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An automorphism θ of a spherical building 1 is called capped if it satisfies the
following property: if there exist both type J1 and J2 simplices of1 mapped onto
opposite simplices by θ then there exists a type J1 ∪ J2 simplex of 1 mapped
onto an opposite simplex by θ . In previous work we showed that if 1 is a thick
irreducible spherical building of rank at least 3 with no Fano plane residues
then every automorphism of 1 is capped. In the present work we consider the
spherical buildings with Fano plane residues (the small buildings). We show
that uncapped automorphisms exist in these buildings and develop an enhanced
notion of “opposition diagrams” to capture the structure of these automorphisms.
Moreover we provide applications to the theory of “domesticity” in spherical
buildings, including the complete classification of domestic automorphisms of
small buildings of types F4 and E6.

Introduction

Let θ be an automorphism of a thick irreducible spherical building1 of type (W, S).
The opposite geometry of θ is the set Opp(θ) of all simplices σ of 1 such that
σ and σ θ are opposite in 1. This geometry forms a natural counterpart to the
more familiar fixed element geometry Fix(θ), however by comparison very little
is known about Opp(θ).

This paper is the continuation of [Parkinson and Van Maldeghem 2019], where
we initiated a systematic study of Opp(θ) for automorphisms of spherical buildings.
In particular in [Parkinson and Van Maldeghem 2019] we showed that if1 is a thick
irreducible spherical building of rank at least 3 containing no Fano plane residues
then Opp(θ) has the following weak closure property: if there exist both type J1

and J2 simplices in Opp(θ) then there exists a type J1 ∪ J2 simplex in Opp(θ).
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Automorphisms with this property are called capped, and the thick irreducible
spherical buildings of rank at least 3 with no Fano plane residues are called large
buildings. Thus every automorphism of a large building is capped.

In the present paper we investigate Opp(θ) for the thick irreducible spherical
buildings of rank at least 3 containing a Fano plane residue. These are called the
small buildings. In particular we show that, in contrast to the case of large buildings,
uncapped automorphisms exist for all small buildings (with the possible exception
of E8(2) where we provide conjectural examples).

A key tool in [Parkinson and Van Maldeghem 2019] was the notion of the oppo-
sition diagram of an automorphism θ , consisting of the triple (0, J, π), where 0
is the Coxeter graph of (W, S), J is the union of all J ′ ⊆ S such that there exists
a type J ′ simplex in Opp(θ), and π is the automorphism of 0 induced by θ (less
formally, the opposition diagram is drawn by encircling the nodes J of 0). If θ
is capped then this diagram turns out to encode a lot of information about the
automorphism, essentially because it completely determines the partially ordered
set T (θ) of all types of simplices mapped onto opposite simplices by θ . However
for an uncapped automorphism the opposition diagram does not necessarily deter-
mine T (θ). For example in the polar space 1= B3(2) there are collineations θ1,
θ2 and θ3 each with opposition diagram • • • (that is, each θi maps a vertex of
each type to an opposite vertex) whose partially ordered sets T (θi ), for i = 1, 2, 3,
are the following (see Theorem 3.7 for explicit examples):

{1} {3} {2}

{1, 3} {1, 2} {2, 3}

{1, 2, 3}

{1} {3} {2}

{1, 3} {1, 2} {2, 3}

{1} {3} {2}

{1, 3} {2, 3}

Note that only θ1 is capped (hence, in particular, analogues of θ2 and θ3 cannot
exist for polar spaces B3(F) with |F| > 2 by the main result of [Parkinson and
Van Maldeghem 2019]).

Thus the opposition diagram of an uncapped automorphism needs to be en-
hanced to properly understand these automorphisms. We achieve this by defining
the decorated opposition diagram of an uncapped automorphism.

The full definition is given in Section 1, however for the purpose of this introduc-
tion consider the following simplified situation. Suppose that θ is an automorphism
with the property that the induced automorphism π of the Coxeter graph 0 is the
opposition automorphism w0. Then the decorated opposition diagram of θ is the
quadruple (0, J, K , π) where (0, J, π) is the opposition diagram, and

K={ j∈J |there existsa type J\{ j} simplex mapped onto an opposite simplex by θ}.

Less formally, the decorated opposition diagram is drawn by encircling the nodes
of J , and then shading those nodes of K . Thus, for example, the decorated
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1 diagrams

An(2) • • • • • • • • • •• • • • • • • • • •

Bn(2) or Bn(2, 4),
(3≤ j ≤ n)

• • • • • • • • • •

j
• • • • • • • • • • • • • • • • • • • •• • • • • • • • • •

Dn(2), n ≥ 4 even
(4≤ 2 j ≤ n− 2)

• • • • • • • • •
•

•2 j
•• • • • • • • • •

•

•
• • • • • • • • •

•

•
• • • • • • • • •

•

•

Dn(2), n ≥ 4 odd
(4≤ 2 j ≤ n− 3)

• • • • • • • • •
•

•2 j
•• • • • • • • • •

•

•
• • • • • • • • •

•

•

•

•
• • • • • • • • •

•

•

Dn(2), n ≥ 4 even
(3≤ 2 j + 1≤ n− 3)

• • • • • • • • •
•

•2 j + 1
•• • • • • • • • •

•

•
• • • • • • • • •

•

•

•

•
• • • • • • • • •

•

•

Dn(2), n ≥ 4 odd
(3≤ 2 j + 1≤ n− 2)

• • • • • • • • •
•

•2 j + 1
•• • • • • • • • •

•

•
• • • • • • • • •

•

•
• • • • • • • • •

•

•

Table 1. Decorated opposition diagrams of uncapped automor-
phisms (classical types).

opposition diagrams of the two uncapped automorphisms of B3(2) given above are

• • •• • • and • • •• • • .

At an intuitive level, the more encircled nodes that are shaded on the decorated
opposition diagram of an uncapped automorphism, the “closer” the automorphism
is to being capped.

The main theorem of this paper is Theorem 1 below. Part (a) of the theorem
shows that the decorated opposition diagram of an uncapped automorphism lies
in a small list of diagrams, hence severely restricting the structure of uncapped
automorphisms. Part (b) deals with the existence of uncapped automorphisms,
showing that the list provided in part (a) has no redundancies, with only the E8(2)
case remaining open due to the size of the building rendering our computational
techniques inadequate. We strongly believe that the two E8(2) diagrams are indeed
realised as opposition diagrams; see Conjecture 4.8 for details.

Theorem 1.

(a) Let θ be an uncapped automorphism of a thick irreducible spherical build-
ing 1 of rank at least 3. Then the decorated opposition diagram of θ appears
in Table 1 or Table 2.

(b) Let 1 be a small building. Each diagram appearing in the respective row of
Table 1 or Table 2 can be realised as the decorated opposition diagram of
some uncapped automorphism of 1, with the exception perhaps of the two
E8(2) diagrams.

Let us briefly describe corollaries to Theorem 1(a) (see Section 2B for details
and precise statements). Recall that the displacement disp(θ) of an automorphism θ

is the maximum length of δ(C,Cθ ), with C a chamber.
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1 diagrams

E6(2) • •
•

•

•

•

•

•

•

•
• •

•

•

•

• • • • • •

•

• • • • •

•

E7(2)
• • • • • •

•

• •• • • • • •

•

• • • • • •

•

• • • • • •

•

E8(2)
• • • • • • •

•

• •• • • • • • •

•

• • • • • • •

•

• • • • • • •

•

F4(2) • • • •• • • • • • • •• • • • • • • •• • • •

F4(2, 4) • • • •• • • •

Table 2. Decorated opposition diagrams of uncapped automorphisms
(exceptional types). The arrow in the F4(2, 4) diagram indicates that
the residues of type {1, 2} are projective planes of order 2.

Corollary 2. Let θ be an automorphism of a thick irreducible spherical building 1.

(a) If θ is an involution, θ is capped.

(b) If θ is uncapped, T (θ) is determined by the decorated opposition diagram of θ .

(c) If θ is uncapped, disp(θ) is determined by the decorated opposition diagram
of θ .

In particular, if 1 has type (W, S) and J = Typ(θ) then Corollary 2(c) implies
that (see Corollary 2.29)

disp(θ)=
{

diam(W )− diam(WS\J ) if θ is capped,
diam(W )− diam(WS\J )− 1 if θ is uncapped.

To illustrate this in an example, it follows that if θ is a nontrivial automorphism of
a thick E8 building then disp(θ) ∈ {57, 90, 107, 108, 119, 120}, which is a surpris-
ingly restricted list of possibilities (see Remark 2.30). Moreover, displacements of
107 or 119 can only occur for uncapped automorphisms of the small building E8(2).

We also provide applications of Theorem 1(a) to the study of domesticity in
spherical buildings (recall that an automorphism is called domestic if it maps no
chamber to an opposite chamber). These automorphisms have recently enjoyed ex-
tensive investigation, including the series [Temmermans et al. 2011; 2012a; 2012b]
where domesticity in projective spaces, polar spaces, and generalised quadrangles
is studied, [Van Maldeghem 2012] where symplectic polarities of large E6 buildings
are classified in terms of domesticity, [Van Maldeghem 2014] where domestic tri-
alities of D4 buildings are classified, and [Parkinson et al. 2015] where domesticity
in generalised polygons is studied.

To give one example of our applications to domesticity, suppose that 1 is a
simply laced spherical building, and that θ is a domestic automorphism inducing
opposition on the type set with the property that θ maps at least one vertex of
each type onto an opposite vertex (such automorphisms are called “exceptional
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domestic”). Then we show that in fact θ maps simplices of each type J ( S onto
opposite simplices (such automorphisms are called “strongly exceptional domes-
tic”). In particular, this implies that disp(θ)= diam(1)−1 for exceptional domestic
automorphisms.

Theorem 1(b) provides the first known examples of exceptional domestic auto-
morphisms of spherical buildings of rank at least 3 (examples were previously only
known for generalised polygons; see [Parkinson et al. 2015]). In fact Theorem 1(b)
shows that, with the possible exception of E8(2), every small building admits a
strongly exceptional domestic automorphism.

The proof of Theorem 1(b) for the small buildings of exceptional type involves
computations using [Magma], and in particular the groups of Lie type package
[Cohen et al. 2004]. In fact for the small buildings of type F4 and E6 we are able to
prove a much stronger result and completely classify the domestic automorphisms
of these buildings. To perform these calculations we implemented the minimal
faithful permutation representations of the ATLAS groups F4(2), F4(2).2, E6(2),
E6(2).2, 2E6(22), and 2E6(22).2 (respective permutation degrees 69615, 139230,
139503, 279006, 3968055 and 3968055) into the Magma system. At the time of
writing these representations were not readily available in either Magma or GAP,
and therefore they are provided on Parkinson’s webpage.

We conclude this introduction with an outline of the structure of the paper. In
Section 1 we provide definitions and background. The proofs of Theorem 1(a)
and its corollaries are contained in Section 2. The proof of Theorem 1(b) is di-
vided across Section 3 for the classical types and Section 4 for the exceptional
types. Moreover, Section 4 contains the complete classification of domestic auto-
morphisms of the small buildings of types F4 and E6.

1. Definitions and background

We refer to [Abramenko and Brown 2008] for the general theory of buildings.
In this section we will briefly recall some notation, mainly from [Parkinson and
Van Maldeghem 2019, Section 1]. Let 1 be a spherical building of type (W, S),
typically considered as a simplicial complex with type map τ :1→ 2S . Let C be
the set of chambers (maximal simplices) of 1, and let δ : C× C→W be the Weyl
distance function.

Chambers C and D of 1 are opposite if and only if they are at maximal dis-
tance in the chamber graph (with adjacency given by the union of the s-adjacency
relations: C ∼s D if and only δ(C, D)= s). Equivalently, chambers C, D ∈ C are
opposite if and only if δ(C, D)= w0 where w0 is the longest element of W .

If J ⊆ S we write J op
= Jw0 = w−1

0 Jw0 (the “opposite type” to J ). The
definition of opposition for chambers extends naturally to arbitrary simplices as
follows (see [Abramenko and Brown 2008, Lemma 5.107]).
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Definition 1.1. Simplices α, β of 1 are opposite if τ(β)= τ(α)op and there exists
a chamber A containing α and a chamber B containing β such that A and B are
opposite.

An automorphism of 1 is a simplicial complex automorphism θ :1→1. Note
that θ does not necessarily preserve types. Indeed each automorphism θ :1→1

induces a permutation πθ of the type set S, given by δ(C, D) = s if and only if
δ(Cθ , Dθ )= sπθ , and this permutation is a diagram automorphism of the Coxeter
graph 0 of (W, S). If 1 is irreducible, then from the classification of irreducible
spherical Coxeter systems we see that πθ : S→ S either

(1) is the identity, in which case θ is called a collineation (or type-preserving),

(2) has order 2, in which case θ is called a duality, or

(3) has order 3, in which case θ is called a triality; this only occurs in type D4.

Automorphisms θ :1→1 that induce opposition on the type set (that is, πθ =w0,
where w0 is the diagram automorphism given by sw0 = w−1

0 sw0) are called op-
pomorphisms. For example, oppomorphisms of an E6 building are dualities, and
oppomorphisms of an E7 building are collineations (see, for example, [Abramenko
and Brown 2008, Section 5.7.4]).

Let θ be an automorphism of 1. The opposite geometry of θ is

Opp(θ)= {σ ∈1 | σ is opposite σ θ }.

A fundamental result of Leeb [2000, Section 5] and Abramenko and Brown [2009,
Proposition 4.2] states that if θ is a nontrivial automorphism of a thick spherical
building then Opp(θ) is necessarily nonempty (this result has been generalised to
the setting of twin buildings; see [Devillers et al. 2013]).

The type Typ(θ) of an automorphism θ is the union of all subsets J ⊆ S such
that there exists a type J simplex in Opp(θ). The opposition diagram of θ is the
triple (0,Typ(θ), πθ ). Less formally, the opposition diagram of θ is depicted by
drawing 0 and encircling the nodes of Typ(θ), where we encircle nodes in minimal
subsets invariant under w0 ◦πθ . We draw the diagram “bent” (in the standard way)
if w0 ◦πθ 6= 1. For example, consider the following diagrams:

• •
•

•

•

• • • • • •

•

The diagram on the left represents a collineation θ of an E6 building with Typ(θ)=
{1, 2, 6}, and the diagram on the right represents a duality θ of an E6 building with
Typ(θ)= {1, 6}.

We call an opposition diagram empty if no nodes are encircled (i.e., Typ(θ)=∅),
and full if all nodes are encircled (i.e., Typ(θ)= S).
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Definition 1.2. Let 1 be a spherical building of type (W, S). Let θ be a nontrivial
automorphism of 1, and let J ⊆ S. Then θ is called:

(a) Capped if there exists a type Typ(θ) simplex in Opp(θ), and uncapped other-
wise.

(b) Domestic if Opp(θ) contains no chamber.

(c) J -domestic if Opp(θ) contains no type J simplex (this terminology is reserved
for subsets J which are stable under w0 ◦πθ ).

(d) Exceptional domestic if θ is domestic with full opposition diagram.

(e) Strongly exceptional domestic if θ is domestic, but not J -domestic for any
strict subset J of S invariant under w0 ◦πθ .

Note that if θ is a domestic automorphism with w0 ◦πθ = 1 then θ is exceptional
domestic if and only if there exists a vertex of each type mapped to an opposite
vertex, and θ is strongly exceptional domestic if and only if there exists a panel of
each cotype mapped to an opposite panel (recall that a panel is a codimension 1
simplex).

To study uncapped automorphisms θ we introduce the decorated opposition di-
agram. Let Jθ denote the set of subsets I ⊆ S which are minimal with respect
to the condition Iπθw0 = I . For example, if θ induces opposition on 0 then
Jθ = {{s} | s ∈ S} is the set of all singleton subsets of S.

Definition 1.3. The decorated opposition diagram of an uncapped automorphism θ

is the quadruple (0, J, Kθ , πθ ) where J = Typ(θ) and Kθ ⊆ J is the union of all
J ′ ∈Jθ such that there exists a type J\J ′ simplex mapped onto an opposite simplex.

