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A classification of homogeneous compact Tits geometries of irreducible spheri-
cal type, with connected panels and admitting a compact flag-transitive automor-
phism group acting continuously on the geometry, has been obtained by Kramer
and Lytchak (2014; 2019). According to their main result, all such geometries
but two are quotients of buildings. The two exceptions are flat geometries of
type C3 and arise from polar actions on the Cayley plane over the division
algebra of real octonions. The classification obtained by Kramer and Lytchak
does not contain the claim that those two exceptional geometries are simply
connected, but this holds true, as proved by Schillewaert and Struyve (2017).
Their proof is of topological nature and relies on the main result of (Kramer and
Lytchak 2014; 2019). In this paper we provide a combinatorial proof of that
claim, independent of (Kramer and Lytchak 2014; 2019).

1. Introduction

We presume that the reader has some knowledge of diagram geometry, in particular
Tits geometries, namely geometries belonging to Coxeter diagrams, and buildings.
A celebrated theorem of Tits [1981] states that Tits geometries generally come from
buildings. Explicitly, a Tits geometry of rank n ≥ 3 is 2-covered by a building if
and only if all of its residues of type C3 or H3 are covered by buildings; moreover,
buildings of rank n ≥ 3 are 2-simply connected.

Having mentioned coverings and simple connectedness, I recall that, for 1 ≤
k ≤ n, a k-covering of geometries of rank n is a type-preserving morphism which
induces isomorphims on rank k residues (with the convention that an n-covering
is just an isomorphism), the domain of a k-covering being called a k-cover of the
codomain. A geometry is said to be k-simply connected if it does not admit any
proper k-cover [Pasini 1994, Chapter 12]. (It goes without saying that a k-covering
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is proper if it is not an isomorphism.) I warn that (n − 1)-coverings are usually
called coverings, for short (which forbids us from using the word “covering" as a
possible abbreviation for k-covering). Accordingly, a geometry of rank n is said to
be simply connected if it is (n− 1)-simply connected. In particular, coverings of
geometries of rank 3 are 2-coverings and when we say that a geometry of rank 3
is simply connected we just mean it is 2-simply connected.

Turning back to the above theorem of Tits, that theorem shows the importance
of the investigation of C3 geometries. As noticed by Tits [1981], geometries of
type C3 that have no relation at all with buildings can be constructed by some kind
of free construction, but more examples exist that are not covered by buildings.
Classifying them all is perhaps hopeless. Nevertheless, with the help of some rea-
sonable additional hypotheses, something can be done. For instance, the following
is well known [Aschbacher 1984; Yoshiara 1996]:

Theorem 1.1. There exists a unique flag-transitive finite thick C3-geometry which
is not a building. It is simply connected and its automorphism group is isomorphic
to the alternating group Alt(7).

The exceptional geometry of Theorem 1.1 is called the Alt(7)-geometry (also
Neumaier geometry after its discoverer Neumaier [1984]). Calling the elements of
a C3 geometry points, lines and planes as explained by the picture

• • •

points lines planes

the Alt(7)-geometry has 7 points, 35 lines and 15 planes. Moreover, all of its
points are incident with all of its planes; therefore, this geometry is flat. We refer to
[Neumaier 1984] (also [Rees 1985; Pasini 1994, §6.4.2, §12.6.4]) for more details
on the Alt(7) geometry.

A number of flag-transitive locally finite (even finite) thick Tits geometries of
irreducible type are known that admit the Alt(7)-geometry as a proper residue (see,
e.g., [Buekenhout and Pasini 1995, §3] for a survey), but none of them belongs to
a diagram of spherical type. Indeed, as proved by Aschbacher [1984], the Alt(7)-
geometry cannot occur as a rank-3 residue in any flag-transitive finite thick Tits
geometry of irreducible spherical type and rank n > 3. Moreover, no finite thick
geometry of type H3 exists (as no finite thick generalized pentagons exist [Feit and
Higman 1964]) and no finite thick building of irreducible type and rank at least 3
admits proper quotients [Brouwer and Cohen 1983]. Consequently:

Corollary 1.2. Apart from the Alt(7)-geometry, all flag-transitive finite thick Tits
geometries of irreducible spherical type are buildings.
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Results in the same vein as Theorem 1.1 and Corollary 1.2 have recently been
obtained by Kramer and Lytchak [2014; 2019] for compact Tits geometries with
connected panels admitting a flag-transitive and compact group of automorhisms
acting continuously on 0. Before reporting on those results, I must explain what
a compact geometry is and what we mean when saying that it admits connected
panels.

Let 0 be a geometry over a (finite) set of types I . Assume that for every i ∈ I
a compact Hausdorff topology is given on the set 0i of i-elements of 0 and let
Vi be the topological space thus defined on 0i . For every J ⊆ I the set 0J of
J -flags of 0 is a subspace, say VJ , of the product space

∏
j∈J V j . If VJ is closed

(equivalently, compact) for every J ⊆ I , then 0 is said to be a compact geometry.
(We warn that this definition is not literally the same as in [Kramer and Lytchak
2014, §2.1], but it is equivalent to it; see Remark 1.7 below.) When saying that
0 has connected panels we mean that, for every type i ∈ I , the i-panels of 0 are
connected as subspaces of Vi (or of VI , if we regard panels as sets of chambers).

With 0 a compact geometry as defined above, let G be a flag-transitive group
of type-preserving automorphisms of 0. Suppose that G is a locally compact
topological group (we recall that for topological groups local compactness entails
Hausdorff, by convention) and that G acts continuously on Vi for every i ∈ I
(explicitly, the function ρ :G×Vi→Vi that maps (g, x) ∈G×Vi onto g(x) ∈Vi

is continuous). Then the pair (0,G) is called a homogeneous compact geometry
[Kramer and Lytchak 2014, §2.1]. We call 0 and G the geometric support and the
group of (0,G).

If (0,G) is a homogeneous compact geometry, then G also acts continuously
on VJ for every J ⊆ I . Consequently, for every flag X ∈ 0J , the stabilizer G X

of X in G is closed in G (recall that, as VJ is Hausdorff, the singleton {X} is
closed in VJ ). The function ρX : G/G X → VJ which maps every coset gG X onto
the flag g(X) ∈ VJ is a continuous bijection from the coset space G/G X to VJ .
If moreover G/G X is compact (which is obviously the case when G is compact),
then ρX is a homeomorphism. Indeed every continuous bijective mapping from a
compact space to a Hausdorff space is a homeomorphism.

Conversely, without assuming any topology on the sets 0i , let G be a flag-
transitive automorphism group of 0 carrying the structure of a locally compact
group such that G X is closed and G/G X is compact for every flag X of 0. Note that,
as G is Hausdorff and G X is closed, the coset space G/G X is Hausdorff (see, e.g.,
[Freudenthal and de Vries 1969, §4.8]). For every i ∈ I and chosen x ∈ 0i , we can
copy the topology of G/Gx on 0i via the bijection ρx : G/Gx → 0i , thus defining
a compact Hausdorff space Vi on 0i . As G/Gx ≈ G/G y for any two elements
x, y ∈ 0i , the space Vi does not depend on the particular choice x ∈ 0x . The group
G acts continuously on the space Vi . Thus, 0 is turned into a compact geometry
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and (0,G) is a homogeneous compact geometry. By the previous paragraph, we
also have G/G X ≈ VJ for any J ⊆ I and any flag X ∈ VJ .

In this way, as noticed in [Kramer and Lytchak 2014], one can see that all build-
ings of spherical type associated to semisimple or reductive isotropic algebraic
groups defined over local fields are (geometric supports of) homogeneous compact
geometries.

We add one more definition and a few conventions. Given two homogeneous
compact geometries (0̃, G̃) and (0,G) of rank n≥ 2 with compact groups G̃ and G,
a compact covering from (0̃, G̃) to (0,G) is a 2-covering γ : 0̃→ 0 such that γ
is continuous as a mapping from the space Ṽ of elements of 0̃ to the space V of
elements of 0, the group G̃ normalizes the deck group D of γ and γ induces a
continuous isomorphism from the topological group G̃/G̃ ∩ D to the topological
group G. Clearly, G̃ ∩ D is compact.

The category of homogeneous compact geometries with compact groups and
compact coverings as morphisms is named HCG in [Kramer and Lytchak 2014].
We have defined compact coverings only for homogenous compact geometries with
compact groups since these are the objects of HCG. According to this restriction,
when we say that a given homogeneous compact geometry (0,G) with G compact
is compactly covered by another homogeneous compact geometry (0̃, G̃), it must
be understood that G̃ too is compact.

We warn the reader that the name “compact covering" is not used in [Kramer
and Lytchak 2014]. We have introduced it with the hope that it can remind the
reader of the objects and the morphisms of the category HCG.

We say that a homogeneous compact geometry is a Tits geometry (in particu-
lar, a building) if its geometric support is a Tits geometry (a building). Accord-
ingly, when saying that a homogeneous compact geometry with compact group
is compactly covered by a building, we mean that it is compactly covered by a
homogenous compact geometry, the geometric support of which is a building. It
goes without saying that, when speaking of coverings of geometric supports, we
mean coverings in the usual “combinatorial” sense, recalled at the beginning of
this Introduction.

More generally, when we say that (0,G) has some geometric property which
neither refers to the topology of 0 nor to the group G (such as being a flat C3-
geometry, for instance) we mean that the geometric support 0 of (0,G) has that
property as a diagram geometry.

We are now ready to state the main result of Kramer and Lytchak [2014; 2019].

Theorem 1.3. Let (0,G) be a homogeneous compact Tits geometry of type C3

with connected panels and compact group G. Then either (0,G) is compactly
covered by a building or it is one of two exceptional flat geometries where G is
either ((SU(3)×SU(3))/C3)oC2 or SO(3)×G2, respectively, in its polar action
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on the Cayley plane of real octonions. Moreover, the geometric supports of these
two exceptional geometries are not covered by any building.

