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Chamber graphs of some geometries
that are almost buildings

Veronica Kelsey and Peter Rowley

The global structure of the chamber graph of certain rank 3 geometries that are
almost buildings is determined. Computer files containing extensive details of
these graphs accompany this paper.

1. Introduction

The study of geometries that are almost buildings was instigated by Tits [1981].
The acronym “GAB” was bestowed upon them in [Kantor 1981], and they also go
under the names of “geometries of type M” or “Tits geometries of type M”. These
geometries are Buekenhout–Tits geometries [Buekenhout 1979a] all of whose rank-
2 residue geometries are generalized polygons (though they are not required to
satisfy the intersection property). That is, they are incidence geometries satisfying
axioms (1) and (2) but not necessarily (3) of [Buekenhout 1979a].

We recall that an incidence geometry over a set I is a triple (0, ∗, τ ) where 0 is a
set, τ an onto map from 0 to I and ∗ is an incidence relation on 0 such that if x, y ∈
0 and x∗y then τ(x) 6= τ(y). The map τ is called the type map and |I | the rank of 0.
As is customary, we shall abbreviate (0, ∗, τ ) to 0. A flag F of 0 is a subset of 0
such that x∗y for all x, y ∈ F, x 6= y and the type of F is {τ(x) | x ∈ F}. The residue
of F in 0, 0F , is the (subgeometry) given by {x ∈0 | y∗x for all y ∈ F}. If F ={x},
then we write 0x instead of 0{x}. We shall call a maximal flag of 0 a chamber of 0.
Note that, by axiom (1) of [Buekenhout 1979a], the type of a chamber of a GAB
is I . The chamber graph C(0) is defined as follows. The vertices are the chambers
of 0 with distinct chambers γ and γ ′ deemed adjacent in C(0) if |γ ∩γ ′| = |I |−1.
We sometimes also say that γ and γ ′ are i-adjacent if I = {i} ∪ {τ(x) | x ∈ γ ∩ γ ′}.
Let γ be a chamber of 0. The i-th disc of γ , denoted by 1i (γ ), consists of all the
chambers which are distance i from γ in the graph C(0). We shall use d( , ) for

Kelsey was supported by LMS Undergraduate Research Bursary 16-17 01.
MSC2010: primary 51E24; secondary 05B25.
Keywords: chamber graphs, geometries, almost buildings.

189

http://msp.org/iig
http://msp.org/iig
http://dx.doi.org/10.2140/iig.2019.17-3
http://dx.doi.org/10.2140/iig.2019.17.189
http://msp.org


190 VERONICA KELSEY AND PETER ROWLEY

the distance metric on C(0) and Diam(C(0)) for the diameter of C(0). For more
on incidence geometries, consult [Buekenhout 1979b; 1995], while for GAB’s the
survey paper [Kantor 1986] contains much interesting material.

The chamber graph of a building contains all the important geometric informa-
tion about the building. For example, the (chambers of the) apartments of the
building can be detected in the chamber graph. The sets 1i (γ ), for γ a chamber,
encode data relating to the Weyl group of the building. Further, if d is the diameter
of the chamber graph and G is the automorphism group of the building, then Gγ ,
a Borel subgroup of G, acts transitively on 1d(γ ). See [Ronan 2009; Tits 1974;
1981] for more on buildings. It is natural to wonder about chamber graphs of other
geometries associated with groups which are, in some sense, close to buildings.
This has prompted a number of papers which have focussed on analyzing the disc
structure of such chamber graphs. See [Carr and Rowley 2018; Rowley 1998;
2009; 2010]. Most of the geometries of interest have a large number of chambers
and so these investigations have necessarily involved extensive computation using
packages such as MAGMA [Cannon and Playoust 1997]. Here we continue this line
of work, examining the chamber graphs of rank 3 GAB’s. The examples we look
at have been drawn from [Aschbacher and Smith 1983; Cooperstein 1989; Kantor
1981; Ronan and Smith 1980] (see also [Connor 2011; Kantor 1985; Yoshiara
1988]). We now state our main results on the disc structure of these GAB’s.