Less formally, the decorated opposition diagram is drawn by shading the nodes
of Kθ on the opposition diagram. For example, consider the following.

• •
•

•

•

•

•

•

•

•
• •

•

•

•

• • • • • •

•

• • • • •

•

The decorated opposition diagram on the left represents an uncapped collineation
of E6(2) with the property that there are simplices of types S\{2} and S\{4} mapped
onto opposite simplices, and no simplices of types S\{3, 5} nor S\{1, 6} mapped
onto opposite simplices — this automorphism is exceptional domestic, but it is not
strongly exceptional domestic. The diagram on the right represents an uncapped
duality of E6(2) with the property that there are panels of each cotype mapped onto
opposite panels — this automorphism is strongly exceptional domestic.

Residue arguments are used extensively in the proof of Theorem 1(a), and so
we conclude this section with a summary of the techniques. We first briefly de-
fine residues and projections (see [Abramenko and Brown 2008] for details). The
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residue Res(α) of a simplex α ∈1 is the set of all simplices of 1 which contain α,
together with the order relation induced by that of 1. Then Res(α) is a building
whose diagram is obtained from the diagram of 1 by removing all nodes which
belong to τ(α). The projection onto α is the map projα :1→ Res(α) defined as
follows. Firstly, if B is a chamber of 1 then there is a unique chamber A ∈ Res(α)
such that `(δ(A, B)) < `(δ(A′, B)) for all chambers A′ ∈ Res(α) with A′ 6= A,
and we define projα(B)= A. In other words, projα(B) is the unique chamber A of
Res(α) with the property that every minimal length gallery from B to Res(α) ends
with the chamber A. Now, if β is an arbitrary simplex we define

projα(β)=
⋂

B

projα(B),

where the intersection is over all chambers B in Res(β). In other words, projα(β) is
the unique simplex γ of Res(α) which is maximal subject to the property that every
minimal length gallery from a chamber of Res(β) to Res(α) ends in a chamber
containing γ .

Let θ be an automorphism of 1, and suppose that σ ∈ Opp(θ). It follows from
[Tits 1974, Theorem 3.28] that the projection map projσ : Res(σ θ )→ Res(σ ) is an
isomorphism. Define

θσ : Res(σ )−→∼ Res(σ ) by θσ = projσ ◦ θ.

The type map induced by θσ is as follows.

Proposition 1.4. Let θ be an automorphism of a spherical building 1 of type
(W, S). Suppose that σ ∈ Opp(θ) and let J = τ(σ ). Then the type map on S\J
induced by θσ is wS\J ◦w0 ◦πθ .

Proof. This follows easily from [Abramenko and Brown 2008, Corollary 5.116]. �

Example 1.5. We will use Proposition 1.4 many times in our residue arguments.
For example, consider a duality θ of an Dn building, and suppose that v ∈Opp(θ) is
a type i vertex, with i ≤n−2. The residue of v is a building of type Ai−1×Dn−i , and
the induced automorphism θv of Res(v) is a duality on the Ai−1 component, and a
duality (respectively, collineation) on the Dn−i component if i is even (respectively,
odd).

It is useful to note that if θ is an oppomorphism, and if σ ∈ Opp(θ), then θσ is
a oppomorphism of Res(σ ) (this follows immediately from Proposition 1.4).

From [Tits 1974, Proposition 3.29] we have:

Proposition 1.6. Let θ be an automorphism of a spherical building 1 and let α ∈
Opp(θ). If β ∈ Res(α) then β is opposite βθ in the building 1 if and only if β is
opposite βθα in the building Res(α).

The following corollary facilitates inductive residue arguments.



OPPOSITION DIAGRAMS FOR AUTOMORPHISMS OF SMALL SPHERICAL BUILDINGS 149

Corollary 1.7. Let θ : 1→ 1 be a domestic automorphism and let σ ∈ Opp(θ).
Then θσ : Res(σ )→ Res(σ ) is a domestic automorphism of the building Res(σ ).

Proof. Let J = τ(σ ). If θσ is not domestic then there is a chamber σ ′ of Res(σ )
mapped onto an opposite chamber by θσ . Then σ ∪ σ ′ is a chamber of 1, and
from Proposition 1.6 this chamber is mapped onto an opposite chamber, which is
a contradiction. �

2. Theorem 1(a) and its corollaries

In this section we prove Theorem 1(a) and give applications to determining the
partially ordered set T (θ), domesticity, cappedness of involutions, and calculating
displacement.

2A. Proof of Theorem 1(a). By [Parkinson and Van Maldeghem 2019, Theorem 1]
if θ is an uncapped automorphism of a thick irreducible spherical building1 of rank
at least 3 then 1 is a small building. These are precisely the buildings listed in the
first column of Tables 1 and 2. Moreover, the following proposition from [Parkin-
son and Van Maldeghem 2019] explains why collineations of An , trialities of D4,
and dualities of F4 do not appear in Tables 1 and 2.

Proposition 2.1. Every collineation of a thick An building is capped, every triality
of a thick D4 building is capped, and every duality of a thick F4 building is capped.

Proof. See [Parkinson and Van Maldeghem 2019, Corollary 3.9, Theorem 3.17,
Lemma 4.1]. �

Buildings of type An play an important role in our proof techniques owing to
their prevalence as residues of spherical buildings of arbitrary type. Every thick
building of type An with n> 2 is a projective space PG(n,K) over a division ring K,
where the type i vertices of the building are the (i−1)-spaces of the projective space.
Thus points have type 1, lines have type 2, and so on.

Definition 2.2. Let F be a field. A duality of A2n−1(F) with U θ
= {v | (u, v) = 0

for all u ∈U } for some nondegenerate symplectic form ( · , · ) on F2n is called a
symplectic polarity.

Let us recall some useful facts concerning dualities of type A buildings.

Lemma 2.3 [Temmermans et al. 2011, Lemma 3.2]. If the projective space 1=
PG(n,K) admits a duality θ for which all points are absolute (equivalently no
type 1 vertex is mapped to an opposite), then n is odd, K is a field, and θ is a
symplectic polarity.

Lemma 2.4 [Parkinson and Van Maldeghem 2019, Lemma 3.4]. If θ is a sym-
plectic polarity of an A2n−1 building then θ is {i}-domestic for each odd i , and
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each vertex mapped to an opposite vertex is contained in a type {2, 4, . . . , 2n− 2}
simplex mapped to an opposite simplex. Hence symplectic polarities are capped.

Theorem 2.5 [Parkinson and Van Maldeghem 2019, Theorems 3.10 and 3.11].
Let θ be a domestic duality of the small building 1 = An(2) with n ≥ 2. Then
either θ is a strongly exceptional domestic duality or n is odd and θ is a symplectic
polarity.

The following proposition shows that the diagrams for uncapped dualities of An

buildings are as claimed in the first row of Table 1.

Proposition 2.6. Every uncapped duality of An(2) is a strongly exceptional domes-
tic duality.

Proof. If θ is uncapped then necessarily θ is domestic, and so by Theorem 2.5 θ
is either a symplectic polarity or is strongly exceptional domestic. The first case is
eliminated by Lemma 2.4. �

We now consider the small buildings of types Bn and Dn . We first require some
preliminary results. It is convenient at times to use terminology like “x is domestic
for θ” and “x is nondomestic for θ” as short hand for “θ does not map x to an
opposite” and “x is mapped to an opposite by θ”. If the automorphism θ is clear
from context we will simply say “x is domestic” or “x is nondomestic”.

Lemma 2.7. Let n ≥ 4 and let 1 be a building of type Bn or Dn+2 with thick
projective plane residues. Let θ be an automorphism and let J = Typ(θ). If there
exists j ∈ J odd with j ≤ n, then {1, 2, . . . , j} ⊆ J .

Proof. Let v be a nondomestic type j vertex. Then θv acts as a duality on the A j−1

component of the residue of v (by Proposition 1.4). Since j is odd, this duality
is either nondomestic or is exceptional domestic (see Theorem 2.5), and in either
case 1, 2, . . . , j − 1 ∈ J , and hence the result. �

Lemma 2.8. Let1 be a building of type Bn or Dn+2 with n≥ 4 and thick projective
plane residues, and let θ be a collineation. Let J = Typ(θ). Suppose that 3≤ j < n,
and that { j−1, j}⊆ J and j+1 /∈ J . Then there exists a type {1, j}-simplex mapped
onto an opposite simplex by θ .

Proof. We first show that θ is not { j − 1, j}-domestic. For if θ is { j − 1, j}-
domestic, then since θ is also { j − 1, j + 1}-domestic it follows from [Parkinson
and Van Maldeghem 2019, Lemma 3.25] that either θ is { j − 1}-domestic or { j}-
domestic, a contradiction. Thus there exists a type { j − 1, j} simplex σ mapped
onto an opposite. If v is the type j vertex of this simplex then θv acts as a duality
on the A j−1 component (Proposition 1.4) mapping a hyperplane to an opposite (by
Proposition 1.6). Thus θv is either nondomestic or strongly exceptional domestic
on the A j−1 component, and in either case there exists a nondomestic type {1, j}
simplex (note that j − 1≥ 2). �
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Lemma 2.9. Let 1 be a small building of type Bn or Dn+1, and let j < n. Sup-
pose that θ is an uncapped collineation of type J = {1, 2, 3, . . . , j}. Then θ is
{1, 2, 3, . . . , j − 1}-domestic.

Proof. Suppose that there is a nondomestic type {1, 2, . . . , j−1} simplex, and let v
be the type j−1 vertex of this simplex. If θ is uncapped then necessarily θv acts as
the identity on the “upper” residue of type Bn− j+1 or Dn− j+2 (by Proposition 1.6).
Thus [Parkinson and Van Maldeghem 2019, Lemma 3.28] with i = j − 2 and
`= j − 3 (note the index shift due to the fact that we used projective dimension
in [Parkinson and Van Maldeghem 2019]) implies that every ( j−1)-space in the
polar space of 1 has a fixed point. Thus no type j vertex of 1 is mapped onto an
opposite vertex, contradicting the fact that j ∈ J . �

We can now complete the proof of Theorem 1(a) for buildings of type Bn . We
allow the additional generality of thin cotype n panels to facilitate our later argu-
ments for type Dn .

Proposition 2.10. Let 1 be a ( possibly nonthick) building of type Bn with Fano
plane residues and n ≥ 3, and let θ be a collineation of 1. If θ is uncapped, then
the decorated opposition diagram of θ is one of the diagrams in Table 1.

Proof. Suppose that θ is uncapped. Let J = Typ(θ), and let j =max J . Then j ≥ 3,
for if j = 1 then θ is capped, and if j = 2 then either J = {2} and θ is capped, or
J = {1, 2} in which case [Parkinson and Van Maldeghem 2019, Fact 3.21] implies
that θ is capped.

We claim that J contains an odd element. For if every element of J is even
then for each nondomestic type j-vertex v the induced automorphism θv is a point
domestic duality of an A j−1 building (by Propositions 1.4 and 1.6). Thus θv is a
symplectic polarity (Lemma 2.3), and so there exists a type {2, 4, . . . , j − 2} sim-
plex of the residue mapped to an opposite (Lemma 2.4). Hence by Proposition 1.6
there is a type {2, 4, . . . , j − 2, j} = J simplex of 1 mapped onto an opposite and
so θ is capped, a contradiction.

Let k ∈ J be the maximal odd node. By Lemma 2.7 we have {1, 2, . . . , k} ⊆ J .
Consider the following cases.

(1) If j = n then by [Parkinson and Van Maldeghem 2019, Proposition 3.12(2)]
there is a nondomestic type {1, n} simplex. In the An−1 residue of the type n vertex
of this simplex we have a strongly exceptional domestic duality of An−1 (since it
is domestic and maps a point to an opposite), and hence there are panels of each
cotype 1, 2, . . . , n − 1 mapped onto opposites in 1. Thus θ has either the first
diagram listed in Table 1 (with j = n) or the second diagram listed in Table 1
(strongly exceptional domestic).

(2) If k= j<n then J ={1, 2, . . . , j}, and by Lemma 2.8 there exists a nondomestic
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type {1, j} simplex. Considering the type A j−1 residue of the type j vertex of this
simplex, and noting that j − 1 is even, we see that in 1 there are nondomestic
simplices of each type J\{ j ′} with j ′ = 1, 2, . . . , j − 1 (using Theorem 2.5), and
hence the diagram of θ is either

• • • • • • • • • •

j
• • • • • • • • • • or • • • • • • • • • •

j
• • • • • • • • • • (2-1)

The first digram is eliminated by Lemma 2.9.

(3) If k < j < n then j is even, and as above we have {2, 4, . . . , j − 2, j} ⊆ J .
In particular {k, k + 1} ⊆ J and k + 2 /∈ J (as k is the maximum odd node of J ,
and note that k + 2 ≤ n). Lemma 2.8 implies that there is a nondomestic type
{1, k + 1} simplex. If k + 1 = j then as above we have the diagrams (2-1) and
Lemma 2.9 eliminates the first of the diagrams. If k + 1 < j then k + 3 ≤ j < n.
If θ is {1, k + 3}-domestic, then since θ is not {k+3}-domestic, [Parkinson and
Van Maldeghem 2019, Lemma 3.29] implies that θ is {1, k+ 1}-domestic, a con-
tradiction. Hence there exists a type {1, k+ 3} simplex mapped onto an opposite.
However, considering the Ak+2 residue of the type k+ 3 vertex of this simplex we
see that θ is not {k+2}-domestic, contradicting the maximality of k.

Hence the result. �

Corollary 2.11. Let 1 be a building of type Bn with thick projective spaces, and
let θ be a collineation and n ≥ i ≥ 3. If θ is {1, i}-domestic then θ is either {1}-
domestic or {i}-domestic.

Proof. If θ is capped then the result is true by definition. If θ is uncapped then the
result follows directly from the classification of uncapped diagrams given above. �

Remark 2.12. The assumption i ≥ 3 cannot be removed from Corollary 2.11. For
example, consider the exceptional domestic collineation of the generalised quad-
rangle B2(2) (see [Temmermans et al. 2012b, Section 4]). More generally, for
each n ≥ 2 there exists an uncapped collineation of Bn(2) with Typ(θ) = {1, 2}
(see Theorem 3.7).

We now continue with the analysis of buildings of type Dn . Recall that each
building of type Dn can be realised as the oriflamme geometry of the space F2n

equipped with an orthogonal form of Witt index n, for some field F. The vertices of
type j for j ∈ {1, . . . , n−2} are the totally isotropic spaces of dimension j , and the
vertices of type n− 1 and n are the totally isotropic subspaces of dimension n (cor-
responding to the orbits of the action of the associated simple orthogonal group).
To each such building 1 of type Dn there is an associated (nonthick) building
1′ of type Bn . The type j vertices of 1′, for 1 ≤ j ≤ n, are the totally isotropic
subspaces of dimension j . Each type n−1 vertex of1′ determines a type {n−1, n}
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simplex of 1, and vice versa, as follows. A type n− 1 vertex of 1′ is an (n−1)-
dimensional totally isotropic space W , and there are precisely two totally isotropic
n-dimensional subspaces U, V containing W and (U, V ) is an {n− 1, n}-simplex
of 1. Conversely, if (U, V ) is a type {n− 1, n} simplex of 1 then W =U ∩ V is
a type n− 1 vertex of 1′.

We first recall two facts from [Parkinson and Van Maldeghem 2019].

Lemma 2.13 [Parkinson and Van Maldeghem 2019, Lemma 3.32]. Let 1 be a
thick building of type Dn with n odd, and let 1′ be the associated nonthick Bn

building. A collineation θ maps a type {n − 1, n} simplex of 1 to an opposite
simplex if and only if it maps the associated type n− 1 vertex of 1′ to an opposite
vertex.

Lemma 2.14 [Parkinson and Van Maldeghem 2019, Proposition 3.16]. No duality
of a thick building of type Dn is {1}-domestic.

Lemma 2.15. Let 1 be a thick building of type Dn with n ≥ 5 odd, and let θ
be a collineation. If θ is {1, n − 1, n}-domestic then θ is either {1}-domestic or
{n− 1, n}-domestic.