It is convenient to have a name for the two exceptional geometries mentioned in
Theorem 1.3. We shall call them OP2-geometries where O stands for the octonion
algebra over the reals and OP2 is the Cayley plane, namely the projective plane
over O.

By exploiting Theorem 1.3, Kramer and Lytchak [2014; 2019] also obtain:

Corollary 1.4. Apart from the two OP2-geometries, all homogeneous compact Tits
geometries of irreducible spherical type, rank at least 2, with connected panels and
compact group, are compactly covered by buildings.

The two OP2-geometries, or rather the group actions giving rise to them, were
first discovered by Podestà and Thorbergsson [1999] and Gorodski and Kollross
[2016], in the context of an investigation of polar actions of Lie groups on sym-
metric spaces. A purely algebraic construction of (the geometric supports of) these
two geometries is given by Schillewaert and Struyve [2017]. We shall report on
that construction in the next section.

Let (0,G) be any of the two OP2-geometries. The reader should be warned
that in the final part of Theorem 1.3 it is not claimed that 0 is simply connected.
It is only stated that the universal cover 0̃ of 0 is not a building. Thus, in view
of the rest of the statement of Theorem 1.3, if 0̃ 6= 0, then either 0̃ is not the
geometric support of any homogeneous compact geometry with compact group or,
if it is such, no compact covering exists from that homogeneous compact geometry
to (0,G). So, it is natural to ask if 0 is simply connected. The following theorem,
due to Schillewaert and Struyve [2017], answers this question in the affirmative.

Theorem 1.5. The geometric support of either of the two OP2-geometries is simply
connected.

The proof that Schillewaert and Struyve give for this theorem is of topological
nature. They prove that, if (0,G) is any of the two OP2-geometries, then the
universal cover 0̃ of 0 carries a compact Hausdorff topology and G lifts to a
compact group G̃ ≤ Aut(0̃), so that (0̃, G̃) is a compact cover of (0,G). Having
proved this, the conclusion follows from Theorem 1.3: necessarily 0̃ = 0. How-
ever, Schillewaert and Struyve [2017] also collect a great deal of information of
combinatorial nature on homotopies of closed paths of the two OP2-geometries.
In this paper we shall exploit that information to arrange a combinatorial proof of
Theorem 1.5, with no use of [Kramer and Lytchak 2014] or [2019].

Remark 1.6. As the title of [Kramer and Lytchak 2019] makes clear, an error
occurs in [2014]: the OP2-geometry associated to SO(3)×G2 is missing in [2014].
That gap is filled in [2019].
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Remark 1.7. In the definition of compact geometry as stated in [Kramer and
Lytchak 2014, §2.1], a compact Hausdorff topology V is assumed on the set of
elements of 0 such that for every J ⊆ I the set 0J is closed in the power space VJ .
In particular, 0i is closed in V for every i ∈ I . So, {0i }i∈I is a finite partition of
V in closed sets. Accordingly, V is the “free” union of the spaces Vi induced by
V on the sets 0i for i ∈ I , the open sets of V being just the unions

⋃
i∈I Ai with

Ai open in Vi . Clearly, VJ and its subspace
∏

j∈J V j induce the same topology
on 0J . Thus, we can forget about V and start from a compact Hausdorff space Vi

defined on 0i for each i ∈ I , as we have done in our definition.

2. The two OP2-geometries

A description of the two OP2-geometries as coset geometries is given by Kramer
and Lytchak [2014] (for the geometry with group G = (SU(3)× SU(3))/C3 oC2)
and in [2019] (for G = SO(3)×G2). On the other hand, Schillewaert and Struyve
[2017] propose a purely algebraic construction for these geometries, which we are
going to recall in this section.

2A. Algebraic background. Let A be a division algebra over the field R of real
numbers. It is well known that A has dimension 1, 2, 4 or 8 over R. Accordingly,
A is either R itself or the field C of complex numbers or the division ring H or
real quaternions or the Cayley–Dickson algebra O of real octonions. In any case,
A comes with a norm | · | : A→ R and a conjugation · : A→ A.

Explicitly, when A=R, then | · | is the usual absolute value and · is the identity;
if A = C, then | · | and · are the usual modulus and conjugation. When A = H,
then A can also be regarded as a right C-vector space with canonical basis {1, j}.
The C-span C= 1 ·C of 1 is a subring of H, j2

=−1 and x j = j x for any x ∈ C.
The norm and the conjugation of H map x + j y onto

√
|x |2+ |y|2 and x − j y,

respectively. The conjugation of H is an involutory antiautomorphism. Clearly,
{1, i, j , j i} is a basis of H over R (the canonical one), where i stands for any of
the two square roots of −1 in C.

Finally, O contains H as a subring and is generated by H together with an extra
element k such that k2

=−1 and

uk = ku for u ∈ H, (1)

where · denotes the conjugation in H as defined above. Moreover,

(ku)v = k(vu)= v(ku) and (ku)(kv)=−vu for all u, v ∈ H. (2)
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Conditions (2) imply (uv)k = v(uk)= v(ku). Jointly with (1) they also imply that
the elements of O admit the representation

u+ kv for u, v ∈ H. (3)

In spite of (3), the multiplication of O does not yield an H-vector space on O, as it
follows from the first equality of (2) and the fact that H is noncommutative. More
precisely, O does carry an H-vector space structure, as is clear from (3), but the
scalar multiplication of that space is not the multiplication of O restricted to O×H.
On the other hand, for x, y ∈ C we have

(kx)y = k(yx)= k(xy),

(k j x)y = (k(x j))y = k(y(x j))= k((yx) j)= (k j)(yx)= (k j)(xy).

So, the multiplication of O restricted to O×C defines a 4-dimensional C-vector
space on O, with {1, j , k, k j} as the canonical basis. Needless to say, {1, i, j , j i, k,
ki, k j , k( j i)} is a basis of O over R (the canonical one).

The norm and the conjugation of O map u+ kv onto
√
|u|2+ |v|2 and u− kv,

respectively. The conjugation of O is an involutory antiautomorphism.
In any case, the norm of A induces a positive definite R-bilinear form ( · | · )R

which maps (x, y) ∈ A×A onto the real part Re(x y) of the product x y. Clearly,
|x | =

√
(x, x)R. We denote by ⊥R K the orthogonal complement of a subspace K

of A with respect to ( · | · )R.
Let F be R or C, with F = R when A = R. Regarding F as a subfield of A in

the usual way, namely as the F-span of 1, we set PuF(A) := ⊥R F (in particular,
PuF(A)= 0 when A = F). Clearly, PuF(A) is a subspace of the F-vector space A

and A = F⊕PuF(A). The elements of PuF(A) are said to be F-pure.
As A = F ⊕ PuF(A), every element x ∈ A splits in a unique way as a sum

x = x1 + x2 with x1 ∈ F and x2 ∈ PuF(A). We call x1 and x2 the F-part and the
F-pure part of x .

When F= C we also define a Hermitian inner product ( · | · )C : A×A→ C by
taking (x | y)C equal to the complex part of x y. Obviously, Re((x | y)C)= (x | y)R.
Hence, we also have |x | =

√
(x | x)C for every x ∈ A.

The elements of A of norm 1 are called unit elements. Clearly, the set Un(A) of
unit elements of A is closed under multiplication and taking inverses in A and

A = Un(A) · |R| := {x · |t | | x ∈ Un(A), t ∈ R}.

We recall that a homomorphism of F-algebras is an F-linear mapping which also
preserves multiplication. In the sequel we shall deal with a particular class of
homorphisms of F-algebras, which we shall call sharp F-morphisms. We define
them as follows:
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Definition 2.1. With F equal to R or C, let A and let B be two division algebras
over R containing F. When F= C both A and B can also be regarded as algebras
over C. Thus, in any case, both A and B are F-algebras.

A sharp F-morphism from A to B is a homomorphism of F-algebras from A

to B which also preserves the inner product ( · | · )F.

Let φ : A → B be a sharp F-morphism. Then φ is injective, since it pre-
serves ( · | · )F. Consequently, φ(1) = 1; hence, φ(PuF(A)) ⊆ PuF(B). Moreover,
φ(Un(A)) ⊆ Un(B). We have x = x−1 for every unit element x . Therefore,
φ(x)= φ(x) for every x ∈ Un(A). Finally, φ also preserves conjugation.

As sharp F-morphisms are injective, every sharp F-morphism from A to A is an
automorphism. We call it a sharp F-automorphism.

Setting 2.2. From now on we assume that A and F are as follows: either A = H

and F= R or A =O and F= C.

The following is proved in [Schillewaert and Struyve 2017, Proposition 2.1]:

Lemma 2.3. With F and A as in Setting 2.2, let a1, a2 ∈PuF(A) and b1, b2 ∈PuF(B)

be such that (a1 | a2)F= (b1 | b2)F, |ai | = |bi | for i = 1, 2 and a1F 6= a2F. Then there
exists a unique sharp F-morphism from A to O mapping ai onto bi for i = 1, 2.

Lemma 2.4. Every sharp R-morphism from H to O can be extended to a sharp
R-automorphism of O.

Proof. Let φ :H→O be a sharp R-morphism. Put i ′ := φ(i) and j ′ := φ(i) and re-
call that φ(1)= 1. Then φ(H) is the R-span H′ := 〈1, i ′, j ′, j ′ i ′〉R of {1, i ′, j ′, j ′ i ′}
and φ is a sharp R-isomorphism from H to H′. We can construct a copy O′ of O

starting from H′ instead of H, and if k′ is the element of O′ corresponding to k,
a sharp R-isomorphism ψ :O→O′ is uniquely determined which maps i , j and
k onto i ′, j ′ and k′, respectively, which coincides with φ in H. If we can choose
k′ ∈O, then ψ can also be regarded as a sharp F-automorphism of O and we are
done.

