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Chamber graphs of some geometries
that are almost buildings

Veronica Kelsey and Peter Rowley

The global structure of the chamber graph of certain rank 3 geometries that are
almost buildings is determined. Computer files containing extensive details of
these graphs accompany this paper.

1. Introduction

The study of geometries that are almost buildings was instigated by Tits [1981].
The acronym “GAB” was bestowed upon them in [Kantor 1981], and they also go
under the names of “geometries of type M” or “Tits geometries of type M”. These
geometries are Buekenhout–Tits geometries [Buekenhout 1979a] all of whose rank-
2 residue geometries are generalized polygons (though they are not required to
satisfy the intersection property). That is, they are incidence geometries satisfying
axioms (1) and (2) but not necessarily (3) of [Buekenhout 1979a].

We recall that an incidence geometry over a set I is a triple (0, ∗, τ ) where 0 is a
set, τ an onto map from 0 to I and ∗ is an incidence relation on 0 such that if x, y ∈
0 and x∗y then τ(x) 6= τ(y). The map τ is called the type map and |I | the rank of 0.
As is customary, we shall abbreviate (0, ∗, τ ) to 0. A flag F of 0 is a subset of 0
such that x∗y for all x, y ∈ F, x 6= y and the type of F is {τ(x) | x ∈ F}. The residue
of F in 0, 0F , is the (subgeometry) given by {x ∈0 | y∗x for all y ∈ F}. If F ={x},
then we write 0x instead of 0{x}. We shall call a maximal flag of 0 a chamber of 0.
Note that, by axiom (1) of [Buekenhout 1979a], the type of a chamber of a GAB
is I . The chamber graph C(0) is defined as follows. The vertices are the chambers
of 0 with distinct chambers γ and γ ′ deemed adjacent in C(0) if |γ ∩γ ′| = |I |−1.
We sometimes also say that γ and γ ′ are i-adjacent if I = {i} ∪ {τ(x) | x ∈ γ ∩ γ ′}.
Let γ be a chamber of 0. The i-th disc of γ , denoted by 1i (γ ), consists of all the
chambers which are distance i from γ in the graph C(0). We shall use d( , ) for

Kelsey was supported by LMS Undergraduate Research Bursary 16-17 01.
MSC2010: primary 51E24; secondary 05B25.
Keywords: chamber graphs, geometries, almost buildings.

189

http://msp.org/iig
http://msp.org/iig
http://dx.doi.org/10.2140/iig.2019.17-3
http://dx.doi.org/10.2140/iig.2019.17.189
http://msp.org


190 VERONICA KELSEY AND PETER ROWLEY

the distance metric on C(0) and Diam(C(0)) for the diameter of C(0). For more
on incidence geometries, consult [Buekenhout 1979b; 1995], while for GAB’s the
survey paper [Kantor 1986] contains much interesting material.

The chamber graph of a building contains all the important geometric informa-
tion about the building. For example, the (chambers of the) apartments of the
building can be detected in the chamber graph. The sets 1i (γ ), for γ a chamber,
encode data relating to the Weyl group of the building. Further, if d is the diameter
of the chamber graph and G is the automorphism group of the building, then Gγ ,
a Borel subgroup of G, acts transitively on 1d(γ ). See [Ronan 2009; Tits 1974;
1981] for more on buildings. It is natural to wonder about chamber graphs of other
geometries associated with groups which are, in some sense, close to buildings.
This has prompted a number of papers which have focussed on analyzing the disc
structure of such chamber graphs. See [Carr and Rowley 2018; Rowley 1998;
2009; 2010]. Most of the geometries of interest have a large number of chambers
and so these investigations have necessarily involved extensive computation using
packages such as MAGMA [Cannon and Playoust 1997]. Here we continue this line
of work, examining the chamber graphs of rank 3 GAB’s. The examples we look
at have been drawn from [Aschbacher and Smith 1983; Cooperstein 1989; Kantor
1981; Ronan and Smith 1980] (see also [Connor 2011; Kantor 1985; Yoshiara
1988]). We now state our main results on the disc structure of these GAB’s.

Theorem 1.1. Let G denote one of the five groups P�−6 (3), G2(3), U6(2), �+8 (2)
and Suz, and let 0 denote a GAB associated to one of these groups. Set C = C(0),
and let γ0 be a fixed chamber of C. Put B = StabG(γ0).