Theorem 1.1. Let G denote one of the five groups P�−6 (3), G2(3), U6(2), �+8 (2)
and Suz, and let 0 denote a GAB associated to one of these groups. Set C = C(0),
and let γ0 be a fixed chamber of C. Put B = StabG(γ0).

(i) If G ∼= P�−6 (3) and 0 has diagram

then C has 25515 chambers, 196 B-orbits, diameter 10 and disc structure

i-th disc 1 2 3 4 5 6 7 8 9 10
|1i (γ0)| 6 20 64 176 416 1024 2432 5120 9088 7168

# of B-orbits 3 5 8 12 15 19 27 35 43 28

(ii) If G ∼= G2(3) and 0 has diagram

then C has 66339 chambers, 1144 B-orbits, diameter 12 and disc structure

i-th disc 1 2 3 4 5 6 7 8 9 10 11 12
|1i (γ0)| 6 20 64 208 600 1728 4640 10368 17920 20416 9472 896

# of B-orbits 3 6 10 18 27 42 90 176 288 321 148 14
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(iii) If G ∼= G2(3) and 0 has diagram

then C has 66339 chambers, 1144 B-orbits, diameter 13 and disc structure

i-th disc 1 2 3 4 5 6 7 8 9 10 11 12 13
|1i (γ0)| 6 20 56 144 384 960 2176 4864 10368 19072 21248 6976 64

# of B-orbits 3 6 9 14 21 31 51 92 172 302 332 109 1

(iv) If G ∼=U6(2) and 0 has diagram

then C has 1576960 chambers, 505 B-orbits, diameter 8 and disc structure

i-th disc 1 2 3 4 5 6 7 8
|1i (γ0)| 15 117 972 6075 35721 203391 875043 455625

# of B-orbits 3 6 10 17 35 98 246 89

(v) If G ∼=�+8 (2) and 0 has diagram

then C has 179200 chambers, 317 B-orbits, diameter 9 and disc structure

i-th disc 1 2 3 4 5 6 7 8 9
|1i (γ0)| 9 45 216 891 3159 11421 37098 80676 45684

# of B-orbits 3 6 10 16 26 43 68 95 49

(vi) If G ∼= Suz and 0 has diagram

then C has 18243225 chambers, 1276 B-orbits, diameter 16 and disc structure

i-th disc 1 2 3 4 5 6 7 8
|1i (γ0)| 8 32 128 432 1216 3712 11008 29184

# of B-orbits 3 5 8 12 15 19 26 33

i-th disc 9 10 11 12 13 14 15 16
|1i (γ0)| 81920 229376 598016 1576960 3595264 5410816 5304320 1400832

# of B-orbits 44 66 99 155 241 270 222 57

The GAB associated with the Lyons sporadic simple group is beyond our com-
putational reach having 207060716016 chambers. However, we can give bounds
on the diameter of the chamber graph.

Theorem 1.2. Let 0 be the GAB for Ly. Then 10≤ Diam(C(0))≤ 16.
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2. Properties of C(0)

The information collated in Theorem 1.1 was obtained using the code available
with [Carr and Rowley 2018] and employing MAGMA. In fact, much more intricate
details about C(0) were obtained, and these are available in the files in the online
supplement (see article web page, doi 10.2140/iig.2019.17.189). We give a brief
summary of such things.