So it remains to prove that we can choose k′ ∈O, namely O contains an element
k′ orthogonal to H and such that (k′)2 = −1. But this is obvious. Indeed every
unit element orthogonal to H has this property. The conclusion follows. �

2B. Construction of the geometries. With A and F as in Setting 2.2, let PG(A)
be the projective space of the F-vector space A. For every nonzero vector x ∈ A,
we denote by [x] the corresponding point of PG(A), and for every subset X of A

we put [X ] := {[x] | x ∈ X \ {0}}. In particular, if X is a subspace of A, then [X ]
is the corresponding subspace of PG(A).

We write ( · | · ) instead of ( · | · )F and ⊥ instead of ⊥F, for short. As usual,
F∗ stands for the multiplicative group of F. Following Schillewaert and Struyve
[2017], we construct a C3-geometry 0F(A) as follows.
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Definition 2.5. The elements (points, lines and planes) of 0F(A) are defined as
follows:

(A1) The points are the points of [PuF(A)].

(A2) The lines are the sets of pairs [x, u] := {(xt, ut) | t ∈ F∗} with x ∈ PuF(A),
u ∈ PuF(O) and |x | = |u| 6= 0.

(A3) The planes are the sharp F-morphisms φ : A→O.

The incidence relation is defined as follows:

(B1) Every point is incident with all planes.

(B2) A line [x, u] and a point [y] are declared to be incident when y ∈ x⊥.

(B3) A line [x, u] and a plane φ : A→O are incident precisely when φ(x)= u.

Clearly, the conditions defining point-line and line-plane incidences do not de-
pend on the particular choice of the pair (x, u)∈ [x, u]. It is proved in [Schillewaert
and Struyve 2017, Proposition 4.3] that 0F(A) is indeed a C3-geometry. According
to clause (B1) of Definition 2.5, this geometry is flat.

Lemma 2.6. Both the following hold:

(1) Two lines [x, u] and [y, v] are coplanar if and only if (x | y)= (u | v). If this
is the case, then the unique sharp F-morphism φ : A→O such that φ(x)= u
and φ(y) = v (see Lemma 2.3) is the unique plane incident with both [x, u]
and [y, v].

(2) If two lines have two distinct points in common, then they have the same set
of points.

Proof. Claim (1) immediately follows from Lemma 2.3 (see also [Schillewaert and
Struyve 2017, Lemma 4.2]). Claim (2) follows from clause (B2) of Definition 2.5
and the fact that PuF(A) has dimension 3 over F (see also [Schillewaert and Struyve
2017, Lemma 5.1]). �

The set of points of a line [x, u] is the line x⊥ ∩ PuF(A) of PG(PuF(A)). We
call it the shadow of [x, u] and also a shadow-line. With this terminology, we can
rephrase claim (2) of Lemma 2.6 as follows:

Corollary 2.7. The set of points of 0F(A) equipped with the shadow lines as lines
coincides with the projective plane PG(PuF(A)).

2C. Automorphism groups. Let AutF(A) and AutF(O) be the groups of sharp F-
automorphisms of A and O. The product AutF(A)×AutF(O) acts on 0F(A) as a
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group of automorphisms. Explicitly, given an element (α, ω)∈AutF(A)×AutF(O),

(α, ω) : [x] → [α(x)] for every point [x] of 0F(A),

(α, ω) : [x, u] → [α(x), ω(u)] for every line [x, u] of 0F(A),

(α, ω) : φ→ ωφα−1 for every plane φ of 0F(A).

The first questions one may ask are whether this action is faithful and whether
all automorphisms of 0R(A) arise in these way. Both questions are answered by
Schillewaert and Struyve [2017], but the answers are different according to whether
(F,A)= (R,H) or (F,A)= (C,O).

Let F= R and A = H. Then both questions are answered in the affirmative:

Aut(0R(H))= AutR(H)×AutR(O)= SO(3)×G2.

(Recall that AutR(H) = SO(3) and AutR(O) = G2.) When F = C and A = O

the answer is sligthly different. Indeed AutC(O)×AutC(O) acts nonfaithfully on
0C(O), with kernel a group C3 of order 3 contributed by elements (ζ, ζ ) with ζ in
the center of SU(3) (recall that SU(3)=AutC(O)). Moreover, the conjugation in C

also induces an automorphism γ of 0C(O) which, being semilinear as a mapping
of O×O, does not belong to AutC(O)×AutC(O). All automorphisms of 0C(O)

belong to the group generated by (AutC(O)×AutC(O))/C3 and γ . To sum up,

Aut(0C(O))= ((AutC(O)×AutC(O))/C3)oC2

= ((SU(3)×SU(3))/C3)oC2.

2D. Recognizing 0F(A) as an OP2-geometry. Let 0 := 0F(A) and G := Aut(0).
As shown by Schillewaert and Struyve [2017, §5], in either of the two cases that
we have considered, (0,G) is a homogeneous compact geometry. They obtain this
conclusion by noticing that in either case G is compact and the stabilizers in G of
the flags of 0 are closed in G, but a direct proof is also possible. We shall briefly
sketch it here.

In order to stick to the notation used in the Introduction of this paper, let 01,
02 and 03, respectively, be the sets of points, lines and planes of 0. In either case
each of 01, 02 and 03 can be equipped with a natural compact topology.

Explicitly, 01 = [PuF(A)] carries the topology of the real projective plane RP2

when (F,A)= (R,H) and the topology of the complex projective plane CP2 when
(F,A)= (R,H). Either of these spaces is both Hausdorff and compact.

When (F,A) = (R,H), the line-set 02 carries the topology of the quotient
(S2
×S6)/Z of the product space S2

×S6
⊂ R10 over the center Z of SL(R10).

When (F,A) = (C,O) then 02 carries the topology of the quotient (U ×U )/3
where U := {x ∈ C3

| |x | = 1} is the standard unital of C3 and 3 is the group of
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scalar transformations λ · id of C6 with |λ| = 1. Again, either of these spaces is
Hausdorff and compact.

When (F,A)= (C,O) then 03 carries the same topology as AutC(O)= SU(3),
which is (Hausdorff and) compact. Finally, let (F,A) = (R,H). Then every
sharp R-morphism from H to O can be regarded as the restriction of a sharp R-
automorphism of O (Lemma 2.4). Accordingly, the planes of 0 naturally corre-
spond to the cosets ωH of the elementwise stabilizer H of H in G :=AutR(O)=G2.
The group H is the intersection H =

⋂
x∈H Gx of the stabilizers Gx for x ∈H, which

are closed. Hence, H is closed as well. Thus, 03 can be regarded as a copy of the
quotient-space G/H , which is still compact and Hausdorff since H is closed.

As in the Introduction, let V1, V2 and V3 be the spaces defined on 01, 02 and 03

as above. It is straighforward to check that 0{i, j} is closed in Vi ×V j for every
choice of 1≤ i < j ≤ 3 and the set of chambers 0{1,2,3} is closed in V1×V2×V3.
So 0 is a compact geometry. Each of the groups Aut(0R(H))= SO(3)×G2 and
Aut(0C(O))= ((SU(3)× SU(3))/C3)oC2 is compact and acts continuously on
V1, V2 and V3.

It remains to show that the group G acts flag-transitively on 0. Clearly, in either
case G is transitive on the set of point-line flags of 0. So in order to prove flag-
transitivity, we only must show that the stabilizer in G of a given point-line flag
([u], [v, x]) of 0 acts transitively on the set of sharp F-morphisms φ of 0 such that
φ(v)= x . This follows from Lemma 2.4. So:

Result 2.8. The pair (0,G) is indeed a homogeneous compact geometry.

As G acts flag-transitively on 0, we can recover 0 as a coset-geometry from G,
where the flags naturally correspond to the cosets of the stabilizers of the flags
contained in a selected chamber of 0, two flags being incident precisely when the
corresponding cosets meet nontrivally (see, e.g., [Tits 1974, §1.4] or [Pasini 1994,
§10.1]). Accordingly, 0 is uniquely determined by the complex of the stabilizers
in G of the subflags of a chamber of 0. This complex, as described by Schillewaert
and Struyve [2017] for the case (F,A) = (C,O), is the same as computed for G
regarded as the automorphism group of the OP2-geometry considered in [Kramer
and Lytchak 2014] (see also [Schillewaert and Struyve 2017]). Similarly for the
case (F,A)= (R,H) and the OP2-geometry of [Kramer and Lytchak 2019]. So:

Result 2.9. The C3-geometries 0R(H) and 0C(O) are the (geometric supports of
the) two OP2-geometries.

Remark 2.10. The two cases of Setting 2.2 correspond to the two cases of [Schille-
waert and Struyve 2017] with B=O. Schillewaert and Struyve [2017] also consider
one more case, with F = R and A = B = H, which leads to a flat C3-geometry
which is a quotient of the building associated to the Chevalley group O(7,R) and
admits SO(3)× SO(3) as a flag-transitive automorphism group. This geometry
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also appears in [Rees 1985, §1.6, (2.2)(ii)] as a member of a larger family of flag-
transitive flat C3-geometries, obtained as quotients from O(7, K )-buildings, with
K any ordered field. Note that the construction used by Rees [1985] is primarily
geometric.

This geometry is indeed worth further investigation, but I have preferred to leave
it aside in order to stick to the subject of this paper.

3. A combinatorial proof of Theorem 1.5

3A. Preliminaries. We follow [Pasini 1994] for basics on diagram geometry. We
recall that, according to [Pasini 1994], all geometries are residually connected, by
definition. In particular, all geometries of rank at least 2 are connected.