Proof. Suppose that θ is neither {1}-domestic nor {n−1, n}-domestic. Since θ maps
a type {n− 1, n}-simplex to an opposite, by familiar residue arguments there are
vertices of types 2, 4, . . . , n− 3 mapped onto opposite vertices. These vertex types
are therefore also mapped onto opposites in the associated nonthick Bn building 1′.
If there are no type n− 2 or n− 1 vertices of 1′ mapped onto opposite vertices,
then θ is {n−3, n−2}-domestic and {n−3, n−1}-domestic (on 1′) and thus since
θ is not {n−3}-domestic it follows from [Parkinson and Van Maldeghem 2019,
Lemma 3.25] that every space of vector space dimension at least n− 2 contains a
fixed point. However by Lemma 2.13 there are n− 1 dimensional spaces mapped
onto opposites, a contradiction. Thus either (i) θ is not {n− 3, n− 2}-domestic, or
(ii) θ is not {n− 3, n− 1}-domestic (on 1′).

Consider case (i). Let v be the type n−2 vertex of a nondomestic type {n−3, n−2}
simplex. Then θv acts on the upper type A1×A1 residue by permuting the com-
ponents, and thus θv is nondomestic on this upper residue (see [Parkinson and
Van Maldeghem 2019, Lemma 3.7]). Moreover θv is a duality on the lower type
An−3 residue mapping a hyperplane (a type n− 3 vertex) of this residue onto an
opposite, and thus θv also maps a point (a type 1 vertex) to an opposite. Thus θ
maps a type {1, n− 1, n} simplex to an opposite, a contradiction.

Consider case (ii). Since θ is neither {1}-domestic nor {n− 1}-domestic on 1′,
and since n−1≤ 4, Corollary 2.11 implies that there exists a type {1, n−1} simplex
of 1′ mapped to an opposite. Now Lemma 2.13 implies that θ is not {1, n− 1, n}-
domestic on 1. This contradiction establishes the result. �
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Proposition 2.16. Let 1 be the building Dn(2), n ≥ 4, and let θ be a collineation
of 1. If θ is uncapped then the decorated opposition diagram of θ is contained in
Table 1.

Proof. Let θ be an uncapped collineation of Dn(2), and let J = Typ(θ). Let
j =max J .

Case 1: j ∈ {n−1, n} with n odd. Then necessarily {n−1, n} ⊆ J . If J\{n−1, n}
contains no odd types, then the induced automorphism in every residue of a non-
domestic {n − 1, n}-simplex is a symplectic polarity, and hence θ is capped, a
contradiction. Thus J\{n− 1, n} contains an odd node, and so by Lemma 2.7 we
have 1 ∈ J . Thus by Lemma 2.15 there exists a type {1, n− 1, n} simplex mapped
onto an opposite simplex, and it easily follows that θ maps simplices of each type
S\{i} with i = 1, 2, . . . , n− 2 to opposite. Hence the claimed diagram.

Case 2: j ∈ {n−1, n} with n even. By duality symmetry we may assume that j = n.
If n−1 ∈ J , then by [Parkinson and Van Maldeghem 2019, Proposition 3.12(3)(b)]
there is a type {n− 1, n}-simplex mapped onto an opposite, and then considering
the type An−2 residue we easily deduce that there are simplices of each cotype
S\{i} with i = 1, 2, . . . , n− 2 mapped onto opposites. It then easily follows that
there are also simplices of each type S\{n− 1} and S\{n} mapped onto opposite.
So suppose that n−1 /∈ J . If J\{n−1, n} contains no odd indices, then as above we
deduce that θ is capped. Thus J\{n− 1, n} contains an odd node, and so 1 ∈ J by
Lemma 2.7, and by [Parkinson and Van Maldeghem 2019, Proposition 3.12(3)(a)]
there is a type {1, n} simplex mapped onto an opposite. It now easily follows that
θ is strongly exceptional domestic.

Case 3: j /∈ {n− 1, n}. If j is odd, then considering the upper residue of a type j
nondomestic we obtain a duality of a Dn− j , and since every duality of a Dn− j maps
a point to an opposite point (Lemma 2.14) we have j+1 ∈ J , a contradiction. Thus
j is even. If j = 2 then θ is capped (see [Parkinson and Van Maldeghem 2019,
Fact 3.22]). So j ≥ 4 (and hence n ≥ 6). If J has only even types then clearly
θ is capped. Thus J contains an odd node, and hence by Lemma 2.7 we have
1 ∈ J . Applying Corollary 2.11 in the nonthick Bn building it follows that there is
a type {1, j}-simplex mapped onto an opposite, and the result easily follows, using
Lemma 2.9 to show that the last node is not shaded. �

Proposition 2.17. Let θ be a duality of the Dn(2) building. If θ is uncapped then
the decorated opposition diagram of θ is contained in Table 1.

Proof. Let θ be an uncapped duality of Dn(2), and let J = Typ(θ). Let j =max J .

Case 1: j ∈ {n− 1, n} with n even. Then necessarily {n− 1, n} ⊆ J . In the residue
of such a simplex we have an exceptional domestic duality of An−2(2), and the
result easily follows.
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Case 2: j ∈ {n− 1, n} with n odd. In the residue of a nondomestic type j vertex
we obtain an exceptional domestic duality of An−1(2), and again the result easily
follows.

Case 3: j /∈ {n − 1, n}. If j is even, then considering the upper residue of a
nondomestic type j vertex we obtain a duality of Dn− j (2), and since every duality
of Dn− j (2) maps a point to an opposite point we have j + 1 ∈ J , a contradiction.
Thus j is odd. If j = 1 then θ is obviously capped. So j ≥ 3 (and hence n ≥ 5). In
the lower residue of a nondomestic type j vertex we obtain an exceptional domestic
duality of A j−1(2), and hence the result, using Lemma 2.9 to see that the last node
is not shaded. �

Propositions 2.16 and 2.17 establish Theorem 1(a) for buildings of type Dn . We
now consider the exceptional types.

Lemma 2.18. Let 1 be the building F4(2), and let θ be a collineation. If Typ(θ)=
{1, 2, 3, 4} then there exists either a nondomestic type {1, 2} simplex, or a nondo-
mestic type {3, 4} simplex.

Proof. This follows from the classification given in Theorem 4.3. We note that no
circular logic is introduced by postponing the proof until Section 4. �

We are now ready to prove Theorem 1(a) for the small exceptional buildings.
Before doing so we would like to correct [Van Maldeghem 2012, Main result 2.2],
where it is asserted that every domestic duality of an E6 building is a symplectic
polarity. In fact this result only holds for large E6 buildings. The oversight in the
proof of [Van Maldeghem 2012, Main result 2.2] is in the proof of [Van Maldeghem
2012, Lemma 5.2], where the existence of exceptional domestic automorphisms of
A4(2) is overlooked.

Proposition 2.19. If θ is an uncapped automorphism of a building of exceptional
type then the decorated opposition diagram of θ is contained in Table 2.

Proof. (1) Let θ be an uncapped collineation of E6(2) and let J = Typ(θ). Sup-
pose that J = S, and so the opposition diagram has the subsets {2}, {4}, {3, 5}
and {1, 6} encircled. Let σ be a nondomestic type {3, 5} simplex. Then θσ is an
automorphism of an A2×A1×A1 building acting as a duality on the A2 component
and interchanging the two A1 components (by Proposition 1.4). Thus θσ is not
domestic on the A1×A1 component (see [Parkinson and Van Maldeghem 2019,
Lemma 3.7]) and must be exceptional domestic on the A2 component (for otherwise
θ is capped). Hence there are nondomestic simplices of types S\{2} and S\{4}, and
so the encircled nodes 2 and 4 are shaded. Suppose that there is a nondomestic
simplex σ ′ either of type S\{3, 5} or S\{1, 6}. Then θσ ′ is an automorphism of an
A1×A1 building interchanging the two components (again by Proposition 1.4), and
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hence is not domestic, and hence θ is capped, a contradiction. Thus the encircled
subsets {3, 5} and {1, 6} are not shaded.

Suppose that J 6= S. Then the first argument of the previous paragraph shows
that {3, 5} ∩ J =∅. A similar argument shows that 4 /∈ J . Thus if J 6= S we have
{3, 4, 5}∩ J =∅. If {1, 6} ⊆ J then 2 ∈ J (for in the residue of a nondomestic type
{1, 6} simplex we obtain a duality of D4, and no duality of Dn is point domestic;
see [Parkinson and Van Maldeghem 2019, Proposition 3.16]), and θ is capped. If
J = {2} then θ is obviously capped. Thus there are no uncapped collineations of
E6 with Typ(θ) 6= S.

(2) Let θ be an uncapped duality of an E6 building and let J = Typ(θ). We claim
that J = S. If 1 ∈ J then 6 ∈ J , and vice versa (since no duality of Dn is point
domestic), and this argument shows that if J = {1, 6} then θ is capped, a contradic-
tion. So {2, 3, 4, 5} ∩ J 6=∅. If 3 ∈ J then {2, 3, 4, 5, 6} ⊆ J (considering the A4

component of the residue of a nondomestic type 3 vertex) and similarly if 5 ∈ J
then {1, 2, 3, 4, 5} ⊆ J . Thus if either 3 ∈ J or 5 ∈ J then J = S. If 2 ∈ J then
{2, 3, 5} ⊆ J (considering the A5 residue of a nondomestic type 2 vertex), and thus
again J = S. If 4 ∈ J then {1, 3, 4, 5, 6} ⊆ J (considering the A2×A2 component
of the residue of a nondomestic type 4 vertex), and so once more J = S.

Thus all nodes are encircled. We claim that θ is strongly exceptional domestic,
and so all nodes are shaded. To prove that there exist cotype j panels mapped onto
opposite panels for each j ∈ {1, 3, 4, 5, 6}, note first that there exists a nondomestic
type {2, 4} simplex (by considering the A4 component of the residue of a nondomes-
tic type 3 vertex). If v is the type 2 vertex of such a simplex, then θv is a domestic
duality of A5 mapping a plane of this projective space onto an opposite, and thus θv
is strongly exceptional domestic, and hence the result. Finally, to see that there is
a nondomestic cotype 2 panel, let v be the type 1 vertex of a nondomestic cotype 4
panel. Using the classification of uncapped D5 diagrams we see that θv is strongly
exceptional domestic, and it follows that there exists a cotype 2 panel of E6 mapped
onto an opposite.

(3) Let θ be an uncapped collineation of an E7 building and let J = Typ(θ). If
J = S then θ is strongly exceptional domestic (considering the A6 residue of a
nondomestic type 2 vertex shows that θ maps simplices of each type S\{ j} onto
opposites for j = 1, 3, 4, 5, 6, 7, and considering the E6 residue of the type 7 vertex
of a nondomestic type {2, 7} simplex, and using (2), shows that there is a simplex
of type S\{2} mapped onto an opposite).

Suppose that J 6= S. Then 2 /∈ J (for otherwise the induced duality of the A6

residue is strongly exceptional domestic) and 5 /∈ J (for otherwise the induced
dualities of the A4 and A2 residues are both strongly exceptional domestic). We
note the following: if 3∈ J then {3, 4, 6} ⊆ J (considering the A5 component of the
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residue) and if 4 ∈ J then {1, 3, 4, 6} ⊆ J (considering the A2 and A3 components
of the residue). Thus if either 3 ∈ J or 4 ∈ J then {1, 3, 4, 6} ⊆ J . If 6 ∈ J then
{1, 6} ⊆ J (since no duality of the D5 component of the residue is point domestic).
If 7 ∈ J then {1, 6, 7} ⊆ J (since every duality of E6 maps both type 1 and type 6
vertices to opposites). It follows that either J = {1}, J = {1, 6}, J = {1, 6, 7},
J = {1, 3, 4, 6}, or J = {1, 3, 4, 6, 7}. In the first, second, and third cases it is
clear using the above arguments that θ is capped, a contradiction. We claim that
J = {1, 3, 4, 6, 7} is impossible (for any collineation, capped or uncapped), for if
so, then by [Parkinson and Van Maldeghem 2019, Proposition 4.3(2)] there exists
a type {3, 7} simplex σ mapped to an opposite simplex, and if v is the type 7 vertex
of σ then θv is a duality of an E6 building mapping a type 3 vertex to an opposite,
thus forcing 2, 5 ∈ J , a contradiction.

The previous paragraph shows that if θ is uncapped and J 6= S then J =
{1, 3, 4, 6}. Considering the A2×A3 component of the residue of a nondomestic
type 4 vertex shows that there are simplices of types {3, 4, 6} and {1, 4, 6} mapped
onto opposites, thus the nodes 1 and 3 are shaded. If there exist either type {1, 3, 6}
or {1, 3, 4} simplices mapped onto opposite simplices then considering the residue
of the type 1 vertex of such a simplex we deduce that θ is capped, a contradiction.
Thus the nodes 4 and 6 are not shaded.

(4) Let θ be an uncapped (hence nontrivial) collineation of an E8 building and
let J = Typ(θ). If J = S then easy residue arguments show that θ is strongly
exceptional domestic.

We claim that if J 6= S then J ⊆ {1, 6, 7, 8}. To see this, note that if 2 ∈ J then
{3, 5, 7} ∈ J (considering an A7 residue), if 3 ∈ J then {2, 4, 5, 6, 7, 8} ⊆ J (con-
sidering the A6 component of the residue), if 4 ∈ J then {1, 3, 5, 6, 7, 8} ⊆ J (con-
sidering the A2×A4 component of the residue), and if 5 ∈ J then {1, 2, 3, 4, 7} ⊆ J
(considering the A4×A3 residue). Combining these statements it follows that if
{2, 3, 4, 5} ∩ J 6=∅ then J = S, and hence the claim.

Suppose J 6= S, and so J ⊆ {1, 6, 7, 8}. We claim J = {1, 6, 7, 8}. For if 1 ∈ J
then 8 ∈ J (since no duality of D7 is point domestic), if 6 ∈ J then J = {1, 6, 7, 8}
(considering the D5 ×A2 residue and recalling that no duality of D5 is point do-
mestic), and if 7 ∈ J then 6 ∈ J (considering the duality of E6 and using (2) above)
and so again J = {1, 6, 7, 8}. Thus J = {8}, {1, 8} or {1, 6, 7, 8}. The first two
cases are clearly capped, hence the claim. Now considering the residue of a type 6
nondomestic vertex we see that there are simplices of types {1, 6, 7} and {1, 6, 8}
mapped onto opposite simplices (hence the nodes 7 and 8 are shaded). If there ex-
ists a simplex of type {6, 7, 8} or {1, 7, 8}mapped onto an opposite then considering
the D5 residue we deduce that θ is capped, and so the nodes 1 and 6 are not shaded.

(5) Let θ be an uncapped collineation of an F4 building and let J =Typ(θ). If 2∈ J
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then 3, 4 ∈ J (by the duality in the A2 component of the residue) and similarly if
3∈ J then 1, 2∈ J . Thus either J ={1}, J ={4}, J ={1, 4}, or J ={1, 2, 3, 4}. The
first and second cases are trivially capped. The third case is capped by [Parkinson
and Van Maldeghem 2019, Lemma 4.5]. Thus J = {1, 2, 3, 4}.

If 1= F4(2) then by Lemma 2.18 there is either a type {1, 2} or {3, 4} simplex
mapped onto an opposite simplex. In the first case, by considering the residue
of the type 2 vertex, we see that there are panels of cotype 3 and 4 mapped onto
opposites, and hence the nodes 3 and 4 are shaded. The second case is symmetric,
with the nodes 1 and 2 shaded. Of course both cases may occur simultaneously,
and then all nodes are shaded. Finally, note that if either nodes 1 or 2 are shaded
then both are shaded (if the i node is shaded and i ∈ {1, 2} then consider the residue
of the type 3 vertex of a nondomestic cotype i panel). Similarly, if either nodes 3
or 4 are shaded then both are shaded. Hence the result for F4(2).