The chambers of 0 are viewed as the right cosets of B. The panel stabilizers
will be denoted by P1, P2 and P3 (recall we are only looking at rank 3 geometries).
The data obtained and program code is underpinned by DB, a sequence contain-
ing the (B, B) double coset representatives. So for g = DB[ j], the Bg coset
is a representative for the B-orbits on the chambers of 0. To minimise storage,
we record j rather than DB[ j] whenever possible.The important output files are
BorbitsDiscs and Neighbours. The first is a sequence where BorbitsDiscs[i] tells us
the B-orbits making up 1i (γ0) (where γ0 is identified with the coset B). Here we
give B-orbit representatives Bg, where g = DB[k], by recording k. Neighbours is
also a sequence where Neighbours[ j] is giving information on the neighbours of
Bg (where g = DB[ j]). Suppose we have [Pi : B] = 3 for i = 1, 2, 3 (as happens
for the GAB associated with P�−6 (3), for example), so C(0) has valency 6. Re-
turning to Neighbours[ j], in this case this would be a 6-tuple [k1, k2, k3, k4, k5, k6].
This is saying that the six neighbours of Bg are in the B-orbits of B ∗ DB[ki ]

(i = 1, . . . , 6). More than this we are also keeping track of the kind of adjacency.
So the neighbours in the B-orbits of B ∗ DB[k1] and B ∗ DB[k2] are 1-adjacent to
Bg, those in the B orbits of B ∗ DB[k3] and B ∗ DB[k4] are 2-adjacent to Bg, and
those in the B-orbits of B ∗ DB[k5] and B ∗ DB[k6] are 3-adjacent to Bg.

Proof of Theorem 1.2. Let G = Ly and let γ0 be a chamber of C(0), and put
B = StabG(γ0). Recall that the diagram for 0 is

Let x be a point of 0. Then by Section 6 of [Kantor 1981], 0x is a generalized
hexagon dual to the usual G2(5) generalized hexagon. In particular, for any two
chambers γ, γ ′ of 0 containing x we have d(γ, γ ′) ≤ 6. Let the point, line and
plane of γ0 be respectively x0, l0, p0 and γ1 a chamber whose point, line and plane
are respectively x1, l0, p1 where x0 6= x1. So x0 and x1 are collinear in 0. Now γ0=

{x0, l0, p0}, {x0, l0, p1}, {x1, l0, p1} = γ1 is a path in C(0), whence d(γ0, γ1) ≤ 2.
Since the point-line collinearity graph of 0 has diameter 2 (see Section 6 of [Kantor
1981] again), we infer that Diam(C(0))≤ 2+ 6+ 2+ 6= 16.

The number of chambers in the GAB associated with the Lyons group is

|G|
NG(S)

=
|G|

56 · 24 = 207060716016,

http://msp.org/iig/2019/17-3/iig-v17-n3-x03-Kelsey+Rowley-MAGMA.zip
http://msp.org/iig/2019/17-3/iig-v17-n3-x03-Kelsey+Rowley-MAGMA.zip
https://doi.org/10.2140/iig.2019.17.189
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where S ∈ Syl5(G). We find a lower bound for the diameter of the C(0) by working
out the maximum number of chambers that can be in each disc. We have [Pi : B] =
6, i = 1, 2, 3, and so the valency of C(0) is 15. Therefore each chamber γ in11(γ0)

is joined to 5 chambers in 11(00)∪ {γ0}. Hence |11(γ )∩12(γ )| = 10. Of course
for i ≥ 2, a chamber in 1i (γ0) can have at most 14 neighbours in 1i+1(γ0). Thus,
letting d = Diam(C(0)),

207060716016≤ 1+15+150+150 ·14+· · ·+150 ·14d−2
= 16+150

( 14d−1
−1

14−1

)
.

This gives d − 1≥ log14
( 13

150(207060716001)+ 1
)
, whence d − 1≥ 8.947. Conse-

quently, Diam(C(0))≥ 10, which completes the proof of Theorem 1.2. �

Collapsed adjacency graphs. For a GAB with diameter of say d, we call 1d(γ0)

the last disc (of γ0) of the chamber graph. When examining the number of B-
orbits which comprise the last disc we see, from the point of the chamber graph,
the appellation of “almost building” is something of a misnomer. Of the GAB’s
investigated here only the GAB associated with G2(3), diagram

has its last disc as a B-orbit. Because of this we have calculated the geodesic
closure for this GAB, the results of which are summarized in Theorem 2.1. All
the others have the number of B-orbit ranging from 14 to 89. Indeed the more
sporadic geometries studied in [Carr and Rowley 2018] and [Rowley 2009] come
closer to buildings in this respect.