Throughout this subsection 0 is a given geometry of rank n ≥ 2. Recall that 0
can be regarded as a simplicial complex, where the vertices are the elements of the
geometry and the simplices are the flags. Moreover, with {1, 2, . . . , n} chosen as
the type-set of 0, the vertices of the complex are marked by positive integers not
greater than n, according to their type as elements of 0. The incidence graph of 0
is just the skeleton of the complex 0.

We firstly state some notation and recall a few basics on homotopy of paths.
Given two paths α = (a0, . . . , ak) and β = (b0, . . . , bh) of 0 with ak = b0, the join
of α with β, also called the product of α and β, is the path:

α ·β := (a0, a1, . . . , ak = b0, b1, . . . , bh).

A null path is a path of lenght 0. The opposite (also called the inverse) of a path
α = (a0, a1, . . . , ak) is the path α−1

:= (ak, ak−1, . . . , a0).
Two paths α= (a0, a1, . . . , ak) and β= (b0, b1, . . . , nh)with a0=b0 and ak=bh

are said to be elementarily homotopic if α = γ ·α′ · δ and β = γ ·β ′ · δ for suitable
subpaths γ, δ, α′ and β ′ with α′ and β ′ contained in the same simplex (namely flag)
of 0. More generally, two paths α and β are said to be homotopic if there exists a
sequence α0, α1, . . . , αm of paths with α = α0, β = αm and such that αi−1 and αi

are elementarily homotopic for i = 1, 2, . . . ,m.
If α and β are homotopic we write α ∼ β. We say that a closed path α based at

a vertex a is null homotopic if it is homotopic with the null path (a). Equivalently,
α splits in triangles each of which is contained in a simplex and, possibly, paths of
the form β ·β−1.

Clearly, homotopy is an equivalence relation. We denote by [α] the homotopy
class of a path α. Given a vertex a of 0, the homotopy classes of closed paths
of 0 based at a form a group π1(0, a), with [(a)] as the identity element and
multiplication defined as follows: [α]·[β] := [α ·β]. The group π1(0, a) is called the
fundamental group of 0 based at a. As 0 is connected, we have π1(0, a)∼=π1(0, b)
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for any two vertices a, b ∈ 0. Explicitly, for very choice of a path γ from a to b,
the mapping

[α] ∈ π1(0, a) 7→ [γ−1
·α · γ ] ∈ π1(0, b)

is an isomorphims from π1(0, a) to π1(0, b). So, as far as we are interested only
in the isomorphism type of π1(0, a), we are free not to keep a record of the base
point a of π1(0, a) in our notation, thus writing π1(0) for π1(0, a) and calling
π1(0) the fundamental group of 0, for short.

It is well known (see, e.g, [Pasini 1994, §12.6.1]) that the geometry 0 is simply
connected (namely (n− 1)-simply connected) if and only it is simply connected
as a complex, namely π1(0) is trivial; equivalently, every closed path is null-
homotopic.

Lemma 3.1. For 1 ≤ i < j ≤ n, let 0i, j be the {i, j}-truncation of 0, namely the
subgeometry induced by 0 on the set of elements of 0 of type i or j . Then every
path of 0 starting and ending at 0i, j (in particular, every closed path based at an
element of type i or j) is homotopic to a path of 0i, j .

Proof. Let α = (a0, a1, . . . , ak) be a path of 0 with a0, ak ∈ Fi, j . We argue
by induction on the length k of α. When k ≤ 1 there is nothing to prove. Let
k = 2. If a1 ∈ 0i, j there is nothing to prove as well. Let a1 6∈ 0i, j . By the so-
called strong connectedness property [Pasini 1994, Theorem 1.18], the intersection
Res(a1)∩0i, j of the residue Res(a1) of a1 with 0i, j contains a path

β = (b0 = a0, b1, . . . , bh−1, bh = a2)

from a0 to a2. We have (bi−1, bi )∼ (bi−1, a1, bi ) for every i = 1, 2, . . . , h, since
{bi−1, a1, bi } is a flag. Moreover, (a1, bi , a1) ∼ (a1) for every i = 1, 2, . . . , h.
Therefore

β ∼ γ := (b0, a1, b1, a1, b2, . . . , bh−1, a1, bh)∼ (b0, a1, bh)= (a0, a1, a2)= α.

The claim is proved. Let now k> 2. If ak−1 ∈0i, j the claim follows by the inductive
hypothesis on the subpath (a0, a1, . . . , ak−1). Let ak−1 6∈ 0i, j . If ak−2 ∈ 0i, j then
the conclusion follows by the above on the subpath (ak−2, ak−1, ak) and the induc-
tive hypothesis on (a0, a1, . . . , ak−2). Let ak−2 6∈ 0i, j . Then Res(ak−2, ak−1) ∩

0i, j 6=∅, since neither i nor j belong to the type of the flag {ak−2, ak−1} and every
flag is contained in a chamber. Pick an element c ∈ Res(ak−2, ak−1) ∩ 0i, j and
consider the paths

α′ := (a0, a1, . . . , ak−2, c), α′′ := (c, ak−1, ak).

The path α′ has length k− 1. So, by the inductive hypothesis, a path β ′ exists in
0i, j from a0 to c such that β ′ ∼ α′. Similarly, as we have already proved the claim
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for paths of length 2, a path β ′′ exists in 0i, j from c to ak such that β ′′ ∼ α′′. So,
β := β ′ ·β ′′ ∼ α′ ·α′′ ∼ α is a path of 0i, j with the required properties. �

The following lemma is implicit in [Pasini 1994, Lemma 12.60].

Lemma 3.2. Given two elements v and w of 0, let α and β be two paths of 0 from
v to w. If an element u exists in 0 such that its residue Res(u) contains both α and
β, then α ∼ β.

Proof. Let α = (a0, a1, . . . , ak) with a0 = v, ak = w and α ⊆ Res(u). For every
i = 1, 2, . . . , k put αi = (ai−1, u, ai ). As (ai−1, ai )∼ (ai−1, u, ai ) and (u, ai , u)∼
(u), we have

α ∼ α1 ·α2 · · · · ·αk = (a0, u, a1, u, a2, . . . , ak−1, u, ak)∼ (a0, u, ak).

So, α ∼ (a0, u, ak)= (v, u, w). Similarly, β ∼ (v, u, w). Therefore α ∼ β. �

3B. Peculiar properties of C3-geometries. From now on 0 is a geometry of type
C3. The integers 1, 2 and 3 are taken as types and stand for points, lines and planes
respectively.

Definition 3.3. A primitive path of 0 is a closed path α := (p, L , q,M, p) where
p and q are points and L and M lines. If p = q or L = M then α is said to be
degenerate.

Clearly, degenerate primitive paths are null-homotopic. The following is also
well known [Tits 1981, Proposition 9] (see also [Pasini 1994, Corollary 7.39]).

Lemma 3.4. The geometry 0 is a building if and only if all of its primitive paths
are degenerate.

The proof of the next lemma is implicit in [Schillewaert and Struyve 2017, §6.6].
We make it explicit.

Lemma 3.5. Every closed path of 0 based at a point is homotopic to a primitive
path.

Proof. Let α be a closed path based at a point p. In view of Lemma 3.1, we
may assume that α is contained in 01,2. So, α = (p0, L1, p1, . . . , Lk, pk) where
p0 = pk = p and, for i = 1, . . . , k, pi is a point and L i a line. We argue by
induction on k. If k = 1 there is nothing to prove. Let k > 1. Suppose firstly that
L i−1 and L i are coplanar. Let ξ be the plane on L i−1 and L i and let M be the line
of Res(ξ) through pi−2 and pi . Then (pi−2, L i−1, pi−1, L i , pi ) ∼ (pi−2,M, pi )

by Lemma 3.2. Accordingly, α ∼ α′ := (p0, L1, . . . , pi−2,M, pi , . . . , Lk, pk).
However α′, being shorter than α, is homotopic to a primitive path, by the inductive
hypothesis. Hence α too is homotopic to a primitive path.

Assume now that L i−1 and L i are never coplanar, for any i = 2, . . . , k. Choose
a plane ξ2 on L2. The residue Res(p1) of p1 contains a unique line-plane flag
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(M1, ξ1) such that L1 and M1 are incident with ξ1 and ξ2 respectively. Similarly,
Res(p2) contains a unique line-plane flag (M2, ξ3) such that L3 and M2 are incident
with ξ3 and ξ2 respectively. Let q be the meet-point of M1 and M2 in Res(ξ2), let
M0 be the line through p0 and q in Res(ξ1) and let M3 be the line through p3 and
q in Res(ξ3). By Lemma 3.2 we have the following homotopies:

(p0, L1, p1)∼ (p0,M0, q,M1, p1),

(p1, L2, p2)∼ (p1,M1, q,M2, p2),

(p2, L3, p3)∼ (p2,M2, q,M3, p3).

Therefore

(p0, L1, p1, L2, p2, L3, p3)= (p0, L1, p1) · (p1, L2, p2) · (p2, L3, p3)

∼ (p0,M0, q,M1, p1) · (p1,M1, q,M2, p2) · (p2,M2, q,M3, p3)

= (p0,M0, q,M1, p1,M1, q,M2, p2,M2, q,M3, p3)

∼ (p0,M0, q,M3, p3).

Accordingly, α is homotopic to the path, say β, obtained by replacing the subpath
(p0, L1, p1, L2, p2, L3, p3) of α with (p0,M0, q,M3, p3). The path β is shorther
than α, whence it is homotopic to a primitive path by the inductive hypothesis. As
α ∼ β, the same holds for α. �

By Lemma 3.5 we immediately obtain the following:

Corollary 3.6. The geometry 0 is simply connected if and only if all of its primitive
paths are null-homotopic.