If 1= F4(2, 4) then considering the A2(4) component of a type 2 nondomestic
vertex we deduce that there are simplices of type {2, 3, 4} mapped onto opposites.
Then considering the A2(2) residue of a type {3, 4} nondomestic simplex we de-
duce that there are also simplices of type {1, 3, 4} mapped onto opposites. Thus
the nodes 1, 2 are shaded. If there exists a simplex of type {1, 2, 4} or {1, 2, 3}
mapped onto an opposite, then considering the type A2(4) residue of the {1, 2}
subsimplex we deduce that θ is nondomestic, and hence capped, a contradiction.
Thus the nodes 3 and 4 are not shaded. �

Theorem 1(a) now follows from Propositions 2.1, 2.6, 2.10, 2.16, 2.17, and 2.19.

2B. Applications. This section contains applications and corollaries of Theorem 1(a).

Corollary 2.20. Let θ be a an exceptional domestic automorphism of a thick irre-
ducible spherical building 1.

(a) If θ is an oppomorphism and 1 is simply laced, then θ is strongly exceptional
domestic.

(b) If θ is not an oppomorphism then θ is not strongly exceptional domestic.

Proof. The first statement follows by noting that in Tables 1 and 2, if θ is an
oppomorphism and 1 is simply laced, then whenever all nodes are encircled they
are all shaded (see the first, third, sixth rows of Table 1 and the first, second, and
third rows of Table 2). The second statement follows by inspecting the third and
fourth rows of Table 1 and the first row of Table 2. �

The following lemma is in preparation for our next corollary to Theorem 1(a).

Lemma 2.21. Let θ be an involution of a thick spherical building, and suppose that
the simplex σ is mapped onto an opposite simplex. Then the induced automorphism
θσ of Res(σ ) is either the identity or it is an involution.
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Proof. Let α be a simplex of Res(σ ). If αθ = projσ θ (α) then αθσ = α (because
the projection maps projσ :Res(σ θ )→Res(σ ) and projσ θ :Res(σ )→Res(σ θ ) are
mutually inverse bijections). If αθ = projσ θ (α) then αθσ = α. If αθ 6= projσ θ (α)
then, since θ maps αθ onto α, the projection projσ (α

θ ) is mapped onto projσ θ (α).
Thus θ2

σ = 1. �

Corollary 2.22. Every involution of a thick irreducible spherical building is capped.

Proof. The result is of course true for large buildings of rank at least 3 (where all
automorphisms are capped, by [Parkinson and Van Maldeghem 2019]), and thus
it remains to show that involutions of small buildings and of arbitrary generalised
polygons are capped. Let us begin with the former. We use the decorated op-
position diagrams in Tables 1 and 2 to show that every uncapped automorphism
has order strictly greater than 2. Consider type An , and let θ be uncapped. By
Theorem 1(a) there exists a nondomestic type {3, 4, . . . , n} simplex σ . Then θσ is
a domestic duality of the Fano plane. However by [Parkinson et al. 2015] the only
domestic duality of the Fano plane is the unique exceptional domestic duality, and
this has order 8. Thus, by Lemma 2.21 θ has order strictly greater than 2.

The arguments are similar for all other uncapped diagrams. The key fact is that
in some residue one finds a domestic duality of the Fano plane. For example, in the
first E6(2) diagram in Table 2 we have a nondomestic type {1, 3, 5, 6} simplex σ
(because, for example, the node 2 is shaded), and θσ is a domestic duality of the
Fano plane residue.

We now show that every involution of an arbitrary generalised m-gon, m ≥ 2,
is capped. Recall that a generalised m-gon 1 is a bipartite graph with diameter m
and girth 2m. A chamber is a pair of vertices connected by an edge. If {x, y} is a
chamber we write x ∼ y and call x and y adjacent. In particular, if x ∼ y then the
vertices x and y have different types. Vertices x and y of 1 are opposite if and only
if the distance between them is m, and this in turn is equivalent to the existence of
a path x = x0 ∼ x1 ∼ · · · ∼ xm = y with x j 6= x j+2 for all j = 0, . . . ,m − 2. If
the distance between vertices x, y is k < m then there is a unique geodesic from x
to y. In this case, writing x = z0 ∼ z1 ∼ · · · ∼ zk = y the vertex z1 (resp. zk−1) is
the projection of y onto x (resp. x onto y).

Claim 1: Every involutary collineation of a thick generalised 2n-gon 1, n ≥ 1, is
capped.

Proof of Claim 1. The case n = 1 is trivial, and so suppose that θ is an uncapped
involutary collineation of a generalised 2n-gon with n ≥ 2. Thus θ is domestic
(on chambers), and maps at least one vertex of each type onto an opposite vertex.
Let 1′ denote the fixed elements of θ . Let x0 be a type 1 vertex mapped onto
an opposite vertex x2n = xθ0 , and consider any geodesic path x0 ∼ x1 ∼ · · · ∼

x2n−1 ∼ x2n . If xθ1 6= x2n−1 then the chamber {x0, x1} is mapped onto an opposite
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chamber and θ is capped. Hence xθ1 = x2n−1, and it follows that xθi = x2n−i , for
all i ∈ {0, 1, 2, . . . , 2n}. In particular xθn = xn is fixed. Consider another geodesic
x0 ∼ y1 ∼ · · · ∼ y2n−1 ∼ x2n with y1 6= x1. Then yθn = yn . By considering the path
from xn to x0 to yn we see that xn and yn are opposite, and thus there is a pair of
opposite vertices xn, yn ∈1

′.
Similarly, by considering a type 2 vertex x ′0 that is mapped onto an opposite

vertex we deduce the existence of a pair of opposite vertices x ′n, y′n ∈ 1
′. Since

the vertices x ′n, y′n have different type to the vertices xn, yn we conclude that for
each type j ∈ {1, 2} there are pairs of opposite vertices of type j in 1′. It follows
that 1′ is a sub-2n-gon (because the fixed structure of a collineation of a 2n-gon
is either empty, consists of pairwise opposite elements, is a tree of diameter at
most 2n, or is a sub-2n-gon, and the first three options are impossible from the
above considerations).

Now, the distance from x ′n to xn is at most 2n − 1 (by types and diameter)
and hence the unique geodesic from x ′n to xn is fixed by θ . In particular the
chamber {z, xn} is fixed, where z ∼ xn is the projection of x ′n onto xn . Note that
z 6= xn−1, xn+1 because xθn−1 = xn+1 is not fixed. We claim that every vertex z1 ∼ z
is fixed. With y j as above, note that z and yn−1 are opposite (consider the path
from z to x0 to yn−1). Hence the distance from z1 to yn−1 is 2n− 1, and so there
is a unique geodesic z1 ∼ z2 ∼ · · · z2n−1 = yn−1. If zθ1 6= z1 then zn and zθn are
opposite (consider the path from zn to z0 to zθn). Similarly, since yθn−1 = yn+1 we
have yn−1 6= yθn−1 and so zn+1 and zθn+1 are opposite. Hence the chamber {zn, zn+1}

is mapped onto an opposite chamber, a contradiction.
It now follows from [Van Maldeghem 1998, Proposition 1.8.1] that the sub-2n-

gon 1′ has the property that whenever x ∈ 1′ has the same type as z, then all
neighbours of x are fixed (and hence are in 1′). But x ′n has the same type as z,
contradicting the fact that the projection of x ′0 onto x ′n is mapped onto the projection
of x ′θ0 onto x ′n and that these projections are distinct. This contradiction completes
the proof of Claim 1. �

Claim 2: Every involutary duality of a thick generalised (2n−1)-gon 1, n ≥ 2, is
capped.

Proof of Claim 2. Let θ be a polarity of a generalised (2n−1)-gon and suppose that
θ maps some element x0 to an opposite element x2n−1. Suppose that θ is not capped,
i.e., θ does not map any chamber to an opposite chamber. Let x1 ∼ x0 be arbitrary.
Consider the path x0 ∼ x1 ∼ · · · ∼ x2n−1. Using a similar approach to the one in
the previous proof, we deduce that xθi = x2n−1−i for all i ∈ {0, 1, 2, . . . , 2n− 1}.
Hence xθn = xn−1. Consider a second path x0 ∼ y1 ∼ · · · ∼ y2n−2 ∼ x2n−1 with
y1 6= x1. Then also yθn−1 = yn . Let z0 ∼ xn be arbitrary but distinct from xn−1 and
xn+1 (using thickness). There is a unique path z0 ∼ z1 ∼ · · · ∼ z2n−2 = yn−1 from
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z0 to yn−1. By considering the path zn−2 ∼ · · · ∼ z0 ∼ xn ∼ xθn ∼ zθ0 ∼ · · · ∼ zθn−2
we see that zn−2 is mapped onto an opposite vertex. Similarly, since yθn−1 = yn we
see that zn−1 is mapped onto an opposite vertex (consider the path zn−1 ∼ · · · ∼

yn−1 ∼ yθn−1 ∼ · · · ∼ zθn−1). Hence the chamber {zn−2, zn−1} is mapped onto an
opposite chamber, a contradiction. This completes the proof of Claim 2. �

Finally, we note that no duality of a thick generalised 2n-gon is domestic and
no collineation of a thick generalised (2n−1)-gon is domestic (see [Parkinson et al.
2015, Lemmas 3.1 and 3.2]), completing the proof of the corollary. �

Corollary 2.22 shows that every uncapped automorphism has order at least 3.
Since every known example of an uncapped automorphism has order at least 4 (see
the examples in Sections 3 and 4, and also the rank 2 classification in [Parkinson
et al. 2015]) we are led to make the following conjecture.

Conjecture 2.23. If θ is an automorphism of a thick irreducible spherical building,
and if θ has order 3, then θ is capped.

Note that if we remove the shading from the diagrams in Tables 1 and 2 then
the diagrams we obtain are contained in [Parkinson and Van Maldeghem 2019,
Tables 1–5]. Thus Theorem 1(a) has the following immediate corollary.

Corollary 2.24. The (undecorated) opposition diagram of any automorphism of a
thick irreducible spherical building is contained in [Parkinson and Van Maldeghem
2019, Tables 1–5].

We now use Theorem 1(a) to determine the partially ordered set T (θ) for all
automorphisms θ . We first note that, by the proposition below, it is sufficient to
determine the maximal elements of T (θ).

Proposition 2.25. Let M(θ) be the set of maximal elements of T (θ). Then

T (θ)= {J ⊆ S | Jπθw0 = J and J ⊆ M for some M ∈M(θ)}.

Proof. This follows immediately from the facts that if σ is a nondomestic type K
simplex then (i) K is preserved by w0 ◦πθ , and (ii) if J ⊆ K is preserved under
w0 ◦πθ then the type J subsimplex of σ is also nondomestic (see [Parkinson and
Van Maldeghem 2019, Lemma 1.3]). �

Thus it remains to compute the set M(θ) of maximal elements of T (θ). We
do this in the corollary below. Recall that if θ is uncapped then the decorated
opposition diagram of θ is (0,Typ(θ), Kθ , πθ ) where, in particular, Kθ is the set
of shaded nodes.

Corollary 2.26. Let θ be an automorphism of a spherical building 1.

(a) If θ is capped then M(θ)= {Typ(θ)}.

(b) If θ is uncapped then M(θ)= {Typ(θ)\{k} | k ∈ Kθ }.
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Proof. The first statement is obvious, so consider the second statement. Let
(0, J, K , π) be the decorated opposition diagram, and so J = Typ(θ). If J = K
then there are nondomestic simplices of each type Typ(θ)\{k} with k ∈ J , and
these are clearly the maximal types mapped to opposite (otherwise θ is capped).
Suppose now that J\K consists of a single minimal w0 ◦π invariant subset J ′ (thus
J ′ is either a singleton, or J ′ consists of a pair, as in the second D2n(2) diagram in
Table 1). In this case the only w0 ◦π stable strict subset of J that is not contained
in an element of {J\{k} | k ∈ K } is J\J ′, and since J ′ is not shaded all simplicies
of this type are domestic. Hence the result in this case.

By Theorem 1(a) the only remaining cases are the six diagrams where J\K
consists of precisely two minimal w0 ◦π invariant sets. Specifically, these examples
are the E6(2) collineation diagram, the first E7(2) and E8(2) diagrams, the first two
F4(2) diagrams (these are dual to one another), and the F4(2, 4) diagram. In these
cases the result is implied by the following claim.

Claim: Suppose that the decorated opposition diagram of θ is one of the six dia-
grams listed above. Then θ is {i, j}-domestic where i and j are the two shaded
nodes.

Proof of Claim. Consider the E6 diagram. If there is a nondomestic type {2, 4}
simplex then with v the type 4 vertex of this simplex the map θv acts on the A2×A2

component of the residue swapping the components (by Proposition 1.4). It follows
that θ is not domestic, a contradiction. Similar arguments apply for E7 and E8, using
an A5 and E6 residue, respectively. For the first F4(2) diagram, suppose there is a
nondomestic type {1, 2} simplex σ . Then θσ is a domestic duality of A2(2), and
hence is the exceptional domestic duality of the Fano plane. It follows that there
is a nondomestic type {1, 2, 3} simplex, contradicting the node 4 being unshaded.
A dual argument applies to the second F4(2) diagram. The F4(2, 4) diagram is
similar. Hence the proof of the claim is complete, and the corollary follows. �

Example 2.27. Suppose that θ has the E6(2) collineation diagram in Table 2. Then
the partially ordered set T (θ) is (using Proposition 2.25 and Corollary 2.26):

{2} {3, 5} {1, 6} {4}

{2, 3, 5} {1, 2, 6} {1, 3, 5, 6} {3, 4, 5} {1, 4, 6}

{1, 2, 3, 5, 6} {1, 3, 4, 5, 6}

As a final application we will compute the displacement of an arbitrary automor-
phism θ in Corollary 2.29. Recall that disp(θ)=max{d(C,Cθ ) | C ∈ C}, where C
is the set of chambers of 1, and d(C, D)= `(δ(C, D)) for chambers C, D ∈ C.
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Proposition 2.28. Let θ be any automorphism of a thick irreducible spherical
building of type (W, S). Then

disp(θ)= diam(W )−min{diam(WS\J ) | J ∈M(θ)}.

Proof. Let N =min{diam(WS\J ) | J ∈M(θ)}. We note first that

N =min{diam(WS\J ) | there exists a type J simplex in Opp(θ)} (2-2)

because the minimum is obviously attained at a maximal element of T (θ).
Let J ⊆ Typ(θ) be any subset for which there exists a nondomestic type J

simplex. Then for all chambers C containing this simplex we have δ(C,Cθ ) ∈

WS\Jw0 (see [Parkinson and Van Maldeghem 2019, Lemma 2.5]) and thus

disp(θ)≥ `(δ(C,Cθ ))≥ `(w0)− `(wS\J )= diam(W )− diam(WS\J ).

Since this inequality holds for all J such that there exists a type J simplex in
Opp(θ) the formula (2-2) gives

disp(θ)≥ diam(W )− N .

On the other hand, let C be any chamber with `(δ(C,Cθ )) maximal. By the
arguments of [Abramenko and Brown 2009, Lemma 2.4 and Theorem 4.2] we
have δ(C,Cθ )= wIw0 for some I ⊆ S with Iπθ = Iw0 . Hence the type J = S\I
simplex of C is mapped onto an opposite simplex. Thus

disp(θ)=`(δ(C,Cθ ))=`(w0)−`(wS\J )=diam(W )−diam(WS\J )≤diam(W )−N ,

and hence the result. �

Corollary 2.29. Let θ be an automorphism of a thick irreducible spherical build-
ing and let J = Typ(θ). Then

disp(θ)=
{

diam(W )− diam(WS\J ) if θ is capped,
diam(W )− diam(WS\J )− 1 if θ is uncapped.

In particular, if θ is exceptional domestic then disp(θ)= diam(1)− 1.