Notwithstanding the above comments on the last disc, we have looked at the
induced graph on this disc. The most interesting (as far as we can see) are the
GAB’s from G2(3). Now we describe the B-collapsed adjacency graphs for the
last disc of γ0. The B-collapsed adjacency graph is formed by taking B-orbits,
B=StabG γ0, as the vertices. We use j to stand for the B orbit of B∗DB[ j] (where
j is as given in the accompanying files). Two B-orbits, j and k are adjacent if and
only if each chamber in j is adjacent to some chamber in k and we label the edge
coming out from j with the number of chambers in k a chamber in j is adjacent
with. If this number is 1 (as is mainly the case below) we omit this number.

(i) If G ∼= P�−6 (3) and 0 has diagram

then the last disc of the B-collapsed adjacency graph is connected apart from
87 and 89, with 87 and 89 having the following adjacencies.

86 872 2
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(ii) If G ∼= G2(3) and 0 has diagram

then the 14 B-orbits in the last disc form the following collapsed B-adjacency
graph.

465 501

460 497

699

702

273

10 320

8 318

677

682

686

(iii) If G ∼= G2(3) and 0 has diagram

then there is only one B-orbit in the last disc and 113(γ0) is a co-clique.

(iv) If G ∼=U6(2) and 0 has diagram

then the last disc of the B-collapsed adjacency graph is connected apart from
215 and 377, with 215 and 377 having the following adjacencies.

2152 3772

(v) If G ∼=�+8 (2) and 0 has diagram

then the B-collapsed adjacency graph of 19(γ0) is connected.

(vi) If G ∼= Suz and 0 has diagram

then the last disc of the B-collapsed adjacency graph is connected apart from
145, 146, 175 and 196, which have the following adjacencies.

145

196 175

146
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Geodesic closure. For γ, γ ′ ∈ C a shortest path between them in C is called a
geodesic. The geodesic closure of a set of chambers X is defined to be the set
X of all chambers lying on some geodesic of γ, γ ′ for any pair γ, γ ′ ∈ X . The
motivation for geodesic closures comes from the fact that in the chamber graph of
a building, the geodesic closure of two chambers at maximal distance apart yields
(the chambers of) an apartment.

Theorem 2.1. Let G denote one of the groups P�−6 (3) or G2(3), and let 0 denote
a GAB associated to one of these groups. Set C = C(0), and let γ0 be a fixed
chamber of C. Put B = StabG(γ0).

(i) Suppose G ∼= P�−6 (3) and 0 has diagram

and let γi ∈110(γ0), i = 1, . . . , 28 be B-orbit representatives of 110(γ0). Set
ni, j = |{γ0, γi } ∩1 j (γ0)|. Then:

j 0 1 2 3 4 5 6 7 8 9 10
n1, j , n2, j 1 3 4 6 6 4 6 6 4 3 1

n3, j , n4, j , n5, j , n6, j 1 2 2 3 3 2 3 3 2 2 1
n7, j , n8, j , n9, j , n10, j 1 3 4 5 6 5 4 4 3 2 1

n11, j , n12, j 1 3 4 6 6 4 4 4 2 2 1
n13, j , n14, j 1 1 2 1 1 2 1 1 2 1 1

n15, j , n16, j , n17, j , n18, j 1 3 4 4 5 6 5 4 4 3 1
n19, j , n20, j , n21, j , n22, j 1 2 3 4 4 5 6 5 4 3 1
n23, j , n24, j , n25, j , n26, j 1 2 2 2 2 2 2 2 2 2 1

n27, j , n28, j 1 2 2 4 4 4 6 6 4 3 1

(ii) Suppose G ∼= G2(3) and 0 has diagram

and let γ ′ ∈113(γ0). Set n j = |{γ0, γ
′} ∩1 j (γ0)|. Then:

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13
n j 1 6 15 23 24 26 25 25 26 24 23 15 6 1

(iii) Suppose G ∼= G2(3) and 0 has diagram

and let γi ∈112(γ0), i = 1, . . . , 14 be B-orbit representatives of 112(γ0). Set
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ni, j = |{γ0, γi } ∩1 j (γ0)|. Then:

j 0 1 2 3 4 5 6 7 8 9 10 11 12
n1, j , n2, j 1 3 6 9 9 10 12 10 9 9 6 3 1
n3, j , n4, j 1 5 9 13 13 13 18 13 13 13 9 5 1
n5, j , n6, j 1 6 14 17 25 29 26 29 25 17 14 6 1
n7, j , n8, j 1 3 5 6 6 7 7 8 7 7 5 3 1
n9, j , n10, j 1 5 12 15 18 18 16 18 18 15 12 5 1
n11, j , n12, j 1 3 5 7 7 8 7 7 6 6 5 3 1
n13, j , n14, j 1 5 8 12 12 13 16 13 12 12 8 5 1

Apartments of GABs associated with U6(2) and �+

8 (2). The GAB’s for U6(2) and
�+8 (2) possesses apartments (see [Kantor 1981]), viewed as the fixed chambers of
T . For U6(2) we take T to be a cyclic group of order 4, and for �+8 (2) we take
T to be an elementary abelian group order 4, see [Kantor 1981]. In both cases
the apartments are isomorphic and have diameter 8. They also have the property
that the distance between any two chambers in the apartment (as measured in the
apartment) is the same as in the chamber graph. So this is something one expects
from a building. However, for �+8 (2) the diameter of its chamber graph is 9, so
not equal to the diameter of the apartment — unlike the situation in a building.

Theorem 2.2. Suppose G ∼= �+8 (2), let 0 denote a GAB associated to G. Set
C = C(0), and let γ0 be a fixed chamber of C. Put B = StabG(γ0).

An apartment, A, of 0 containing γ0 cuts the discs as follows.

Disc i of C(0) 0 1 2 3 4 5 6 7 8 9
|A∩1i (γ0)| 1 3 5 8 11 13 13 8 2 0

Let A∩18(γ0) = {γ1, γ2}. For j = 1, 2 the geodesic closure of the γ0, γ j cuts
the discs as follows.

Disc i of C(0) 0 1 2 3 4 5 6 7 8
|{γ0, γ j } ∩1i (γ0)| 1 3 4 4 4 4 4 3 1

The graphs on the next page are the geodesic closures {γ0, γ1} and {γ0, γ2}. The
type of adjacency between two connected chambers is shown by the labelling on
the edges, where

1 2 3

The set of chambers in both geodesic closures are subsets of the apartment. The
intersection between {γ0, γ1} and {γ0, γ2} has size 18 and the chambers that lie in
both geodesic closures are labelled with squares rather than circles.
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γ0 γ1

11

2 1

2

3
2

1

2

2

1 2

1

13

1

2

1

2

3

2

1 3

2

3

2

3

2 3

2

3 1

3 2

3

2

γ0 γ21 2 3 2 1 2

3

2 1 2 3 2

1

23

2

3

2 1 2 3 2

1

1

2 3 2 1 2

3

Geodesic closures (see Theorem 2.2).

Theorem 2.3. Suppose G ∼=U6(2), and let 0 denote a GAB associated to G. Set
C = C(0), and let γ0 be a fixed chamber of C. Put B = StabG(γ0).

An apartment, A, of 0 containing γ0 cuts the discs as follows.