(i) If G ∼= P�−6 (3) and 0 has diagram

then C has 25515 chambers, 196 B-orbits, diameter 10 and disc structure

i-th disc 1 2 3 4 5 6 7 8 9 10
|1i (γ0)| 6 20 64 176 416 1024 2432 5120 9088 7168

# of B-orbits 3 5 8 12 15 19 27 35 43 28

(ii) If G ∼= G2(3) and 0 has diagram

then C has 66339 chambers, 1144 B-orbits, diameter 12 and disc structure

i-th disc 1 2 3 4 5 6 7 8 9 10 11 12
|1i (γ0)| 6 20 64 208 600 1728 4640 10368 17920 20416 9472 896

# of B-orbits 3 6 10 18 27 42 90 176 288 321 148 14
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(iii) If G ∼= G2(3) and 0 has diagram

then C has 66339 chambers, 1144 B-orbits, diameter 13 and disc structure

i-th disc 1 2 3 4 5 6 7 8 9 10 11 12 13
|1i (γ0)| 6 20 56 144 384 960 2176 4864 10368 19072 21248 6976 64

# of B-orbits 3 6 9 14 21 31 51 92 172 302 332 109 1

(iv) If G ∼=U6(2) and 0 has diagram

then C has 1576960 chambers, 505 B-orbits, diameter 8 and disc structure

i-th disc 1 2 3 4 5 6 7 8
|1i (γ0)| 15 117 972 6075 35721 203391 875043 455625

# of B-orbits 3 6 10 17 35 98 246 89

(v) If G ∼=�+8 (2) and 0 has diagram

then C has 179200 chambers, 317 B-orbits, diameter 9 and disc structure

i-th disc 1 2 3 4 5 6 7 8 9
|1i (γ0)| 9 45 216 891 3159 11421 37098 80676 45684

# of B-orbits 3 6 10 16 26 43 68 95 49

(vi) If G ∼= Suz and 0 has diagram

then C has 18243225 chambers, 1276 B-orbits, diameter 16 and disc structure

i-th disc 1 2 3 4 5 6 7 8
|1i (γ0)| 8 32 128 432 1216 3712 11008 29184

# of B-orbits 3 5 8 12 15 19 26 33

i-th disc 9 10 11 12 13 14 15 16
|1i (γ0)| 81920 229376 598016 1576960 3595264 5410816 5304320 1400832

# of B-orbits 44 66 99 155 241 270 222 57

The GAB associated with the Lyons sporadic simple group is beyond our com-
putational reach having 207060716016 chambers. However, we can give bounds
on the diameter of the chamber graph.

Theorem 1.2. Let 0 be the GAB for Ly. Then 10≤ Diam(C(0))≤ 16.
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2. Properties of C(0)

The information collated in Theorem 1.1 was obtained using the code available
with [Carr and Rowley 2018] and employing MAGMA. In fact, much more intricate
details about C(0) were obtained, and these are available in the files in the online
supplement (see article web page, doi 10.2140/iig.2019.17.189). We give a brief
summary of such things.

The chambers of 0 are viewed as the right cosets of B. The panel stabilizers
will be denoted by P1, P2 and P3 (recall we are only looking at rank 3 geometries).
The data obtained and program code is underpinned by DB, a sequence contain-
ing the (B, B) double coset representatives. So for g = DB[ j], the Bg coset
is a representative for the B-orbits on the chambers of 0. To minimise storage,
we record j rather than DB[ j] whenever possible.The important output files are
BorbitsDiscs and Neighbours. The first is a sequence where BorbitsDiscs[i] tells us
the B-orbits making up 1i (γ0) (where γ0 is identified with the coset B). Here we
give B-orbit representatives Bg, where g = DB[k], by recording k. Neighbours is
also a sequence where Neighbours[ j] is giving information on the neighbours of
Bg (where g = DB[ j]). Suppose we have [Pi : B] = 3 for i = 1, 2, 3 (as happens
for the GAB associated with P�−6 (3), for example), so C(0) has valency 6. Re-
turning to Neighbours[ j], in this case this would be a 6-tuple [k1, k2, k3, k4, k5, k6].
This is saying that the six neighbours of Bg are in the B-orbits of B ∗ DB[ki ]

(i = 1, . . . , 6). More than this we are also keeping track of the kind of adjacency.
So the neighbours in the B-orbits of B ∗ DB[k1] and B ∗ DB[k2] are 1-adjacent to
Bg, those in the B orbits of B ∗ DB[k3] and B ∗ DB[k4] are 2-adjacent to Bg, and
those in the B-orbits of B ∗ DB[k5] and B ∗ DB[k6] are 3-adjacent to Bg.