Proof. The case of capped automorphisms is [Parkinson and Van Maldeghem
2019, Theorem 5]. In the case of an uncapped automorphism we note that by
Corollary 2.26 the maximal elements of T (θ) are of the form Typ(θ)\{ j} for some
j ∈ Typ(θ), and then the result follows from Proposition 2.28. �

Remark 2.30. Corollary 2.29 shows that the set of possible displacements is ex-
tremely restricted. For example, consider an E8 building 1, where a priori there
are `(w0) = 120 potential displacements. However, by Corollary 2.29, [Parkin-
son and Van Maldeghem 2019, Theorem 3], and Theorem 1(a) the only possible
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displacements of an automorphism θ are:

0= diam(E8)− diam(E8) if θ is the identity,

57= diam(E8)− diam(E7) if θ is capped with type {8},

90= diam(E8)− diam(D6) if θ is capped with type {1, 8},

107= diam(E8)− diam(D4)− 1 if θ is uncapped with type {1, 6, 7, 8},

108= diam(E8)− diam(D4) if θ is capped with type {1, 6, 7, 8},

119= diam(E8)− 1 if θ is uncapped with type S,

120= diam(E8) if θ is nondomestic.

In particular, note that for E8 buildings the displacement determines the (decorated)
opposition diagram of the automorphism. This phenomenon is not true for all types;
for example in B7(F) displacement 45 is obtained by both capped automorphisms
with Typ(θ)= {1, 2, 3, 4, 5} and capped automorphisms with Typ(θ)= {2, 4, 6}.

3. Uncapped automorphisms for classical types

In this section we prove Theorem 1(b) for classical types. Thus our aim is to
construct uncapped automorphisms with each of the diagrams listed in Tables 1
and 2 for the buildings An(2), Bn(2), Bn(2, 4), and Dn(2).

3A. The buildings An(2). In this section we work with the concrete model An(2)=
PG(n, F2) for the small building of type An . Thus an i-space of An(2) means a
subspace of Fn

2 of (projective) dimension i , and this corresponds to a type i + 1
vertex of the building. Let θ be a duality of An(2). Recall that a point p of An(2) is
called absolute with respect to θ if p ∈ pθ (that is, p is not mapped to an opposite
hyperplane). Dually, a hyperplane π is absolute if π θ ∈ π (that is, π is not mapped
to an opposite point).

Lemma 3.1. Let θ be a duality of a projective space. Suppose that U is an m-
space consisting of absolute points of θ , and let k = dim(U ∩U θ ). Then m− k is
even.

Proof. The hyperplanes through 〈U θ ,U 〉 form a dual space of (projective) dimen-
sion k, and the inverse image is a k-space contained in U . Choose a complementary
(m−k−1)-space H in U , and so H intersects neither U θ nor U θ−1

. Then for each
x ∈ H we have that xθ ∩ H is a hyperplane of H through x , and hence is absolute.
Thus θ is a symplectic polarity on H , and so m− k is even (see Lemma 2.3). �

Theorem 3.2. For each n ≥ 2 there exists a unique duality θ of An(2) (up to con-
jugation) with the property that the set of absolute points of θ is the union of two
distinct hyperplanes. This duality is strongly exceptional domestic, with order 8 if
n is even and 4 if n is odd.
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Proof. We first demonstrate the existence of a duality whose absolute points form
the union of two hyperplanes. Let J1, J2, and J3 be the matrices

J1 =

[
0 1
1 0

]
, J2 =

0 0 1
1 0 1
1 1 0

, J3 =


0 0 1 1
1 0 0 1
1 0 0 0
1 1 0 0


and let A be the (n+ 1)× (n+ 1) matrix in block diagonal form,

A = diag(J, J1, J1, . . . , J1) with J = J2 for even n and J = J3 for odd n.

Let θ be the duality of An(2) with matrix A. That is, X θ
= (AX)⊥ where X is

written as a column vector. Then X is absolute if and only if X ∈ (AX)⊥, and
hence by direct calculation X is absolute if and only if X0 X1 = 0. The matrix
for the collineation θ2 is given by A−t A, and it follows by calculation that θ has
order 8 if n is even, and order 4 if n is odd.

We now prove that there is at most one duality θ up to conjugation with the given
property, and that such a duality is necessarily strongly exceptional domestic. We
proceed by induction on n, the case n = 2 being contained in [Parkinson et al.
2015].

So let θ be a duality of An(2) such that α1∪α2 is the set of absolute points for θ
with α1 6= α2 two hyperplanes of An(2). Let β be the hyperplane containing α1∩α2

and different from both α1 and α2. Note that α1 ∪α2 ∪β is the entire point set. Let
pi = α

θ
i , i = 1, 2 and q = βθ ; then L = {p1, p2, q} is a line.

Note that q is absolute (for if q ∈ β we have qθ 3 βθ = q). Thus q ∈ α1 ∪ α2.
In fact we claim that q ∈ α1 ∩ α2. For if not we have βθ = q /∈ β and so β is not
absolute, contradicting the fact that β = qθ

−1
is absolute (since q is absolute).

Since L={p1, p2, q} is a line and q ∈α1∩α2 we either have p1, p2∈β\(α1∪α2)

or p1, p2 ∈ α1 ∪α2. We treat these two cases below. Before doing this, we observe
that in the first case n is necessarily even, and in the second case n is necessarily
odd. To see this, note that if p1, p2 ∈ β\(α1 ∪α2) then the point p1 is nonabsolute
and the mapping ρ1 : z 7→ zθ ∩ α1, z ∈ α1, is a duality on α1 every point of
which is absolute, forcing n to be even (see Lemma 2.3). On the other hand, if
p1, p2 ∈ α1 ∪α2 then we have (α1 ∩α2)

θ
= 〈p1, p2〉 ⊆ α1 ∩α2 and so Lemma 3.1

implies (n− 2)− 1= n− 3 is even, and so n is odd. We also observe that since α1

and α2 are the only two hyperplanes all of whose points are absolute, every even
power of θ preserves the set {α1, α2}, and hence also the set {p1, p2}. It follows
that pθi ∈ {α1, α2} for i = 1, 2.

Case 1: p1, p2 ∈ β\(α1 ∪ α2). As noted above n is even, and so we may assume
n ≥ 4. Let σ = {x, ξ} be any nondomestic (point-hyperplane)-flag for θ (that is,
a nondomestic type {1, n}-simplex of the building). We note that such simplices
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exist, and indeed they obviously all arise as follows: Since the absolute hyperplanes
for θ are precisely the hyperplanes through one of the points p1 or p2, if we select
any point x ∈ β \ (α1∪α2) and any hyperplane ξ through x not containing p1 or p2,
then σ = {x, ξ} is nondomestic.

We claim that the mapping θσ : z 7→ zθ ∩ ξ ∩ xθ for z ∈ ξ ∩ xθ has exactly two
hyperplanes consisting entirely of absolute points. Note that q ∈ ξ and also q ∈ xθ .
Note also that, since pθi contains the absolute point qi := 〈pi , x〉 ∩ (α1 ∩α2), also
xθ contains qi , i = 1, 2. Since ξ does not contain pi , but it does contain x , it does
not contain qi , i = 1, 2. Consequently xθ ∩α1 ∩α2 is not contained in ξ and the
claim follows.

Thus for every nondomestic (point-hyperplane)-pair σ = {x, ξ} the induced du-
ality θσ on the An−2(2) residue has precisely two hyperplanes of absolute points.
Since n− 2 is even this duality again satisfies the condition of Case 1, and so by
induction θ is domestic. Since θ has nondomestic points necessarily θ is strongly
exceptional domestic by Theorem 2.5.

We now show that θ is unique, up to a projectivity (and under the assumptions
of Case 1). Let ρ1 be the symplectic polarity on α1 introduced in the paragraph
before Case 1. Noting that qρ1 = α1 ∩ α2, we see that the data α1, α2 and ρ1 are
projectively unique. This determines q. All choices of p1 outside α1 ∪ α2 are
projectively equivalent, and then p2 is the third point on the line determined by p1

and q . We then know the image of an arbitrary point x1 of α1\α2, as xθ1 = 〈x
ρ1, p1〉.

This determines the images of all points of α1. Since pθ1 = α1, we know the images
of a basis, which suffices to determine the whole duality.

Case 2: p1, p2 ∈ α1 ∪ α2. As noted above, n is odd. Take an arbitrary point
z ∈ β \ (α1 ∪α2) and set H := zθ . Then ϕ : x 7→ xθ ∩ H is a duality in the (n−1)-
dimensional projective space H such that its absolute points form two hyperplanes
H ∩ αi , i = 1, 2. Hence by the previous case ϕ is domestic, and since z was
arbitrary amongst the nondomestic points for θ we conclude that θ is domestic.
Thus by Theorem 2.5 θ is strongly exceptional domestic.

It remains to show that θ is unique up to conjugation with a projectivity. Let Di =

H∩αi , i=1, 2. Set {i, j}={1, 2} and Dϕ−1

i = p′i . Then {q, p′1, p′2} is a line in H∩β
(since p′i

ϕ
= Di it suffices to see that qϕ = β ∩ H , and this follows from the defi-

nition of ϕ as β = qθ ). It also follows that Dθ−1

i = 〈p′i , z〉. Since Di ⊆ αi , we con-
clude αθ

−1

i ∈ 〈p′i , z〉. But αθ
−1

i ∈ {p1, p2}. We claim that αθ
−1

i = pi . Suppose not.
Then αθ

−1

i = p j . Now from zθ = H and pθi = α j follows that tθi = 〈D j , z〉, with
{ti , pi , z} a line. But p′θj is a hyperplane through D j distinct from α j and H (as p j ∈

H and is not absolute); hence p′θj = 〈D j , z〉 and so ti = p′j . Now p′θ
−1

j = 〈Di , z〉
and pθ

−1

i = αi . It follows that zθ
−1
= H . Hence zθ

2
= z, for all z ∈ β \ (α1 ∪ α2).

It follows that pθ
2

i = pi , contradicting pθ
2

i = α
θ
j = p j . Our claim follows.
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But now, just like in the proof of our previous claim, we have that {pi , p′i , z} is
a line and p′θi = 〈D j , z〉. It follows that pθ

2

i = p j and so zθ
2
= z′, with {z, z′, q} a

line.
Now, α1, α2, H, z and ϕ are unique up to conjugation with a projectivity. But

then, given zθ = H , the duality θ is completely determined, since q is determined
and hence also z′ (with the above notation). This determines the image xθ of an
arbitrary point in H as xθ = 〈xϕ, z′〉. Furthermore, we also have zθ = H , and so θ
is determined. �

3B. The buildings Bn(2), Bn(2, 4), and Dn(2). It will be more convenient for
us to regard Bn(2) ∼= Cn(2) as a symplectic polar space. We begin by recalling
the standard models of the Cn(2), Dn(2), and Bn−1(2, 4) buildings in the ambient
projective space PG(2n− 1, 2). Let V = F2n

2 , and let ( · , · ) be the (symplectic and
symmetric) bilinear form on V = F2n

2 given by

(X, Y )= X1Y2n + X2Y2n−1+ · · ·+ X2nY1. (3-1)

The points of the polar space Cn(2) are the 0-spaces of PG(2n−1, 2), and points p=
〈X〉 and q = 〈Y 〉 are collinear (including the case p = q) if and only if (X, Y )= 0.
A subspace U of V is totally isotropic if (X, Y )= 0 for all X, Y ∈U . The totally
isotropic subspaces of maximal dimension have projective dimension n− 1, and
for each 0≤ k ≤ n−1 the k-spaces of the polar space Cn(2) are the totally isotropic
subspaces of V with projective dimension k. To obtain the building of Cn(2) as a
labelled simplicial complex one takes the totally isotropic (k−1)-spaces to be the
type k vertices of the building for 1 ≤ k ≤ n, with incidence of vertices given by
symmetrised containment of the corresponding spaces. The full collineation group
of Cn(2) is the symplectic group Sp2n(2) consisting of all matrices g ∈ GL2n(2)
satisfying gT Jg = J , where J is the matrix of the symplectic form ( · , · ) (see
[Tits 1974, Corollary 5.9]).

Let F+ and F− be quadratic forms on V with Witt indices n and n− 1, respec-
tively. We will fix the specific choices

F+(X)= X1 X2n + X2 X2n−1+ · · ·+ Xn Xn+1,

F−(X)= X1 X2n + X2 X2n−1+ · · ·+ Xn Xn+1+ X2
n + X2

n+1.

For ε ∈ {−,+}, a subspace U ⊆ V is singular with respect to Fε if Fε(X)= 0 for
all X ∈U . The maximal dimensional singular subspaces of V with respect to Fε

have vector space dimension equal to the Witt index of Fε . The points of Dn(2),
(respectively, the polar space Bn−1(2, 4)), are those points of PG(2n−1, 2) that are
singular with respect to F+, (respectively, F−). In both cases points p = 〈X〉 and
q = 〈Y 〉 are collinear (including the case p = q) if and only if (X, Y )= 0, where
( · , · ) is as in (3-1).
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Let GOε2n(2) be the group of all matrices of GL2n(2) preserving the quadratic
form Fε , and let Oε2n(2) be the corresponding index 2 simple subgroup of GOε2n(2)
(see [Conway et al. 1985, §2.4]). Since GOε2n(2) preserves collinearity, the group
GO+2n(2) acts on Dn(2) and the group GO−2n(2) acts on Bn−1(2, 4). In fact the group
GO−2n(2) is the full automorphism group of Bn−1(2, 4) (see [Tits 1974]). In the case
of Dn(2) the maximal singular subspaces are partitioned into two sets of equal car-
dinality by the action of O+2n(2), and an automorphism θ of Dn(2) mapping points to
points is called a collineation if this partition of maximal singular subspaces is pre-
served by θ , and a duality otherwise. Then O+2n(2) is the group of all collineations
of Dn(2), and GO+2n(2)\O

+

2n(2) is the set of all dualities of Dn(2) (see [Tits 1974]).
To obtain the building of Bn−1(2, 4) as a labelled simplicial complex one takes

the singular (k−1)-spaces to be the type k vertices of the building for 1≤ k ≤ n−1,
with incidence of vertices given by symmetrised containment of the corresponding
spaces. The situation for Dn(2) is slightly different: For 1≤ k ≤ n− 2 the singular
(k−1)-spaces are taken to be the type k vertices of the building, and the singular
(n−1)-spaces in one part of the partition mentioned above are taken to be the type
n− 1 vertices of the building, and those in the other part of the partition are taken
to be the type n vertices of the building. A type n − 1 vertex is declared to be
incident with a type n vertex if the corresponding (n−1)-spaces meet in an (n−2)-
space. For all other types incidence is given by symmetrised containment of the
corresponding spaces.

Note the index shifts that occur (for example an {n}-domestic collineation of
a Cn(2) building is a collineation that is domestic on the totally isotropic (n−1)-
spaces). A point p of a polar space is an absolute point of an automorphism θ if
pθ is collinear with p (including pθ = p).

Lemma 3.3. Let θ be a collineation of Cn(2).

(a) If θ fixes a subspace of PG(2n− 1, 2) of projective dimension k ≥ n then θ is
{ j}-domestic for each 2n− k ≤ j ≤ n.

(b) If the set of absolute points of θ strictly contains the union of two distinct
hyperplanes of PG(2n− 1, 2) then θ is {1}-domestic.

Proof. (a) By considering dimensions, each ( j−1)-space of PG(2n − 1, 2) with
j ≥ 2n− k intersects the subspace of fixed points. In particular, no totally isotropic
( j−1)-space is mapped onto an opposite and so θ is { j}-domestic for all 2n− k ≤
j ≤ n.

(b) A point X is an absolute point of θ ∈Sp4(2) if and only if (X, θX)= X T JθX=0,
where J is the matrix of the symplectic form ( · , · ). Thus the set of absolute points
of θ is a quadric, and so if it strictly contains the union of two distinct hyperplanes
then all points are absolute. �
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In the following proofs we use the standard notations p ⊥ q if points p and q
are collinear (including the case p = q), and p⊥ for the set of all points collinear
to p.

Lemma 3.4. Let 1= Cn(2) with n ≥ 2 and let θ be a collineation.

(a) If the fixed points of θ form a (2n−3)-space W , then the absolute points form
a subspace containing W .

(b) If the fixed points of θ form a (2n−2)-space W , then every absolute point is
fixed.