Let φ : 0̃→ 0 be the universal covering of 0. As 0̃ is simply connected, all
of its closed paths (in particular, all of its primitive paths) are null-homotopic. A
closed path of 0 is null-homotopic if and only if it lifts through φ to a closed path
of 0̃. In particular:

Corollary 3.7. A primitive path of 0 is null-homotopic if and only if it is the φ-
image of a primitive path of 0̃.

Corollary 3.8. The geometry 0 is covered by a building if and only if none of its
nondegenerate primitive paths is null-homotopic.

Proof. Let 0̃ be a building. Then, by Lemma 3.4, no nondegenerate primitive path
occurs in 0̃. By Corollary 3.7, none of the nondegenerate primitive paths of 0 can
be null-homotopic. On the other hand, let 0̃ be not a building. Then 0̃ admits
at least one nondegenerate primitive path α̃, necessarily null-homotopic since 0̃
is simply connected. Accordingly, α := φ(α̃) is a null-homotopic nondegenerate
primitive path of 0. �
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Definition 3.9. Let α = (p, L , q,M, p) be a nondegenerate primitive path. Recall
that Res(q) is a generalized quadrangle, the lines L and M being points of this
quadrangle. So, lines on q exist which are coplanar with each of L and M . Let
N be such a line and r a point of N . The line N is different from each of L and
M , as L and M are noncoplanar. Let ξ be the plane on N and L and let L ′ be the
line of ξ through p and r . Similarly, if χ is the plane on N and M , let M ′ be the
line of χ through p and r . Then (p, L ′, r,M ′, p) is a primitive path. We denote it
by σ N

q→r (α) and call it the shift of α from q to r along N . We also say that N is
admissible for the path α.

Lemma 3.10. Let α = (p, L , q,M, p) be a nondegenerate primitive path, N a
line admissible for α and r a point of N . Then:

(1) We have σ N
q→r (α)= α if and only if r = q.

(2) The shift σ N
q→r (α) is a nondegenerate primitive path and the line N is admis-

sible for it.

(3) σ N
r→q(σ

N
q→r (α))= α.

(4) α ∼ σ N
q→r (α).

Proof. Claims (1), (2) and (3) are trivial. Claim (4) can be proved as follows:

(p, L ,q,M, p)∼ (p, ξ, L ,q,M, χ, p)∼ (p, ξ,q, χ, p)

∼ (p, ξ, N ,q, N , χ, p)∼ (p, ξ, N , χ, p)∼ (p, ξ, N , r, N , χ, p)

∼ (p, ξ, r, χ, p)∼ (p, L ′, ξ, r, χ,M ′, p)∼ (p, L ′, r,M ′, p).

(This is essentially the same argoment as used by Schillewaert and Struyve to prove
Lemma 6.6 of [2017].) �

3C. Primitive paths in OP2-geometries. Henceforth 0 = 0F(A) (see Section 2B).
Recall that the point-line geometry with the same points as 0 and the shadow-lines
as lines coincides with PG(PuF(A))∼= PG(2, F) (Corollary 2.7). In particular, two
lines of 0 either have just one point in common or have exactly the same points.

Definition 3.11. Let L and M be two lines of 0 with the same shadow, namely
L = [a, u] and M = [b, v] for a, b ∈ PuF(A) and u, v ∈ PuF(O) with |a| = |u| 6= 0,
|b| = |v| 6= 0 and [a] = [b]. Suppose we have chosen the pairs (a, u) and (b, v) in
such a way that a = b, as we can. Then we put (L | M) := (u | v)/|u||v|.

Given a primitive path α = (p, L , q,M, p) we put `(α) := (L | M) and we call
`(α) the line-invariant of α.

Clearly, |(L | M)| ≤ 1 by Cauchy–Schwartz inequality, with equality if and only
if u and v are proportional. Moreover (L | M) = 1 if and only if L = M . So,
`(α) 6= 1 whenever α is nondegenerate.
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The hypothesis a = b is necessary for the above definition of (L | M) to make
sense. Indeed, without it, only the modulus |(u | v)|/|u||v| of (u | v)/|u||v| is
determined by the pair L and M . It is also clear that (L | M) can be defined only
when L and M have the same shadow. On the other hand, the particular choice of a
in the representations L = [a, u] and M = [a, v] is irrelevant. Indeed, if we replace
a with a′ = ta for some t ∈ F \ {0} then we must also replace u with u′ = tu and v
with v′ = tv. Accordingly, (u′ | v′)/|u′||v′| = |t |2(u | v)/|t2

||u||v| = (u | v)/|u||v|.

Remark 3.12. Schillewaert and Struyve [2017] call `(α) the P L-invariant of α.

Definition 3.13. We say that a primitive path α = (p, L , q,M, p) is orthogonal if
p⊥ q . Assuming that α is nondegenerate but not that it is orthogonal, an orthogonal
shift of α is a shift σ N

q→r (α) with p ⊥ r .

Lemma 3.14. Every nondegenerate primitive path α = (p, L , q,M, p) admits or-
thogonal shifts along every line N admissible for it and, once N has been chosen,
the orhogonal shift of α along N is uniquely determined. Moreover, if α is orthog-
onal, then α is its own orthogonal shift.

Proof. As N is coplanar with either of L and M , it has at most one point in common
with L or M . However N contains q . Hence it cannot contain p. By Corollary 2.7,
the line p⊥ ∩ [PuF(A)] of PG(PuF(A)) meets the shadow of N in just one point.
(This argument is the same as in the proof of Lemma 6.6 of [Schillewaert and
Struyve 2017].) The first part of the lemma is proved. The last claim of the lemma
is obvious. �

Henceforth we denote by σ N
⊥
(α) the orthogonal shift of α along a line N admis-

sible for α.

Lemma 3.15. Given a nonorthogonal nondegenerate primitive path α of 0 and a
line N admissible for α, let β = σ N

⊥
(α) be the orthogonal shift of α along N and

let `= `(β) be the line-invariant of β.
We can always choose the line N in such a way that ` 6= −1.

Proof. We must distinguish two cases and two subcases for each of them.

Case 1. 0 = 0R(H). Modulo automorphisms of 0, we can always assume that

L = [ j , j ], M = [ j , im1+ jm2], m2
1+m2

2 = 1,

p = [i], q = [iq1+ j iq3], q2
1 + q2

3 = 1.

So, `(α) = m2. Note that q1 6= 0 (otherwise p ⊥ q, while α is nonorthogonal by
assumption) and q3 6= 0 (otherwise p = q). Let N = [b, x] be admissible for α,
where

b = ib1+ jb2+ j ib3, b2
1+ b2

2+ b2
3 = 1,

x = ix1+ j x2+ j ix3+ kx4+ kix5+ k j x6+ k( j i)x7, |x | = 1.
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Modulo automorphisms of O that leave H elementwise fixed, we can always as-
sume that

x = ix1+ j x2+ j ix3+ kx4, (x2
1 + x2

2 + x2
3 + x2

4 = 1).

For N to be admissible for α the following must hold: (iq1+ j iq3 | b)= 0 (namely
q belongs to N ) and ( j | b)= ( j | x)= (im1+ jm2 | x) (Lemma 2.6, claim (1)).
Explicitly:

b1q1+ b3q3 = 0, (4)

and b2 = x2 = m1x1+m2x2, namely

b2 = x2, m1x1 = (1−m2)b2. (5)

Let r = [ir1 + jr2 + j ir3] be the unique point of {[b], p}⊥. So, r1 = 0, namely
r = [ jr2+ j ir3], and

b2r2+ b3r3 = 0. (6)

Moreover we assume r2
2 + r2

3 = 1, as we can. We have already noticed that q1 6= 0.
We also have r2 6= 0, otherwise equations (4) and (6) force b1 = b3 = 0, hence
b = ± j , contrary to the fact that N is coplanar with L and M . Thus, by (4) and
(6) we obtain

b1 =−b3q3q−1
1 , b2 =−b3r3r−1

2 . (7)

These equations show that b3 6= 0 (otherwise b = 0, which is ridiculous). Recalling
that b2

1+ b2
2+ b2

3 = 1 now we get

b3 =±
q1r2√

q2
1 + r2

2 − q2
1r2

2

=±
q1r2√

q2
1r2

3 + 1− r2
3

=±
q1r2√

1− q2
3r2

3

. (8)

Equation (8) is equivalent to the following

r2 =±
b3√

b2
2+ b2

3

,

which better shows that the point r depends on the choice of the line N but, in view
of the sequel, (8) is more convenient. We shall now consider two subcases: either
m2 =−1 or −1<m2 < 1 (note that m2 = 1 is impossible, since m2 = (L | M) and
(L | M) 6= 1 because L 6= M).

Subcase 1.1. m2 = −1. Equivalently, m1 = 0. Then b2 = x2 = 0 by (5), r3 = 0
by (7) and since b3 6= 0, whence r2 = ±1 (as r2

2 + r2
3 = 1) and b3 = ±q1 by (8).

