Spherical building and projective space at infinity
	1F. Local spherical building and projective space at a point
	1G. Transverse spaces at infinity
	1H. The A-valued Busemann cocycle
	1I. Cross ratio on the boundary of a tree
	1J. Algebraic case: link with usual cross ratio
	1K. Cross ratio on the boundary of an A_2-Euclidean building

	2. Some basic ideal configurations
	2A.  Extension of orthogonal projection to the boundary in `39`42`"613A``45`47`"603ACAT(0) spaces 
	2B. Centers of generic (N+1)-tuples.
	2C. Projecting two ideal points onto a flat

	3. Triple ratio of a triple of ideal chambers
	3A. Nondegenerate and generic triples of flags
	3B. Algebraic triple ratio
	3C. Geometric triple ratio
	3D. Geometric triple ratio from algebraic triple ratio

	4. Proof of the main result
	4A. Associated points in the building
	4B. In the flat A_ij
	4C. In the flat A_p
	4D. In the flat A_D
	4E. The classification
	4F. Complements

	Acknowledgments
	References
	
	