Proof. (a) Let p be a point not contained in W and suppose p is absolute. Let
q ∈ 〈W, p〉 \W . We claim that q is absolute. Indeed, let r := 〈p, q〉∩W . If p ⊥ q ,
then the plane π = 〈p, q, pθ 〉 contains the triangle {p, pθ , r} of points collinear in
Cn(2) and so q ⊥ qθ , as both points belong to π . If p /∈ q⊥, then π contains the
line 〈p, p⊥〉, which belongs to Cn(2), but also contains the line 〈p, r〉, which does
not belong to Cn(2). Also 〈pθ , r〉 does not belong to Cn(2), and it follows that the
line 〈r, s〉, where {p, pθ , s} is the line of Cn(2) through p and pθ , belongs to Cn(2).
Hence also the line {s, q, qθ } belongs to Cn(2), which proves our claim.

So, if there are no absolute points besides those in W , then (a) holds. If some
absolute point p /∈W exists, then there are three possibilities. Either exactly one
hyperplane through W consists of absolute points (and then (a) holds), or all three
hyperplanes through W consist of absolute points (and then, again, (a) holds), or
exactly two hyperplanes H1 and H2 through W consist of absolute points. In this
final case, let H be the third hyperplane through W . Let t, t1, t2 be points such
that t⊥ = H and t⊥i = Hi , i = 1, 2. Then, since θ fixes H , we have t ∈ W .
Since ti ∈ t⊥i = Hi , i = 1, 2, we deduce ti ∈ W , i = 1, 2. Hence θ induces
collineations in H, H1, H2 having a hyperplane W as fixed points. Consequently,
these collineations are central involutions. Since all points of W are fixed, all
subspaces through {t, t1, t2} are fixed. Hence the centres of the above collineations
are t, t1, t2. Since the collineations in Hi , i = 1, 2, map points to a collinear point,
the centers are ti . But then the centre of the collineation in H is t and hence it also
maps points to collinear points, a contradiction. This shows (a).

(b) If the fixed points of θ form a (2n−2)-space W , then θ is a central elation in
PG(2n−1, 2), and the centre is necessarily W⊥ since every point of W is fixed, and
hence every hyperplane through W⊥ is fixed. No line through W⊥ not contained
in W is a line of Cn(2), whence (b). �

Lemma 3.5. A collineation θ of the generalised quadrangle C2(2) is exceptional
domestic if and only if the set of absolute points of θ equals the union of two distinct
hyperplanes in PG(3, 2).
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Proof. It is known that C2(2) admits a unique exceptional domestic collineation
(see [Temmermans et al. 2012b]), and direct inspection shows that the set of ab-
solute points of this collineation forms the union of two distinct hyperplanes in
PG(3, 2). It remains to show that no other collineation of C2(2) has such a structure
of absolute points. This can be done, for example, using the character tables in the
ATLAS; see [Conway et al. 1985, page 5]. We omit the details. �

Lemma 3.6. Let 1= Cn(2) with n ≥ 3 and let θ be a collineation. If the absolute
points of θ lie on a union of two hyperplanes, and if the fixed points of θ form a
(2n−4)-space W , then θ has the following decorated opposition diagram:

• • • • • • • • • •• • • • • • • • • •

Proof. The hypothesis implies that every 3-space contains a fixed point, and thus
θ is {i}-domestic for all 4≤ i ≤ n.

By the hypothesis on the structure of the absolute points of θ there exist points
in Opp(θ). Let p be an arbitrary point in Opp(θ). We will show below that
the induced collineation θp of Cn−1(2) is {2}-domestic (in the inherited labelling).
Hence θ is {1, 2}-domestic. So if θ is capped then θ is {2}-domestic, however
by [Temmermans et al. 2012a, Theorem 5.1] every such collineation fixes a geo-
metric hyperplane pointwise, contrary to our hypothesis that the fixed points form
a (2n−4)-space. Thus θ is uncapped, and then by Theorem 1(a) the decorated
opposition diagram of θ is forced to be as claimed.

Therefore it only remains to show that θp is {2}-domestic (that is, point-domestic
on Cn−1(2)). We fix some notation. Let Hi , i = 1, 2, be the two hyperplanes all
points of which are absolute. Set S = H1∩ H2 and let H be the hyperplane distinct
from Hi , i = 1, 2, and containing S. Note that all points of Opp(θ) are contained
in H (more precisely they form the set H \ S).

First we claim that any line in Opp(θ) incident to p must necessarily be con-
tained in the hyperplane H . Suppose the such a line L is not contained in H . Then
L = {p, q1, q2}, with qi ∈ Hi and hence qθi ⊥ qi , i = 1, 2. Since p is not collinear
to pθ , it must be collinear to qθi for some i ∈ {1, 2}. But then qθi is collinear to all
points of L , and so the line Lθ 3 qθi is not opposite the line L . Hence the claim.

Consider the subspace ξ := p⊥ ∩ (pθ )⊥ of dimension 2n− 3. Then clearly ξ
contains the subspace p⊥ ∩W . We claim that dim(p⊥ ∩W )= 2n− 5. Indeed, if
not, then W is a hyperplane of ξ . By Lemma 3.4(b) and our previous claim, all
lines of Cn(2) through p are contained in H , implying p⊥ = H . But since H is
fixed by θ we deduce that p ∈W , a contradiction. Our claim follows.

Hence dim(p⊥∩W )= 2n−5. It follows that dim(ξ ∩W )= 2n−5 as well, since
p⊥ ∩W = (pθ )⊥ ∩W . Now let q ∈ ξ \W . Suppose q /∈ H . Then the line 〈p, q〉
is not mapped to an opposite, as we showed above. Suppose q ∈ S \W . Then
qθ ⊥ q, and since pθ ⊥ q, we deduce that q is collinear to 〈p, q〉θ , implying that
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〈p, q〉 /∈ Opp(θ). Hence, if θp is not {2}-domestic, then ξ ∩ (H \ S) 6= ∅. Under
that conditon, if ξ is not contained in H , then ξ ∩ Hi is a hyperplane of ξ , i = 1, 2,
and this contradicts Lemma 3.4(a).

Hence we deduce that if θp is not {2}-domestic, then ξ ⊆ H . In this case, since
both p and pθ are in H , we have p⊥ = 〈p, ξ〉 = H and (pθ )⊥ = 〈pθ , ξ〉 = H .
However ⊥ is a symplectic polarity and so p⊥ = H = (pθ )⊥ forces p = pθ ,
a contradiction. The lemma is proved. �

Theorem 3.7. Let θ be a collineation of Cn(2). Suppose that the set of absolute
points of θ equals the union of two distinct hyperplanes of PG(2n− 1, 2). Then θ
is domestic. Moreover, if k is the projective dimension of the subspace of points of
PG(2n− 1, 2) fixed by θ , then

(a) if k = n− 2 then θ is strongly exceptional domestic, and

(b) if k = n− 1+ j for some 0≤ j ≤ n− 3 then θ is uncapped with the following
decorated opposition diagram:

• • • • • • • • • •

n− j
• • • • • • • • • •

Moreover examples exist for each n− 2≤ k ≤ 2n− 4.

Proof. Suppose that θ is a collineation of Cn(2) such that the set of absolute points
of θ is the union of two distinct hyperplanes H1 and H2 of PG(2n−1, 2). We show
by induction on n− j that θ is domestic, with Lemma 3.5 providing the base case
n− j = 3.

Let p be any point not in H1 ∪ H2. Thus p is mapped to an opposite point by
θ . Let Res(p) be the set of totally isotropic subspaces containing p. Thus Res(p)
is a Cn−1(2) building, whose points are the lines through p, whose lines are the
planes through p, and so forth. Let θp = projRes(p) ◦ θ , regarded as a collineation
of Cn−1(2). Since p⊥ and (pθ )⊥ are hyperplanes of PG(2n − 1, 2) the spaces
H ′i = p⊥∩(pθ )⊥∩Hi are (2n−4)-spaces for i = 1, 2 (as in the proof of Lemma 3.5).
Let q ∈ p⊥ ∩ (pθ )⊥ ∩ (H1 ∪ H1), and let L = 〈p, q〉. Similar arguments as those
in Lemma 3.5 show that

(i) if q is fixed by θ , then L is fixed by θp, and

(ii) if q is mapped to a distinct collinear point by θ then L is either fixed by θp,
or is mapped to a distinct coplanar line by θp.

Thus for all nondomestic points p the induced collineation θp of the Cn−1(2) build-
ing Res(p) has the property that the set of points mapped to collinear points (includ-
ing fixed points) contains the union of two distinct hyperplanes in PG(2n− 3, 2).
Thus by Lemma 3.3 and the induction hypothesis the collineation θp is domestic,
and hence θ is domestic.
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Now suppose that the absolute points of θ form a union of two hyperplanes, and
that the fixed point set F of θ is an (n−2)-space of PG(2n− 1, 2). We prove by
induction on n that θ is strongly exceptional domestic, with Lemma 3.5 providing
the base case. The above argument shows that θ is necessarily domestic, and so it
remains to show that there are nondomestic panels of each cotype 1, 2, . . . , n. We
claim that for n ≥ 3 there exists a nondomestic point p such that the hyperplane
p⊥ intersects F in an (n−3)-space F ′. To see this it suffices to show that there
is a point p with p /∈ H1 ∪ H2 and p /∈ F⊥. The number of points in H1 ∪ H2 is
3 · 22n−2

− 1 and the number of points in F⊥ is 2n+1
− 1. Thus for n ≥ 3 there is

a point p /∈ H1 ∪ H2 and p /∈ F⊥. By the induction hypothesis, there are panels
of cotypes 2, 3, . . . , n of Res(p) mapped to an opposite panels by θp, and thus
there are panels of each cotype 2, 3, . . . , n of Cn(2) mapped to an opposite by θ .
It is then easy to see that there is also a nondomestic cotype 1 panel (by a residue
argument) and hence θ is strongly exceptional domestic.

Now suppose the absolute points of θ form a union of two hyperplanes, and that
the fixed point set F of θ is a k-space with k=n−1+ j for some 0≤ j ≤n−3. An ar-
gument as in the previous paragraph shows there is a nondomestic point p such that
p⊥ intersects F in an (n−2+ j)-space. By induction, with Lemma 3.6 as the base
case, the collineation θp of the Cn−1(2) building Res(p) has the following diagram:

• • • • • • • • • •

n− j2 3 n
• • • • • • • • • •

Moreover, for any other nondomestic point p we have that either θp has the above
diagram, or θp is domestic on type n−1− j vertices. Thus no simplex Cn(2) of type

{1, 2, . . . , n− j − 1}

is mapped to an opposite by θ , hence the result.
To conclude we prove existence of collineations with each diagram. Recursively

define elements gn ∈ Sp2n(2), for n ≥ 2, by

g2 =


0 1 0 0
1 0 0 0
1 0 0 1
0 0 1 0

, g3 =



0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
0 0 0 1 0 0


, gn =


1 0 0 0 0
1 1 0 0 0
0 0 gn−2 0 0
0 0 0 1 0
0 0 0 1 1

.

Moreover, for each j ≥ 0 define g( j)
n ∈ Sp2n(2) in block diagonal form by

g( j)
n = diag(I j , gn− j , I j ) where I j is the j × j identity matrix.
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By direct calculation, the absolute points of g2n and g( j)
2n are given by

X2n−1 X2n = 0

and the collinear points of g2n+1 and g( j)
2n+1 are given by

Xn−1(Xn−2+ Xn)= 0.

Moreover, the fixed points of gn form an (n−2)-space of PG(2n− 1, 2), and the
fixed points of g( j)

n form an (n−2+ j)-space of PG(2n− 1, 2). Thus, by the argu-
ments above, gn is a strongly exceptional domestic collineation of Cn(2) for each
n ≥ 2, and g( j+1)

n diagram as in (b). �

Similar theorems hold, with similar proofs, for the Bn(2, 4) and Dn(2) build-
ings. We will only sketch the details below. Consider first the case Bn(2, 4). The
following lemmas are similar to the Cn(2) case.

Lemma 3.8. A collineation θ of the generalised quadrangle B2(2, 4) is exceptional
domestic if and only if the set of absolute points of θ is the set of points of B2(2, 4)
lying on the union of two distinct hyperplanes in PG(5, 2).

Lemma 3.9. Let1=Bn(2, 4) with n≥ 3 and let θ be a collineation. If the absolute
points of θ lie on a union of two hyperplanes, and if the fixed points of θ are the
isotropic points of a (2n−3)-space in PG(2n + 1, 2), then θ has the following
decorated opposition diagram:

• • • • • • • • • •• • • • • • • • • •

Theorem 3.10. Let θ be a collineation of Bn(2, 4). Suppose that the set of absolute
points of θ is the set of isotropic points lying on the union of two hyperplanes of
PG(2n + 1, 2). Let k be the projective dimension of the subspace of points of
PG(2n+ 1, 2) fixed by θ . Then θ is domestic, and

(a) if k = n then θ is strongly exceptional domestic, and

(b) if k = n+ 1+ j for some 0≤ j ≤ n− 3 then θ is uncapped with the following
decorated diagram:

• • • • • • • • • •

n− j
• • • • • • • • • •

Moreover examples exist for each n ≤ k ≤ 2n− 2.

Proof. The proofs are very similar to Theorem 3.7, with the base cases given
by Lemma 3.8 and 3.9, and we omit the details. Thus it only remains to exhibit
the existence of collineations of Bn(2, 4) with the desired properties. To this end,
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define matrices gn , n ≥ 3 by

g2=



0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0


, g3=



0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0


, gn =


1 0 0 0 0
1 1 0 0 0
0 0 gn−2 0 0
0 0 0 1 0
0 0 0 1 1

.

Moreover, for each j ≥ 1 define g( j)
n in block diagonal form by

g( j)
n = diag(I j , gn− j , I j ).

Since gn, g( j)
n ∈ GO

−

2n+2(2) these matrices induce collineations of Bn(2, 4). It is
straightforward to check that gn satisfies the condition (a) and g( j+1)

n satisfies the
condition (b). �

Consider now the case Dn(2).

Theorem 3.11. Let θ be an automorphism of Dn(2). Suppose that the set of abso-
lute points of θ is the set of points of Dn(2) lying on the union of two hyperplanes
of PG(2n − 1, 2). Let k be the projective dimension of the subspace of points of
PG(2n− 1, 2) fixed by θ . Then θ is domestic, and

(a) if k = n−1 and θ is an oppomorphism then θ is strongly exceptional domestic,
and

(b) if k = n − 1+ j for some 1 ≤ j ≤ n − 3 and θ is a nonoppomorphism ( for
odd j) and an oppomorphism ( for even j) then θ has the following diagram:

• • • • • •
•

•
• • • • • •

•

•
• • • • • •

•

•n− j
• • • • • •

•

•
• • • • • •

•

•n− j
• • • • • •

•

•

(if j = 1) (if j is even) (if j > 1 is odd)

Moreover examples exist for all n− 1≤ k ≤ 2n− 4.

Proof. The proofs of the statements (a) and (b) are again analogous to those in
Theorem 3.7, with an appropriate start to the induction. We omit the details.

To prove existence, note that the matrices gn−1, n ≥ 3, from the proof of
Theorem 3.10 are also elements of GO+2n(2). Let h3 = g2 and h4 = g3. Then h3

induces a duality of D3(2) and h4 induces a collineation of D4(2). Let hn = gn−1,
and for each 1 ≤ j ≤ n − 3 let h( j)

n = g( j)
n−1. It is easy to check that hn satisfies

conditions (a), and h( j)
n satisfies conditions (b). �
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4. Uncapped automorphisms for exceptional types

In this section we prove Theorem 1(b) for the small buildings of exceptional type.
Moreover we completely classify the domestic automorphisms of the buildings
F4(2), F4(2, 4), and E6(2). We begin, in Section 4A, by developing a (computa-
tionally feasible) method of detecting whether a given automorphism is domestic.
In Section 4B we briefly describe the implementation of the minimal faithful per-
mutation representations of the relevant ATLAS groups into Magma, and then in
Section 4C we give the classification of domestic automorphisms of the buildings
F4(2), F4(2, 4), and E6(2) making use of these permutation representations. We
provide examples of uncapped automorphisms in E7(2), and give conjectures for
E8(2) in Section 4D.