Consequently, b1 =±q3, since b2
1+ b2

3 = q2
1 + q2

3 = 1. Summarizing:

m1 m2 r2 r3 b1 b2 b3 x2

0 −1 ±1 0 ±q3 0 ±q1 0.
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Let now ξ be the plane on L and N and χ the plane on M and N . Then ξ and
χ , regarded as sharp R-morphisms from H to O, are uniquely determined by the
following conditions (Lemma 2.3): ξ( j) = j , χ( j) = im1 + jm2 and ξ(b) =
χ(b)= x . By entering the above values for m1,m2 and x2 we get

ξ( j)= j , χ( j)=− j , ξ(b)= χ(b)= ix1+ j ix3+ kx4. (9)

Clearly i = i(b1− jb3)(b1− jb3)
−1
= b(b1+ jb3). Therefore, and taking (9) into

account,
ξ(i)= (ix1+ j ix3+ kx4)(b1+ jb3),

χ(i)= (ix1+ j ix3+ kx4)(b1− jb3).
(10)

Let now L ′ and M ′ be the lines through p and r in ξ and χ respectively. Then
L ′ = [a, ξ(a)] and M ′ = [a, χ(a)] where a = ia1+ ja2+ ka3 is orthogonal with
both p and r and we assume a2

1 + a2
2 + a2

3 = 1, as we can. Orthogonality with p
and r forces a1 = 0= a2. Therefore a =± j i . Accordingly, and recalling (10),

ξ(a)=± j(ix1+ j ix3+ kx4)(b1+ jb3),

χ(a)=∓ j(ix1+ j ix3+ kx4)(b1− jb3).
(11)

With β = σ N
⊥
(α)= (p, L ′, r,M ′, p) we have `(β)= (ξ(a) | χ(a)). Equations (11)

allow to explicitly compute the inner product (ξ(a) | χ(a)). We obtain:

(ξ(a) | χ(a))= x2
1(b

2
3− b1)

2
+ x2

3(b
2
3− b2

1)+ x2
4(b

2
3− b2

1)

= (x2
1 + x2

3 + x2
4)(b

2
3− b1)

2
= b2

3− b2
1 = q2

1 − q2
3 . (12)

So, (ξ(a) | χ(a))= q2
1 − q2

3 . As q1, q3 6= 0, we have −1< (ξ(a) | χ(a)) < 1.

Subcase 1.2. m1 6= 0, namely m2 6= −1. In this case the second equation of (5)
yields

x1 =
1−m2

m1
b2. (13)

The planes ξ and χ on L and N and on M and N are determined by the following
conditions:

ξ( j)= j , χ( j)= im1+ jm2,

ξ(b)= χ(b)= ix1+ j x2+ j ix3+ kx4 =

(
i
1−m2

m1
+ j

)
b2+ j ix3+ kx4.

(14)
Moreover, x2

3 + x2
4 = 1− ((1−m2)

2m−2
1 + 1)b2

2 = 1− 2(1+m2)
−1b2

2. Therefore

x2
3 + x2

4 = 1−
2

1+m2
b2

2. (15)
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Now i = (b − jb2)(b1 − jb3)
−1
= (b − jb2)(b1 + jb3)(b2

1 + b2
3)
−1. Recalling

equations (7), we obtain

i =
(

b+ j
r3

r2
b3

)
( jq1− q3)q1b−1

3 . (16)

As in Subcase 1.1, let L ′ = [a, ξ(a)] and M ′ = [a, χ(a)] be the lines through p
and r in ξ and χ respectively, where a = ia1+ ja2+ ka3 with |a| = 1. The vector
a is orthogonal with both p and r . Orthogonality with p still forces a1 = 0 but
orthogonality with r only implies a2r2 + a3r3 = 0. So a2 = −a3r3r−1

2 and the
condition |a| = 1 implies a3 =±r2. Hence a2 =±r3. Summarizing

a =±( jr3+ j ir2). (17)

Exploiting (14), (16) and (17), we can compute ξ(a) and χ(a) explicitly, whence
(ξ(a) | χ(a)) too. We firstly obtain (ξ(a) | χ(a))= A(x3

3 + x2
4)+ B where

A = (q2
3 m2+ q2

1 )q1r2
2 b−2

3 ,

B = (−m1r3+ (x1−m1b2)q2
1r2b−1

3 )x1q2
1 b−1

3 + r2
3 m2

+ (m2− 1)r3r2q2
1 b2b−1

3 + (x1m2q3−m1q3b2)x1q3q2
1r2

2 b−2
3 .

By exploiting (7), (8) and (15) we eventually obtain the following:

(ξ(a) | χ(a))=−r2
3

q4
1 m2

2

1+m2
+ q2

3 m2+ q2
1 . (18)

In this equation (ξ(a) | χ(a)) is expressed as a function of r3 rather than b3, but
recall that r is uniquely determined by b. Note that the coefficient of r2

3 in (18) is
negative except when m2 = 0. If m2 = 0 then (ξ(a) | χ(a))= q2

1 , which is strictly
positive and less than 1, since neither q1 nor q3 are zero.

Case 2. 0 = 0C(O). As in Case 1, we can assume that

L = [k, k], M = [k, jm1+ km2], |m1|
2
+ |m2|

2
= 1,

p = [ j ], q = [ jq1+ k jq3], |q1|
2
+ |q3|

2
= 1.

So, `(α)= m2. As in Case 1, we have q1 6= 0 6= q3. Let N = [b, x] be admissible
for α, where

b = jb1+ kb2+ k jb3, |b1|
2
+ |b2|

2
+ |b3|

2
= 1,

x = j x1+ kx2+ k j x3, |x1|
2
+ |x2|

2
+ |x3|

2
= 1.

For N to be admissible for α the following must hold: ( jq1+ k jq3 | b) = 0 and
(k | b)= (k | x)= ( jm1+ km2 | x). Explicitly:

q1b1+ q3b3 = 0, (19)
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and b2 = x2 = m1x1+m2x2, namely

b2 = x2, m1x1 = (1−m2)b2. (20)

Let r = [ jr1 + kr2 + k jr3] be such that {r} = {[b], p}⊥. So, r = [kr2 + k jr3],
where we assume |r2|

2
+ |r3|

2
= 1, and

r2b2+ r3b3 = 0. (21)

Recall that q1 6= 0 because p 6⊥ q by assumption. We also have r2 6= 0, otherwise
N cannot be coplanar with either of L and M . Thus, by (19) and (21) we obtain

b1 =−b3
q3

q1
, b2 =−b3

r3

r2
. (22)

These equations show that b3 6= 0. Recalling that |b1|
2
+ |b2|

2
+ |b3|

2
= 1 we get

b3 = ε ·
q1r2√

|q1|2+ |r2|2− |q1|2|r2|2
= ε

q1r2√
1− |q3|2|r3|2

(23)

for a suitable multiplier ε with |ε| = 1. We shall now consider two subcases: either
|m2| = 1 or |m1|< 1.

Subcase 2.1. |m2| = 1. Equivalently, m1 = 0. Then b2 = x2 = 0 by (20), r3 = 0
by (22) and since b3 6= 0, whence |r2| = 1 and |b3| = |q1| by (23). Consequently,
|b1| = |q3|.

Let now ξ be the plane on L and N and χ the plane on M and N . Then ξ and χ ,
regarded as sharp C-autorphisms of O, are uniquely determined by the following
conditions: ξ(k) = k, χ(k) = jm1 + km2 and ξ(b) = χ(b) = x . In view of the
above:

ξ(k)= k, χ(k)= km2, ξ(b)= χ(b)= j x1+ k j x3. (24)

It is easy to check that

j = ( jb1+ k jb3)(b1+ kb3)= b(b1+ kb3).

By this and (24) we get

ξ( j)= ( j x1+ k j x3)(b1+ kb3),

χ( j)= ( j x1+ j k j x3)(b1+ km2b3).
(25)

Let L ′ = [a, ξ(a)] and M ′ = [a, χ(a)] be the lines through p and r in ξ and χ
respectively, where a = ja1 + ka2 + k ja3 is orthogonal with both p and r and
|a1|

2
+ |a2| + |a3|

2
= 1. Orthogonality with p and r forces a1 = 0= a2. Therefore

a = k jη for a suitable η with |η| = 1. By this and (25),

ξ(a)= k(( j x1+ k j x3+ k)(b1+ kb3))η,

χ(a)= km2(( j x1+ k j x3+ kx4)(b1+ km2b3))η.
(26)
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Equations (26) allow to explicitly compute the inner product (ξ(a) | χ(a)). We
obtain:

(ξ(a) | χ(a))= |b3|
2
+ |b1|

2m2 = |q1|
2
+ |q3|

2m2. (27)

So, |(ξ(a) | χ(a))| = |q1|
4
+ |q3|

4
+ |q1|

2
|q3|

2(m2 + m2) < 1, as m2 + m2 is a
real number not less than −2 and less than 2 (because |m2| = 1 but m2 6= 1) and
|q1|

2
+ |q3|

2
= 1.

Subcase 2.2. m1 6= 0, namely |m2| < 1. In this case the second equation of (20)
yields

x1 =
1−m2

m1
b2. (28)

The planes ξ and χ on L and N and on M and N are determined by the following
conditions:

ξ(k)= k, χ(k)= jm1+ km2,

ξ(b)= χ(b)= j x1+ kx2+ k j x3 =

(
j
1−m2

m1
+ k

)
b2+ k j x3.