Disc i of C(0) 0 1 2 3 4 5 6 7 8
|A∩1i (γ0)| 1 3 5 8 11 13 13 9 1
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Let A∩18(γ0)= {γ
′
}. The geodesic closure of γ0, γ

′ cuts the discs as follows.

Disc i of C(0) 0 1 2 3 4 5 6 7 8
|{γ0, γ

′} ∩1i (γ0)| 1 3 4 4 4 4 4 3 1

The graph for the geodesic closure of the only B-orbit in the last disc of the
apartment in the GAB of U6(2) is identical to the first diagram on page 197.

Again, the set of chambers in the geodesic closure in Theorem 2.3 is a proper
subset of the apartment (once more not very building like).

Maximal opposite sets. A maximal opposite set of chambers is a set of chambers
of maximal size subject to having the property that any two chambers are opposite
to each other, meaning that their distance apart is the diameter of the graph.

Theorem 2.4. If G ∼= G2(3) and 0 has diagram

then a maximal opposite set of chambers consists of three chambers.

Proof. Suppose G ∼= G2(3) and 0 has diagram

Since Gγ0
is transitive on 113(γ0), we may assume our maximal opposite set con-

tains {γ0, γ1}, where γ1 ∈113(γ0) is the chamber corresponding to B ∗ DB[149]
(the right coset of B containing DB[149]). We identify a chamber γ with the
triple {F1(γ ), F2(γ ), F3(γ )} which corresponds to a point-line-quad triple. Us-
ing the action of B, we determine 113(γ0), and by applying DB[149] to this set
we obtain 113(γ1). We can then see that |113(γ0) ∩113(γ1)| = 1. If we take
γ2 ∈113(γ0)∩113(γ1) we can see that |113(γ0)∩113(γ1)∩113(γ2)| = 0, and so
{γ0, γ1, γ2} is a maximal opposite set. �

Theorem 2.5. If G ∼= G2(3) and 0 has diagram

then each choice of the B-orbits in the last disc gives rise to a maximal opposite
set of chambers consisting of four chambers. In particular all maximal opposite
sets consist of four chambers.

Proof. We proceed as in Theorem 2.4, starting with γ0 but then there are 14 possible
choices of γ1 ∈112(γ0) (one from each B-orbit in 112(γ0)). We give the details for
γ1 being the chamber corresponding to B ∗ DB[8] (the right coset of B containing
DB[8]). We use MAGMA to calculate 112(γ1) and find that 112(γ0)∩112(γ1) is
comprised of 21 chambers. One of these 21 chambers, γ2, has the property that
|112(γ0)∩112(γ1)∩112(γ2)| = 2. Two of the other twenty chambers give rise to
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an intersection of 1 and the others to 0. Taking γ3 to be either of the chambers in
112(γ0)∩112(γ1)∩112(γ2)we find that112(γ0)∩112(γ1)∩112(γ2)∩112(γ3)=∅.
Hence γ1 is contained in a maximal opposite set with four chambers, so proving
the theorem. �

Perhaps the most surprising overall result was how unalike the chamber graphs
of buildings and the chamber graphs of these GABs appear. In [Carr and Row-
ley 2018] and [Rowley 2009] all the geometries investigated were in some sense
“building like”, indeed their chamber graphs had at most two B-orbits in their final
disc. The only GAB investigated here displaying this type of behaviour was G2(3)
with diagram

There were also differences by other measures. For the two groups, �+8 (2) and
U6(2) possessing apartments we found that the geodesic closures were proper sub-
sets of the apartments rather than being equal. Furthermore the apartment of �+8 (2)
did not even span the whole diameter of the chamber graph as it would were it a
building.

Perhaps it would be of interest to try and characterise why a limited number of
these GABs have so few B-orbits in their last disc while most have so many. Could
it be that there is a more unifying lens through which to view these chamber graphs
that would justify the name “geometries that are almost buildings”?
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