Throughout this section we use standard notation for Chevalley and twisted Che-
valley groups G, and we refer to Carter [1989] for details. In particular, the symbols
B, H , N , U , W , S, R, xα(a), nα(a), etc., have their usual meanings. However we
note that in the twisted case we use these symbols for the objects in the twisted
group (rather than the untwisted group). Then the quadruple (B, N ,W, S) forms a
Tits system in G, and thus (1, δ) is a building of type (W, S) where 1= G/B and
δ(gB, h B)= w if and only if g−1h ∈ BwB. In the case of graph automorphisms
of a simply laced Dynkin diagram we assume the Chevalley generators are chosen
so that [Carter 1989, Proposition 12.2.3] holds (in particular xα(a)σ = xσ(α)(±a)).

4A. Detecting domesticity. The following lemma shows that under certain hy-
potheses, to verify domesticity it is sufficient to show that no chamber opposite
a given chamber is mapped onto an opposite.

Lemma 4.1. Let θ be an automorphism of a thick spherical building 1, and let
L = disp(θ). Let C be any chamber. Suppose that either

(i) each panel of 1 has at least 4 chambers, or

(ii) θ is an involution, or

(iii) θ induces opposition on the type set and L = `(w0).

Then there exists a chamber D with δ(C, D)= w0 and `(δ(D, Dθ ))= L.

Proof. Let E be a chamber with `(δ(E, Eθ )) = L , and write v = δ(E, Eθ ). Let
w= δ(C, E), and suppose that w 6=w0. Then there exists s ∈ S with `(ws) > `(w).
We show that there is a chamber D with δ(E, D)= s such that `(δ(D, Dθ ))= L .
Consider each case.

(1) `(sv) < `(v). Then either:
(a) `(svsθ ) = `(v), in which case we choose the unique D with δ(E, D) = s

such that δ(D, Eθ ) = sv. Since δ(Eθ , Dθ ) = sθ and `(svsθ ) > `(sv) we
have δ(D, Dθ )= svsθ and so `(δ(D, Dθ ))= L .
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(b) `(svsθ ) < `(v), in which case necessarily `(vsθ ) < `(v), and it follows that
there exists a reduced expression for v starting with s and ending with sθ .
Thus there exists a minimal length gallery

E = E0 ∼s1 E1 ∼s2 · · · ∼s`−1 E`−1 ∼s` E` = Eθ

with s1 = s and s` = sθ .

(i) If every panel of 1 has at least 4 chambers then there exists a chamber
D with δ(E, D) = s such that D /∈ {E1, Eθ

−1

`−1}. Then there is a gallery
D∼s1 E1∼s2 · · · ∼s`−1 E`−1∼s` Dθ , and hence δ(D, Dθ )= v has length L .

(ii) If θ is an involution then θ maps every minimal length gallery from E to
Eθ to a minimal length gallery from Eθ to E , and it follows by consid-
ering types of first and last steps that Eθ1 = E`−1. Thus for any D with
δ(E, D)= s and D 6= E1 we again have δ(D, Dθ )= v.

(iii) If θ induces opposition and L = `(w0) then v = w0, and svsθ = sw0sθ =
w0sθ sθ = w0, and so case (1)(b) cannot occur.

(2) `(sv) > `(v). Then either:

(a) `(svsθ ) > `(v), in which case every chamber D with δ(E, D) = s has
δ(D, Dθ )= svsθ , contradicting `(v)= disp(θ). Thus this case cannot occur.

(b) `(svsθ ) = `(v), in which case we can choose D to be any chamber with
δ(E, D)= s. Then δ(D, Eθ )= sv (since `(sv)>`(v)), and thus δ(D, Dθ )=

sv or δ(D, Dθ ) = svsθ . The first case is impossible by the definition of
displacement, and thus δ(D, Dθ )= svsθ has length L .

Hence the result. �

Remark 4.2. The following examples illustrate that the conclusion of Lemma 4.1
may fail if the hypotheses of the lemma are not satisfied.

(1) The collineation θ of the Fano plane PG(2, F2) given by the upper triangular
3×3 matrix with all upper triangular entries equal to 1 maps no chamber oppo-
site the base chamber C = (〈e1〉, 〈e1+ e2〉) to an opposite chamber. However
this collineation has displacement `(w0)= 3, since no nontrivial collineation
of a projective plane is domestic. Note that this collineation has order 4, and
so none of the conditions of Lemma 4.1 are satisfied.

(2) The exceptional domestic collineation of the generalised quadrangle GQ(2, 2)=
C2(2) (see [Temmermans et al. 2012b, Section 4]) is given by θ = x1(1)x2(1)
in Chevalley generators. The chambers opposite the base chamber B of G/B
are mapped to distances s1s2 or s2s1, however θ has displacement 3 (by both
s1s2s1 and s2s1s2). Note that this collineation has order 4, and so again none
of the conditions of Lemma 4.1 are satisfied.
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4B. Minimal faithful permutation representations. Let G be the following set of
ATLAS groups:

G = {F4(2), F4(2).2, 2E6(22), 2E6(22).2,E6(2),E6(2).2}.

These groups are, respectively, the collineation group of F4(2), the full automor-
phism group of F4(2) (including dualities), the “inner” automorphism group of
F4(2, 4), the full automorphism group of F4(2, 4), the collineation group of E6(2),
and the full automorphism group of E6(2). In the following section we will need
an explicit set of conjugacy class representatives for the groups in G. With the
exception of perhaps F4(2), these groups appear to be too large for the conjugacy
class algorithms in Magma (or GAP) when input as matrix groups using the adjoint
representation. For example E6(2).2 has order 429683151044011150540800, and
in any case it is not an entirely trivial task to construct such extensions as matrix
groups. However the available algorithms in both Magma and GAP for permutation
groups turn out to be considerably more efficient, and therefore we require faithful
permutation representations of the groups in G.

The degrees deg(G) of the minimal faithful permutation representations of the
groups in G are well known (see for example [Vasilev 1996; 1997; 1998]):

deg(F4(2))= 69615, deg(F4(2).2)= 139230,

deg(2E6(22))= deg(2E6(22).2)= 3968055,

deg(E6(2))= 139503, deg(E6(2).2)= 279006.

In each case the permutation representation can naturally be realised by the action
of G on certain maximal parabolic coset spaces (equivalently, on certain vertices of
the building). For example, for G=E6(2).2 we consider the action on G/P1∪G/P6

(the set of type 1 and type 6 vertices of the E6(2) building), and for G = 2E6(22).2
we consider the action on 2E6(22)/P1 (the set of type 1 vertices of the F4(2, 4)
building), where Pi denotes the maximal parabolic subgroup of type S\{si }.

To our knowledge, at the time of writing these minimal faithful permutation
representations were not available in either GAP or Magma. Therefore we have
implemented these permutation representations in Magma, using the above action
on vertices of the building, and making use of the “Groups of Lie Type” package
[Cohen et al. 2004]. The resulting permutation representations are available on
Parkinson’s webpage, where we also provide lists of conjugacy class representa-
tives and code relevant to the computations in the following sections. We would
like to thank Bill Unger from the Magma team at Sydney University for helping us
generate the conjugacy class representatives from the permutation representations.

4C. Domestic automorphism of small buildings of types F4 and E6. In this sec-
tion we classify domestic automorphisms of the buildings F4(2), F4(2, 4), and E6(2).
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This requires two main steps. We first exhibit a list of n examples of pairwise non-
conjugate domestic automorphisms for each building (for some integer n). Next,
using an explicit set of conjugacy class representatives, we show that all but n of
these representatives map some chamber to an opposite and are hence nondomestic.
Thus we conclude that our list of n examples is complete.

We make frequent use of both commutator relations, and the formula

nα(a)= xα(a)x−α(−a−1)xα(a). (4-1)

We will also use the following observation: for the buildings En(2), n = 6, 7, 8,
the displacement of an automorphism θ determines the (decorated) opposition di-
agram of θ (see Remark 2.30). For the buildings F4(2) and F4(2, 4) the (capped)
automorphisms with types {1} and {4} are not distinguished by displacement, and
furthermore in F4(2) the three uncapped diagrams all have displacement 23.

Before beginning we outline a useful technique. Suppose that θ ∈ G induces
an automorphism of 1 = G/B such that the hypothesis of Lemma 4.1 holds.
Then there exists gB ∈ Bw0 B/B such that disp(θ)= `(δ(gB, θgB)). Each gB ∈
Bw0 B/B can be written as gB = uw0 B with u ∈U , and δ(gB, θgB) is the unique
w ∈W such that

w−1
0 u−1θuw0 ∈ BwB. (4-2)

Thus to determine disp(θ) it is sufficient to analyse the terms w−1
0 u−1θuw0 with

u ∈ U . However |U | = |F|`(w0), and so even for relatively small buildings it is
not computationally feasible to check each u ∈U (for example, in E6(2) we have
|U | = 236).

The following idea often provides a considerable computational efficiency. Note
that each u ∈U can be written as

∏
α∈R+ xα(aα) with aα ∈ F and the product taken

in any order (see [Steinberg 2016, Lemma 17]; of course the aα depend on the
order chosen). Writing

A = {α ∈ R+ | xα(a)θ 6= θxα(a) for all a ∈ F}

we can write u= u′Au A where u A is a product over terms α ∈ A, and u′A is a product
over the remaining positive roots. Then u′A commutes with θ , and so

w−1
0 u−1θuw0 = w

−1
0 u−1

A θu Aw0. (4-3)

There are |F||A| such elements, and so the technique works best if a conjugacy
class representative for θ is chosen with the property that it commutes with as
many elements xα(a), α ∈ R+, as possible.

The residue of the type J simplex of the chamber gB is the coset g PS\J , and
this residue is nondomestic for θ if and only if g−1θg ∈ PS\Jw0 PS\J , and thus if
and only if

g−1θg ∈ BwB for some w ∈ w0WS\J (4-4)
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In the following we write g1 ∼ g2 to mean that g1 and g2 are conjugate in G.

Theorem 4.3. Let G = F4(2), and let 1 = G/B be the associated building. Let
ϕ = (2342) and ϕ′ = (1232) be the highest root and highest short root (respec-
tively) of the F4 root system. There are precisely six conjugacy classes of domestic
collineations of 1, as follows:

θ capped diagram fixed type 1/4 vertices ATLAS

θ1 = xϕ(1) yes • • • • 2287/5103 2B
θ2 = xϕ′(1) yes • • • • 5103/2287 2A
θ3 = xϕ(1)xϕ′(1) yes • • • • 1263/1263 2C

θ4 = x1(1)x2(1) no • • • •• • • • 127/399 4D

θ5 = x4(1)x3(1) no • • • •• • • • 399/127 4C

θ6 = x2(1)x3(1) no • • • •• • • • 151/151 4E

Moreover, θ2
3+i ∼ θi for i = 1, 2, 3, and θ2 = σ(θ1), θ3 = σ(θ3), θ5 = σ(θ4), and

θ6 = σ(θ6).

Proof. We first show that the automorphisms have the claimed diagrams. Note
that θ1, θ2, and θ3 are involutions, and hence the hypothesis of Lemma 4.1 applies.
Consider θ1. Following the strategy of (4-2) we notice that θ1 = xϕ(1) is central
in U (by the commutator formulae), and hence, for all u ∈U , using (4-1) we have

w−1
0 u−1θ1uw0 = w

−1
0 xϕ(1)w0 = x−ϕ(1)= xϕ(1)nϕ(1)xϕ(1) ∈ BsϕB.

Thus δ(gB, θ1gB)= sϕ for all gB ∈ Bw0 B/B, and so disp(θ)= `(sϕ)= 15 (using
Lemma 4.1). Moreover, note that sϕ = w0w{2,3,4} (for example, by computing
inversion sets), and so there exists a nondomestic type 1 vertex. All type 2 or 3
vertices are domestic, for if, for example, there is a nondomestic type 2 vertex then
there is g ∈ G with δ(gB, θgB) ∈ w0W{1,3,4} and hence disp(θ)≥ 24− 4> 15. If
there exists a nondomestic type 4 vertex then by [Parkinson and Van Maldeghem
2019, Lemma 4.5] there exists a nondomestic type {1, 4} simplex, which again
contradicts the displacement calculation. Thus the diagram for θ1 is as claimed, and
since θ2 = σ(θ1) (with σ the graph automorphism) the result for θ2 also follows.

Consider θ3. Since xϕ′(1) is also central in U (this special feature of character-
istic 2 follows from the commutator relations) we see that θ3 is central in U . Thus,
using commutator relations and (4-1) we have

w−1
0 u−1θ3uw0

= x−ϕ′(1)x−ϕ(1)= x−ϕ′(1)xϕ(1)nϕ(1)xϕ(1)

= xϕ(1)x(1110)(1)x−(0122)(1)x−ϕ′(1)nϕ(1)xϕ(1)∈ Bx−(0122)(1)x−ϕ′(1)sϕB

= Bsϕx−(0122)(1)x(1110)(1)B= Bsϕs(0122)B.
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We have sϕs(0122) = w0w{2,3} (for example, by computing the inversion sets), and
hence there exists a nondomestic type {1, 4} simplex; see (4-4). By Lemma 4.1 the
above calculation also shows that disp(θ)= `(w0w{2,3})= 20, and the diagram of
θ3 follows.

Consider θ4. We first show that θ4 is domestic. We will work with the conjugate

θ ′4 = x(1220)(1)x1122(1)= w−1θ4w where w = s(0110)s(1242)

because this representative commutes with more elements xα(1) with α ∈ R+,
making (4-2) more effective. Indeed θ ′4 commutes with all xα(1) with α ∈ R+\A,
where

A = {(0100), (0001), (0110), (0011), (0120), (1220), (0122), (1122)}.

Then, as in (4-3), we have w−1
0 u−1θ ′4uw0 = w

−1
0 u−1

A θ
′

4u Aw0. There are 28 distinct
elements u A, and using the groups of Lie type package in Magma we can easily
verify that w−1

0 u−1
A θ
′

4u Aw0 /∈ Bw0 B for all u A (see Parkinson’s webpage for the
code). This implies that θ ′4 is domestic, for if θ ′4 were not domestic then the third
hypothesis of Lemma 4.1 would hold and hence there would exist an element u A

with w−1
0 u−1

A θ
′

4u Aw0 ∈ Bw0 B.
One may see that θ ′4 maps panels of cotypes 1 and 2 to opposites by simply ex-

hibiting such panels (the groups of Lie type package is helpful here). Checking that
there are no cotype 3 or 4 panels mapped to opposite panels is more complicated,
and we have resorted to exhaustively verifying this by computation. However some
efficiencies must be found to make the search feasible. Firstly, it is sufficient to
check that there are no nondomestic type {1, 2} simplices (by a simple residue
argument). Writing P = P{3,4}, the (residues of the) type {1, 2} simplices of 1
are the cosets g P , g ∈ G. Let T ⊆ W denote a transversal of minimal length
representatives for cosets in W/W{3,4}. A complete set of representatives for P
cosets in G (and hence type {1, 2} simplices in 1) is

{uw(a)w | w ∈ T, a ∈ F
`(w)
2 } where uw(a)= xβ1(a1) · · · xβk (ak),

where R(w) = {β1, . . . , βk} is the inversion set of w. Thus, using (4-4), it is
sufficient to check that δ(g, θ ′4g) /∈ w0W{3,4} for all g = uw(a)w with w ∈ T .
However there are 4385745 such elements g (the cardinality of G/P) and this
would be computationally expensive. Considerable efficiency can be gained by
using the fact that the product uw(a) can be taken in any order (again, see [Steinberg
2016, Lemma 17]). Thus, applying the technique (4-3), we only need to consider
terms u′w(a)= xγ1(a1) · · · xγ`(a`) with {γ1, . . . , γ`} = R(w)∩ A. This drastically
reduces the number of cases needing checking. In fact it turns out that there are
only 3885 elements to check, and these are very quickly checked by the computer.

Since θ5 = σ(θ4) the result for θ5 follows.
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Consider θ6. Again we use a different conjugate θ6 ∼ θ
′

6 = x(1110)(1)x(0122)(1).
This element commutes with all xα(1) with α ∈ R+\A, where

A={(0001),(0011),(0122),(0111),(0121),(1120),(1220),(1110),(1100),(1000)}.