(29)

Moreover, |x3|
2
= 1− (1+ |1−m2|

2
|m1|

−2)|b2|
2 by (28) and x2 = b2. Therefore

|x3|
2
= 1−

2−m2−m2

|m1|2
|b2|

2. (30)

Now j = (b− kb2)((b1+ kb3)(1−|b2|
2)−1). Recalling equations (22), we obtain

j =
(

b+ k
r3

r2
b3

)
((kq1− q3)q1b−1

3 ). (31)

Let L ′ = [a, ξ(a)] and M ′ = [a, χ(a)] be the lines through p and r in ξ and χ
respectively, where a = ja1 + ka2 + k ja3 is orthogonal with both p and r and
|a| = 1. Orthogonality with p forces a1 = 0 but orthogonality with r only implies
r2a2+ r3a3 = 0. So a2 =−a3r3r2

−1 and the condition |a| = 1 implies |a3| = |r2|,
namely a3 = r2η for some η with |η| = 1. Hence

a = (−kr3+ k jr2)η = (k(−r3+ r2 j))η = (k(−r3+ jr2))η. (32)

By exploiting (29), (31) and (32) as well as (22) and (30) one can compute ξ(a)
and χ(a) explicitly, whence (ξ(a) | χ(a)) too, but these computations are terribly
toilsome. However, in order to prove the lemma, we do not need to perform them.
It is enough to show that, for a lucky choice of N = [b, x], whence of r , satisfying
the above conditions, we get ` 6= −1. We will go on in this way, referring the
interested reader to Remark 3.16 for a way to express (ξ(a) | χ(a)) in the general
case.
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The previous conditions on r , b and x allow to choose r3 = 0. Accordingly,
|r2| = 1. Hence b2 = 0 by the second equation of (22) and b3 = λq1 for some λ
with |λ| = 1 by (23). Therefore b1 =−λq3 by the first equation of (22). Moreover
x1 = x2 = 0 by (20) and (28), whence |x3| = 1. Accordingly,

j = b((kq1− q3)λ
−1) (33)

by (31) and since b1 = λq1 and

a = k jr2η (34)

by (32) and since r3 = 0. By (33), recalling that x1 = x2 = 0, we obtain

ξ( j)= x((kq1− q3)λ
−1)= k j x3(kq1λ

−1
− q3λ

−1)

= jq1x3λ− k jq3x3λ,

χ( j)= x((( jm1+ km2)q1− q3)λ
−1)

= k j x3( jm1q1λ
−1
+ km2q1λ

−1
− q3λ

−1)

= jm2q1x3λ− km1q1x3λ− k jq3x3λ.

(35)

(Recall that λ−1
= λ since |λ| = 1.) By combining (34) with (35) we obtain

ξ(a)= (k( jq1x3λ− k jq3x3λ))r2η

= jq3x3r2λη+ k jq1x3r2λη,

χ(a)= (( jm1+ km2)( jm2q1x3λ− km1q1x3λ− k jq3x3λ))r2η

= jm2q3x3r2λη− km1q3x3r2λη+ k jq1x3r2λη.

Therefore (ξ(a) | χ(a))= (|q3|
2m2+ | q2

1 )(|x3|
2
|r2|

2
|λ|2|η|2. Finally, recalling that

|x3| = |r2| = |λ| = |η| = 1,

(ξ(a) | χ(a))= |q3|
2m2+ |q1|

2. (36)

The right side of (36) is equal to −1 only if q1 = 0 and m2 =−1. However, q1 6= 0
because p 6⊥ q. Therefore (ξ(a) | χ(a)) 6= −1. �

Remark 3.16. In Subcase 2.2 of the above proof, with no additional hypotheses
on [b, x] we get

(ξ(a) | χ(a))= A|r2|
2
|b3|
−2
− 2 Im(m1q1q3|q3|

2r2r3b−1
3 )+ |r3|

2 B

where Im(.) stands for imaginary part and

A = |q1q3|
2m2+ |q1|

4,

B = m2− A− |q1q3|
2
+ |q1|

4(m3
2+m2− 2)|m1|

−2.
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This shows that (ξ(a) | χ(b)) depends on r2, r3 and x2 nontrivially. Thus, we
can always choose the line N = [b, x] in such a way that |(ξ(a) | χ(a))| < 1.
Accordingly, Lemma 3.15 can be given a stronger formulation: we can always
choose N in such a way that |`|< 1.

Remark 3.17. It follows from above proof that when |m2|= 1 then |`|< 1 for every
choice of the admissible line N = [b, x]. However, for certain values of m2 we can
also choose N in such a way that `=−1. For instance, when (F,A)= (R,H), this
is possible in the following cases:

(1) q4
1 = q2

3 (namely q2
1 = (
√

5− 1)/2) and −1≤ m2 ≤−(
√

5+ 1)/4;

(2) q2
1 > q2

3 and −1≤ m2 ≤ (1−
√

4q6
1 + 8q4

1 − 3)/(q4
1 − q2

3 );

(3) q2
1 < q2

3 and 1≥ m2 ≥ (−1+
√

4q6
1 + 8q2

1 − 3)/(q2
3 − q4

1 ).

Lemma 3.18. Every orthogonal nondegenerate primitive path α of 0C(O) such
that |`(α)| = 1 but `(α) 6= −1 is homotopic with an orthogonal nondegenerate
primitive path β such that |`(β)|< 1.

See [Schillewaert and Struyve 2017, Lemma 6.7] for the above. The following
lemma is also proved in [Schillewaert and Struyve 2017, Lemma 6.8].

Lemma 3.19. Let `∈F such that |`|< 1. Then, for every choice of two distinct lines
L and M with the same shadow, there exists a sequence L0 = L , L1, . . . , Ln = M
of lines with the same shadow as L and M and such that (L i−1 | L i )= ` for every
i = 1, 2, . . . , n.

The next statement is implicit in what Schillewaert and Struyve say to justify
[2017, Remark 6.9]. We make it explicit.

Corollary 3.20. Let ` ∈ F such that |`| < 1 and let α = (p, L , q,M, p) be a
nondegenerate primitive path of 0 = 0F(A). Then α ∼ α1 · α2 · · · · · αn for a
suitable sequence of nondegenerate primitive paths α1, α2, . . . , αn of 0 with the
same points p and q as α and such that `(αi )= ` for every i = 1, 2, . . . , n.

Proof. By Lemma 3.19 there exist lines L0 = L , L1, . . . , Ln = M such that (L i−1 |

L i ) = ` for i = 1, 2, . . . , n. For i = 1, 2, . . . , n put αi = (p, L i−1, q, L i ). Thus,
the product α1 ·α2 · · · · ·αn is well defined. Note that

αn−1 ·αn = (p, Ln−2, q, Ln−1, p, Ln−1, q, Ln, p)∼ (p, Ln−2, q, Ln)=: α
′

n−1.

So, α1 · α2 · · · · · αn−1 · αn ∼ α1 · α3 · · · · · α
′

n−1. By iterating this argument we
eventually obtain α1 ·α2 · · · · ·αn ∼ (p, L0, q, Ln, p)= α. �

We can now prove the main theorem of this subsection.

Theorem 3.21. Either 0F(A) is simply connected or it is covered by a building.
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Proof. Suppose that 0=0F(A) is not covered by a building. Then, by Corollary 3.8,
at least one of its nondegenerate primitive paths is null-homotopic. By Lemma 3.10
(claim (4)) and Lemma 3.14, at least one orthogonal nondegenerate primitive path,
say α, is null-homotopic. Let ` = `(α) be its line-invariant. The action of G :=
Aut(0) on A and O makes it clear that G acts transitively on the set of orthogonal
primitive paths with line-invariant equal to `. Thus, all orthogonal primitive paths
with line invariant ` are null-homotopic.

Suppose firstly that |`| < 1. Then every orthogonal primitive path β is null
homotopic, by Corollary 3.20 and the above remark. In this case 0 is simply
connected by Lemmas 3.10 and 3.14 and Corollary 3.6.

Let |`| = 1. If ` 6= −1 (whence 0 = 0C(O)) then α ∼ β for some orthogonal
primitive path β with |`(β)|< 1, by Lemma 3.18. Thus, we can replace α with β
and we are back to the previous case.

Finally, let `(α)=−1. Clearly α admits a nonorthogonal shift β ∼ α, necessarily
nondegenerate (Lemma 3.10). In its turn β admits an orthogonal shift γ with
`(γ ) 6= −1, by Lemma 3.15. Moreover β ∼ γ by Lemma 3.10. Hence α ∼ γ .
Therefore γ is null-homotopic. We can now replace α with γ and we are back to
the first or second one of the two previous cases, according to whether |`(γ )|< 1
or |`(γ )| = 1. �

Remark 3.22. What Schillewaert and Struyve say to explain their Remark 6.9
in [2017] amounts to a sketch of the first three paragraphs of the above proof.
However, as they had nothing like Lemma 3.15 at their disposal, they could only
refer to the case ` 6= −1 in that remark.

3D. End of the proof of Theorem 1.5. Let 0̃ be the universal cover of 0 = 0F(A).
In view of Theorem 3.21, either 0̃ = 0 or 0̃ is a building. In order to finish the
proof of Theorem 1.5 it only remains to prove that 0̃ cannot be a building. This
immediately follows from the last claim of Theorem 1.3. However, as we have
promised not to use that theorem, we shall give an explicit proof of this claim.

We firstly recall a few general properties of universal coverings and state some
notation for quadratic and hermitian forms and related polar spaces.

3D1. Lifting automorphisms through universal coverings. Let φ : 0̃→ 0 be the
universal k-covering of a geometry 0 of rank n > k. Let G := Aut(0) and Ĝ :=
Aut(0̃).

Pick a chamber C of 0 and a chamber C̃ ∈ φ−1(C). For every g ∈ G and every
chamber X̃ ∈ φ−1(g(C)) there exists a unique g̃ ∈ Ĝ, called a lifting of g to 0̃
through φ, such that φ · g̃ = g · φ and g̃(C̃) = X̃ [Pasini 1994, Theorem 12.13].
The set of all liftings of the elements g ∈ G is a subgroup G̃ of Ĝ and the function
pφ : G̃→ G which maps every g̃ ∈ G̃ onto the unique g ∈ G such that φ · g̃ = g ·φ
is a (surjective) homomorphism of groups. The kernel of pφ , namely the group of
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all liftings of the identity automorphisms of 0, is the deck group D(φ) of φ and
0 ∼= 0̃/D(φ) [Pasini 1994, Theorem 12.13].

Given a subflag F ⊂ C of rank k, let F̃ be the corresponding subflag of C̃ and
let G F be the stabilizer F in G. The stabilizer G̃ F̃ of F̃ in G̃ meets D(φ) trivially.
Hence pφ induces an isomorphism from G̃ F̃ to G F . We call G̃ F̃ the lifting of G F

to 0̃ through φ based at F̃ .
Moreover, let KF E G F be the elementwise stabilizer in G F of the residue

Res0(F) of F in 0. Similarly, let K̃ F̃ be the elementwise stabilizer of Res0̃(F̃) in
G̃ F̃ . Then pφ isomorphically maps K̃ F̃ onto KF .

In order to complete the notation adopted above, we denote by Ĝ F̃ and K̂ F̃ the
stabilizer of F̃ in Ĝ and the elementwise stabilizer of Res0̃(F̃) in Ĝ F̃ . Needless to
say, G̃ F̃ and K̃ F̃ are subgroups of Ĝ F̃ and K̂ F̃ respectively and K̃ F̃ = K̂ F̃ ∩ G̃ F̃ .

The group KF (respectively K̃ F̃ or K̂ F̃ ) is often called the kernel of G F (respec-
tively G̃ F̃ or Ĝ F̃ ), as a shortening for “kernel of the action of G F on Res0(F)".
We shall adopt this terminology too in the sequel.

3D2. Some notation for quadratic and hermitian forms. For a positive integer n,
let f F

n be the usual scalar product on Fn and let L( f F
n ) be the group of all linear

mappings preserving f F
n . So, L( f R

n )= O(n) and L( f C
n )= U(n) (notation as usual

for Lie groups).
Given two positive integers n,m with n ≤ m, let f F

n,m := (− f F
n )⊕ f F

m . Namely,
f F
n,m admits the following representations, according to whether F= R or F= C,

where x = (xi )
n+m
i=1 and y = (yi )

n+m
i=1 (vectors of Fn+m):

(F= R) f R
n,m(x, y) := −

n∑
i=1

xi yi +

m∑
i=1

xi+n yi+m,

(F= C) f C
n.m(x, y) := −

n∑
i=1

xi yi +

m∑
i=1

xi+n yi+m .

Clearly, n is the Witt index of f F
n,m . We also recall that, by Sylvester’s law of

inertia, every nondegenerate bilinear form on Rn+m of Witt index n ≤ m can be
expressed as f R

n,m or its opposite, modulo a suitable choice of the basis of Rn+m

(see, e.g., [Bourbaki 1959, §7, n.2]). The same for hermitian forms of Cn+m .
Let L( f F

n.m) be the group of linear trasformations of Fn+m preserving f F
n,m . So

we have L( f R
n,n)= O+(2n,R), L( f R

n,n+1)= O(2n+ 1,R), L( f C
n,n)= U(2n,C) and

L( f C
n,n+1)= U(2n+ 1,C) (notation as usual for Chevalley groups).

Let 0( f F
n,m) be the polar space associated to f F

n,m . Recall that its full automor-
phims group Aut(0( f F

n,m)) is the projectivization PL( f F
n,m) of L( f F

n,m), extended by
two (possibly trivial) outer automorphism groups, henceforth denoted by d and f .
The group d is contributed by linear transformations of Fn+m which do not preserve
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f F
n,m but multiply it by a scalar. However, as we deal with PL( f F

n,m) rather than
L( f F

n,m), it turns ut that d is either trivial or isomorphic to the group C2 of order 2,
according to whether n+m is odd or even. The group f is trivial when F= R and
isomorphic to C2 when F=C. In the latter case, the unique nontrivial involution of
f is contributed by the usual conjugation of C and the extension (PL( f C

n,m)·d)· f is
split: it can be realized as the semidirect product (PL( f C

n,m) ·d)o〈ι〉 of PL( f C
n,m) ·d

with the group 〈ι〉 generated by a suitable involutory semilinear transformation ι
of Cn+m .

3D3. The case (F,A)= (C,O). Let φ : 0̃→ 0 be the universal covering of 0 =
0C(O). We already know that either 0̃ = 0 or 0̃ is a building. We want show that
0̃ cannot be a building.

By contradiction, suppose that 0̃ is a building, namely a polar space of rank 3.
We know that the residues of the planes of 0 are isomorphic to the complex pro-
jective plane CP2

= PG(2,C) while the panels of type 3 (namely the residues of
the point-line flags) are homeomorphic to the 3-dimensional sphere S3 [Kramer
and Lytchak 2014]. The same properties hold for 0̃. So, in view of Tits’s classi-
fication of polar spaces [Tits 1974, Chapter 8], necessarily 0̃ = 0( f C

3,4), with full
automorphism group

Ĝ := Aut(0( f C
3,4))= PU(7,C)o f ∼= PSU(7,C)oC2.

We set G := Aut(0)= ((SU(3)×SU(3))/C3)oC2 (see Section 2C).
Let ξ̃ be a plane of 0̃ and ξ = φ(ξ̃ ). With the notation and the terminology

of Section 3D1, let Gξ , Ĝ ξ̃ and G̃ ξ̃ be respectively the stabilizer of ξ in G, the
stabilizer of ξ̃ in Ĝ and the lifting of Gξ to 0̃ through φ at ξ̃ and let Kξ , K̂ ξ̃ and
K̃ ξ̃ be their kernels. It is not difficult to check that

Gξ = PSU(3)oC2 with Kξ = 1.

(See also [Schillewaert and Struyve 2017].) Hence G̃ ξ̃
∼= PSU(3)oC2 and K̃ ξ̃ = 1.

On the other hand, Ĝ ξ̃ is the semidirect product Ĝ ξ̃ =U oL of its unipotent radical
U and a Levi complement L , where U ∼= C6

× R3 ∼= R15, with C6, R3 and R15

being regarded as additive groups, and L ∼= GL(3,C)o f = 0L(3,C). Moreover
K̂ ξ̃ =U o Z where Z = Z(L) is the center of L (see, e.g., [Weiss 2003, Chapter
11]). The group G̃ ξ̃

∼= PSU(3)oC2 is contained in Ĝ ξ̃ =U o L but, as its kernel is
trivial, it meets K̂ ξ̃ =UoZ trivially. Accordingly, the group L ∼=0L(3,C) contains
a copy of G̃ ξ̃ = PSU(3)oC2. The group L indeed contains copies of SU(3)oC2,
but no copy of PSU(3)oC2. Indeed SU(3) is not a semidirect product of its center
C3 and a copy of PSU(3).

We have reached a contradiction. Hence in this case 0̃ = 0.
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3D4. The case (F,A)= (R,H). Let now φ : 0̃→ 0 be the universal covering of
0 = 0R(H). By contradiction, suppose that 0̃ is a building. The residues of the
planes of 0 are isomorphic to the real projective plane PG(2,R) and the panels
of type 3 are homeomorphic to the 5-dimensional sphere S5 [Kramer and Lytchak
2019]. By Tits’s classification of polar spaces [1974] we see that 0̃ = 0( f R

3,8), with
full automorphism group Ĝ := Aut(0( f R

3,8)) = PL( f R
3,8). We set G := Aut(0) =

SO(3)×G2 (see Section 2C). As in the previous case, let ξ̃ be a plane of 0̃ and
ξ := φ(ξ̃ ). We now have

Gξ = (SU(2)×SU(2))/〈(−ι,−ι)〉 = 2·(PSU(2)×PSU(2)),

Kξ = 2· PSU(2)= SU(2),

Gξ/Kξ
∼= PSU(2)∼= SO(3).

Here ι stands for the identity element of SU(2), whence (ι, ι) is the identity element
of SU(2)×SU(2). The extension 2·(PSU(2)×PSU(2)) is nonsplit.

On the other hand, Ĝ ξ̃ =U o L where L ∼= GL(3,R)× SO(5) and U =U0
·U1

with U0 and U1 isomorphic to the additive groups of R3 and R15 respectively. The
group U0 is both the center and the commutator subgroup of U . Moreover, K̂ ξ̃ =

U o (Z ×SO(5)), where Z is the center of GL(3,R).
We have G̃ ξ̃

∼= Gξ = 2·(PSU(2)× PSU(2)), K̃ ξ̃
∼= Kξ = SU(2) and K̃ ξ̃ must

be placed in K̂ ξ̃ . As U E K̂ ξ̃ , the intersection K̃ ξ̃ ∩U is normal in K̃ ξ̃ . However
K̃ ξ̃
∼= SU(2) is quasisimple as an abstract group, with center of order 2, while every

nontrivial subgroup of U is infinite. Therefore K̃ ξ̃ ∩U = 1, namely K̃ ξ̃ ≤ L ∩ K̂ ξ̃ =

Z × SO(5). Moreover K̃ ξ̃ ≤ SO(5), since SU(2) doesn’t split as the direct product
of its center and a copy of PSU(2). So far, no contradiction has arised; indeed
SO(5) actually contains copies of SU(2).

Similarly, G̃ ξ̃/K̃ ξ̃
∼= PSU(2) must be placed in Ĝ ξ̃/K̂ ξ̃ = L/(Z × SO(5)) =

PGL(3,R). This can be done as well, since PGL(3,R) contains copies of SO(3)∼=
PSU(2). However these copies of SO(3) inside GL(3,R) meet the center Z of
GL(3,R) trivially. It follows that G̃ ξ̃ is the direct product G̃ ξ̃ = K̃ ξ̃ × X for a
subgroup X ∼= SO(3) ∼= PSU(2) of GL(3,R). In short, G̃ ξ̃ = SU(2)× PSU(2).
However G̃ ξ̃

∼= Gξ = (SU(2)× SU(2))/〈(−ι,−ι)〉, which is not a direct product
of SU(2) and PSU(2). Eventually, we have reached a contradiction.

Therefore 0̃ = 0 in this case too. The proof of Theorem 1.5 is complete.
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