A similar argument to before, this time checking 210 cases, verifies that θ ′6 (and
hence θ6) is domestic. It is then straightforward to provide panels of each cotype
mapped onto opposites, and hence θ6 has the claimed diagram.

There are 95 conjugacy classes in the group F4(2) (computed using the permu-
tation representation), and for 88 of these classes a quick search finds nondomestic
chambers. The seven remaining classes must therefore be domestic, because the
six examples given above are clearly nonconjugate (they have distinct decorated
opposition diagrams), and the identity is also trivially domestic.

The number of fixed type 1 vertices for each example is easily computed using
the permutation representation, and the number of fixed type 4 vertices is obtained
by considering the dual. Finally the ATLAS classes can be determined by the
orders and fixed structures. �

Since no duality of a thick F4 building is domestic the classification of domestic
automorphisms of F4(2) is complete (see [Parkinson and Van Maldeghem 2019,
Lemma 4.1]). We also note that Lemma 2.18 follows from the above classification.

We now consider the building F4(2, 4). The full automorphism group of this
building is 2E6(22).2 (that is, 2E6(22) extended by the diagram automorphism σ

of E6; see [Tits 1974, Section 10.4] and [Conway et al. 1985, page 191]). We
write xα(a) for the Chevalley generators in the twisted group 2E6(22). Thus a ∈ F2

(respectively, a ∈ F4) if α is a long root (respectively, short root) of the twisted root
system.

Theorem 4.4. Let G = 2E6(22), and let 1 = G/B be the associated building of
type F4(2, 4). Let ϕ (respectively, ϕ′) be the highest root (respectively, highest
short root) of the F4 root system. There are precisely four classes of nontrivial
domestic collineations, as follows (where σ is the graph automorphism of E6):

θ capped diagram fixed points ATLAS

θ1 = xϕ(1) yes • • • • 46135 2A
θ2 = xϕ′(1) yes • • • • 20279 2B
θ3 = σ yes • • • • 69615 2E

θ4 = x1(1)x2(1) no • • • •• • • • 855 4A

Here xα(a) denote the Chevalley generators in the twisted group. Further, θ2
4 ∼ θ1.

Proof. The analysis for θ1 is similar to the analysis of θ1 for F4(2). Specifically,
this element commutes with all terms xα(a), and the result easily follows.
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Consider θ2. This element commutes with all terms xα(a) with α ∈ R+ except
for x(0010)(a), x(0110)(a) and x(1110)(a) with a ∈ {ξ, ξ 2

} (where ξ is a generator
of F∗4). By commutator relations, if a ∈ {ξ, ξ 2

} we have

x(0010)(−a)θ2x(0010)(a)= θ2xϕ−α1−α2(1)

x(0110)(−a)θ2x(0110)(a)= θ2xϕ−α1(1)

x(1110)(−a)θ2x(1110)(a)= θ2xϕ(1),

and it follows that for all u ∈U we have

w−1
0 u−1θ2uw0=x−ϕ′(1)x−ϕ+α1+α2(a1)x−ϕ+α1(a2)x−ϕ(a3) with a1,a2,a3∈{0,1}.

Considering each of the eight possibilities for the triple (a1, a2, a3) ∈ F3
2 we see

that the maximum length of w = δ(uw0 B, θ2uw0 B) is 20 with w = sϕs(0122), and
the result follows.

Consider θ4. This element is conjugate to θ ′4 = x(1220)(1)x(1122)(1), and then
an analysis very similar to the case of θ4 for F4(2) applies. In particular, with A
as in the F4(2) case, we need to check each of the elements δ(u Aw0 B, θ ′4u Aw0 B).
This time there are 2048 = 43

× 25 elements u A to check (since there are three
roots in A whose root subgroup is isomorphic to F4 and the remaining five root
subgroups are isomorphic to F2). A quick check with the computer shows that the
maximum length of δ(u Aw0 B, θ ′4u Aw0 B) is 23, and hence θ ′4 ∼ θ4 is domestic.
Then necessarily θ4 maps no panels of cotypes 3 or 4 to opposite (by a simple
residue argument), and then since disp(θ4)= 23 it is forced that there are panels
of cotypes both 1 and 2 mapped onto opposites.

Consider θ3= σ . This element acts on the untwisted group E6(4) as a symplectic
polarity, and thus is {i}-domestic for i ∈ {2, 3, 4, 5} (see [Van Maldeghem 2012]).
It follows that σ is {i}-domestic for i ∈ {1, 2, 3} on the building F4(2, 4), hence the
result.

Thus the diagrams of the four automorphisms are as claimed. Next, as in the
F4(2) example, we use the permutation representation of 2E6(22).2 to compute a
complete list of conjugacy class representatives of this group. It turns out that there
are 189 conjugacy classes, and for 184 of these classes one can exhibit a chamber
mapped onto an opposite chamber. Thus there are at most 4 classes of nontriv-
ial domestic collineations, and since the examples exhibited above are pairwise
nonconjugate (by decorated opposition diagrams) the list is complete.

Finally, the calculation of the numbers of fixed points is immediate from the per-
mutation representation, and the ATLAS classes can be determined by the orders
and fixed structures. �

Theorem 4.5. Let G = E6(2).2, and let 1 = E6(2)/B be the associated build-
ing of type E6(2). There are precisely three classes of domestic dualities (up to
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conjugation in the full automorphism group), as follows:

θ capped diagram order

θ1 = σ yes • • • • •

•
2

θ2 = x1(1)σ no
• • • • •

•

• • • • •

•
4

θ3 = x1(1)x3(1)σ no
• • • • •

•

• • • • •

•
8

Proof. As noted in Theorem 4.4, the element θ1 = σ acts as a symplectic polarity
on E6(2), and thus has the diagram claimed (see [Van Maldeghem 2012]). For the
remaining cases θ2 and θ3 we note that it is easy to find vertices of each type mapped
onto opposite vertices. Thus it remains to show that these dualities are domestic.
The working here is slightly more complicated than the case of collineations of the
F4 buildings. Writing θ = θ̃σ with θ̃ ∈ G, we must show w−1

0 u−1θ̃uσw0 /∈ Bw0 B
for all u ∈U (here we are applying Lemma 4.1).

Consider θ2. We use the conjugate θ ′2 = xβ(1)σ with β = (111221). It turns out,
by commutator relations, that if u ∈U is arbitrary then u−1xβ(1)uσ can be written
in the following form (where we use Magma’s built-in lexicographic order on the
positive roots α1, . . . , α32):

x1(a1)x7(a2)x12(a3)x18(a4)x23(0)x17(a5)x22(a6)x27(0)x26(a7)x30(0)

x29(a8)x32(a9)x33(a9+ 1)x34(a10)x35(a11)x36(a12)x3(a13)x9(a14)

x13(a15)x15(0)x19(0)x21(a4)x25(a6)x24(0)x28(a7)x31(a16)x4(0)

x10(a14)x8(0)x14(a15)x16(a3)x20(a5)x5(a13)x11(a2)x2(0)x6(a1),

where a1, . . . , a16 ∈ F2. The point is that there are only 216 such terms, rather
than 236

= |U | terms. It is then a quick check on the computer to verify that θ2 is
domestic (and hence strongly exceptional domestic by Corollary 2.20).

The analysis of θ3 is slightly more challenging. Using the conjugate θ ′3 =
xβ(1)xβ ′(1)σ with β = (010111) and β ′ = (001111) we see that u−1xβ(1)xβ ′(1)uσ

can be written in a similar way to the θ2 case above, this time with 222 degrees
of freedom. The verification that θ3 is domestic is then a long search with the
computer. The details are on Parkinson’s webpage.

To verify that our list of domestic examples is complete we again use explicit
conjugacy class representatives computed from the minimal faithful permutation
representation, as in the previous theorems. See Parkinson’s webpage for the rel-
evant code. Note that the character table of E6(2) is not printed in ATLAS, and
therefore it is not possible to provide the ATLAS conjugacy class names. �
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Theorem 4.6. Let G = E6(2), and let 1= G/B be the associated building of type
E6(2). There are precisely 3 classes of domestic collineations, as follows:

θ capped diagram fixed points order

θ1 = x1(1) yes • •
•

•

•

•
10479 2

θ2 = x1(1)x2(1) yes • •
•

•

•

•
2543 2

θ3 = x1(1)x3(1) no • •
•

•

•

•

•

•

•

•
• •

•

•

•

•
847 4

Proof. To analyse θ1 we work with the conjugate θ1 ∼ xϕ(1), where ϕ is the highest
root. Then an analysis very similar to the F4(2) case shows that θ1 has the diagram
claimed.

The analysis for θ2 can be done by hand. We work with the conjugate θ ′2 =
xϕ(1)xϕ′(1) where ϕ is the highest root and ϕ′ = (101111) is the highest root of
the A5 subsystem. Let u ∈U . By commutator relations and a simple induction we
see that u−1θ ′2u is a product of terms xα(a) with α ≥ ϕ′ (with ≥ being the natural
dominance order). In particular, each such α is in R+\D5, where D5 is the subsys-
tem generated by α2, . . . , α6. Let v = w0wD5 , where wD5 is the longest element of
the parabolic subgroup 〈s2, . . . , s6〉. Then R+\D5 = {α ∈ R+ | v−1α ∈ −R+}. It
follows that v−1(w−1

0 u−1θ ′2uw0)v ∈ B for all u ∈U , and therefore

w−1
0 u−1θ ′2uw0 ∈ vBv−1

⊆ BvB · Bv−1 B.

Hencew−1
0 u−1θ ′2uw0∈ BwB for somew with `(w)≤2`(v)=2(`(w0)−`(wD5))=

32 (in fact we necessarily have strict inequality here by double coset combinatorics).
Thus disp(θ) ≤ 32, and it then follows from the classification of diagrams (and
hence of possible displacements) that disp(θ) ≤ 30. On the other hand, a quick
calculation shows that w−1

0 θ ′2w0 ∈ Bsϕsϕ′B, and by computing inversion sets we
have sϕsϕ′ = w0wA3 (where A3 is the subsystem generated by α3, α4, α5). Thus θ ′2
maps the type {1, 2, 6} simplex of the chamber w0 B to an opposite simplex, hence
the result.

The working for θ3 is more involved. Here Lemma 4.1 cannot be applied,
and it is not practical to directly check every chamber for domesticity (there are
3126356394525 of them). Instead we argue in a similar fashion as we did for
the collineation θ4 in Theorem 4.3. First replace θ3 by the conjugate θ3 ∼ θ

′

3 =

x(111210)(1)x(011111)(1). Then θ ′3 commutes with all xα(a) with α ∈ R+\A where

A = {α1, α3, α4, α6, (000110), (000011),
(101100), (101110), (001111), (0111111), (111210)}.
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By a residue argument it is sufficient to show that there are no nondomestic type
{2, 4} simplices (see the claim in the proof of Corollary 2.26). Again one cannot
feasibly check all type {2, 4} simplices (there are 7089243525 of them). However,
as in Theorem 4.3, with T a transversal of minimal length representatives for the
cosets in W/W{1,3,5,6}, it is sufficient to check that δ(g, θ ′3g) /∈ w0W{1,3,5,6} for
all g = u′w(a)w with w ∈ T and u′w(a) = xγ1(a1) · · · xγ`(a`) with {γ1, . . . , γ`} =

R(w) ∩ A. It turns out that there are only 64158 such elements g, and they are
readily checked by computer in under an hour. �

4D. Automorphisms of small buildings of types E7 and E8. Consider the E7 root
system R. Fix the ordering α1, . . . , α63 of the positive roots according to increas-
ing height, using the natural lexicographic order for roots of the same height (for
example, (1122100) < (1112110)). Note that this is the inbuilt order in Magma.
With this order, the roots α44 = (1112111), α45 = (0112211), and α46 = (1122210)
play a special role below.

Theorem 4.7. Let θ1= x44(1)x46(1) and θ2= x44(1)x45(1)x46(1) in E7(2). Then θ1

and θ2 are uncapped with the following respective decorated opposition diagrams:

• • • • • •

•

• •• • • • • •

•
and • • • • • •

•

• • • • • •

•

Moreover θ2
1 = θ

2
2 = xϕ(1) where ϕ is the highest root, and hence θ1 and θ2 have

order 4.

Proof. Consider θ2 first. We show that θ2 is domestic using Lemma 4.1. Apply-
ing (4-3) verbatim requires us to check 226 elements. The following modification
of the theme is more efficient. It follows from commutator relations that

w−1
0 u−1θ2uw0 =

∏
β∈B

x−β(aβ),

where B = {β ∈ R+ | β ≥ α44 or β ≥ α45 or β ≥ α46} (where here α≥ β if and only
if α− β is a nonnegative combination of simple roots). There are 20 roots in B.
Moreover a44 = a45 = a46 = 1 (by commutator relations), and so there remain
only 217 elements to consider. It is then readily checked by computer that θ2 is
domestic, and we easily find vertices of each type mapped onto opposite vertices.
Finally, commutator relations show that θ2

2 = xϕ(1).
For θ1 we do a similar search to the above to show that θ1 is domestic. The

remaining difficultly is showing that θ1 is {1, 3}-domestic. Arguing as we did for
θ4 in Theorem 4.3 it turns out that there are 1141419 elements to check, and this
can be done in an overnight run on the computer. �

Thus the proof of Theorem 1(b) is complete. Our computational techniques are
not efficient enough to handle the two diagrams for E8(2) due to the formidable
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size of the group. Thus for these diagrams we provide conjectural examples. For
each of these conjectures we have randomly selected 105 chambers and verified
that restricted to this subset of the chamber set the structure of the automorphism
is as claimed.

Fix the ordering α1, . . . , α120 of the positive roots of E8 according to increasing
height, using the natural lexicographic order for roots of the same height. Then the
roots α88 = (11232221), α89 = (12243210) and α90 = (12233211) play a special
role below.

Conjecture 4.8. Let θ1= x88(1)x90(1) and θ2= x88(1)x89(1)x90(1) in E8(2). Then
θ1 and θ2 are uncapped with the following respective decorated opposition dia-
grams:

• • • • • • •

•

• •• • • • • • •

•
and • • • • • • •

•

• • • • • • •

•

We note that θ2
1 = θ

2
2 = xϕ(1) where ϕ is the highest root, and hence θ1 and θ2

have order 4. It is not difficult to verify that Typ(θ1)= {1, 6, 7, 8} and Typ(θ2)=

{1, 2, 3, 4, 5, 6, 7, 8}. Thus the difficulty in the above conjecture is to show that
θ1 is {7, 8}-domestic, and that θ2 is domestic. In principle the approach taken for
E7(2) is applicable, however in practice the enormous size of the group E8(2) makes
the search impractical. For example, applying the technique of Theorem 4.7 to θ2

amounts to checking 230
= 1073741824 elements. Each of these checks requires

a sequence of commutator relations in the group E8(2), and while Magma has
remarkably efficient algorithms implemented for this, the number of cases renders
this computational approach unfeasible.

Remark 4.9. The examples of uncapped automorphisms that we have constructed
thus far fix a chamber of the building. This is clear for the examples in excep-
tional types because the representatives are either in the Borel subgroup B, or are
a composition of an element of B with a standard graph automorphism. For the
examples constructed in classical types we note that all examples have either order
4 or 8. It follows that they lie in a Sylow 2-group of the automorphism group, and
hence are conjugate to an element of B (or 〈B, σ 〉 in the case of an order 2 graph
automorphism). However there do exist uncapped automorphisms that do not fix
a chamber. For example, in C3(2)= Sp6(2) the element

θ = x2(1)x3(1)n2 = E11+ E23+ E24+ E25+ E32+ E33+ E45+ E54+ E55+ E66

is exceptional domestic (in fact strongly exceptional domestic), with order 6. Thus
θ does not lie in any conjugate of B, and hence θ fixes no chamber of C3(2). In
fact the fixed structure of θ consists of three points p1, p2, p3, a line L , and three
planes π1, π2, and π3 such that π1, π2 and π3 intersect in L , pi ∈ πi for i = 1, 2, 3,
and pi /∈ L for i = 1, 2, 3.
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