Proof of Theorem 1.2. Let G = Ly and let γ0 be a chamber of C(0), and put
B = StabG(γ0). Recall that the diagram for 0 is

Let x be a point of 0. Then by Section 6 of [Kantor 1981], 0x is a generalized
hexagon dual to the usual G2(5) generalized hexagon. In particular, for any two
chambers γ, γ ′ of 0 containing x we have d(γ, γ ′) ≤ 6. Let the point, line and
plane of γ0 be respectively x0, l0, p0 and γ1 a chamber whose point, line and plane
are respectively x1, l0, p1 where x0 6= x1. So x0 and x1 are collinear in 0. Now γ0=

{x0, l0, p0}, {x0, l0, p1}, {x1, l0, p1} = γ1 is a path in C(0), whence d(γ0, γ1) ≤ 2.
Since the point-line collinearity graph of 0 has diameter 2 (see Section 6 of [Kantor
1981] again), we infer that Diam(C(0))≤ 2+ 6+ 2+ 6= 16.

The number of chambers in the GAB associated with the Lyons group is

|G|
NG(S)

=
|G|

56 · 24 = 207060716016,

http://msp.org/iig/2019/17-3/iig-v17-n3-x03-Kelsey+Rowley-MAGMA.zip
http://msp.org/iig/2019/17-3/iig-v17-n3-x03-Kelsey+Rowley-MAGMA.zip
https://doi.org/10.2140/iig.2019.17.189
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where S ∈ Syl5(G). We find a lower bound for the diameter of the C(0) by working
out the maximum number of chambers that can be in each disc. We have [Pi : B] =
6, i = 1, 2, 3, and so the valency of C(0) is 15. Therefore each chamber γ in11(γ0)

is joined to 5 chambers in 11(00)∪ {γ0}. Hence |11(γ )∩12(γ )| = 10. Of course
for i ≥ 2, a chamber in 1i (γ0) can have at most 14 neighbours in 1i+1(γ0). Thus,
letting d = Diam(C(0)),

207060716016≤ 1+15+150+150 ·14+· · ·+150 ·14d−2
= 16+150

( 14d−1
−1

14−1

)
.

This gives d − 1≥ log14
( 13

150(207060716001)+ 1
)
, whence d − 1≥ 8.947. Conse-

quently, Diam(C(0))≥ 10, which completes the proof of Theorem 1.2. �

Collapsed adjacency graphs. For a GAB with diameter of say d, we call 1d(γ0)

the last disc (of γ0) of the chamber graph. When examining the number of B-
orbits which comprise the last disc we see, from the point of the chamber graph,
the appellation of “almost building” is something of a misnomer. Of the GAB’s
investigated here only the GAB associated with G2(3), diagram

has its last disc as a B-orbit. Because of this we have calculated the geodesic
closure for this GAB, the results of which are summarized in Theorem 2.1. All
the others have the number of B-orbit ranging from 14 to 89. Indeed the more
sporadic geometries studied in [Carr and Rowley 2018] and [Rowley 2009] come
closer to buildings in this respect.

Notwithstanding the above comments on the last disc, we have looked at the
induced graph on this disc. The most interesting (as far as we can see) are the
GAB’s from G2(3). Now we describe the B-collapsed adjacency graphs for the
last disc of γ0. The B-collapsed adjacency graph is formed by taking B-orbits,
B=StabG γ0, as the vertices. We use j to stand for the B orbit of B∗DB[ j] (where
j is as given in the accompanying files). Two B-orbits, j and k are adjacent if and
only if each chamber in j is adjacent to some chamber in k and we label the edge
coming out from j with the number of chambers in k a chamber in j is adjacent
with. If this number is 1 (as is mainly the case below) we omit this number.

(i) If G ∼= P�−6 (3) and 0 has diagram

then the last disc of the B-collapsed adjacency graph is connected apart from
87 and 89, with 87 and 89 having the following adjacencies.

86 872 2
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(ii) If G ∼= G2(3) and 0 has diagram

then the 14 B-orbits in the last disc form the following collapsed B-adjacency
graph.

465 501

460 497

699

702

273

10 320

8 318

677

682

686

(iii) If G ∼= G2(3) and 0 has diagram

then there is only one B-orbit in the last disc and 113(γ0) is a co-clique.

(iv) If G ∼=U6(2) and 0 has diagram

then the last disc of the B-collapsed adjacency graph is connected apart from
215 and 377, with 215 and 377 having the following adjacencies.

2152 3772

(v) If G ∼=�+8 (2) and 0 has diagram

then the B-collapsed adjacency graph of 19(γ0) is connected.

(vi) If G ∼= Suz and 0 has diagram

then the last disc of the B-collapsed adjacency graph is connected apart from
145, 146, 175 and 196, which have the following adjacencies.

145

196 175

146
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Geodesic closure. For γ, γ ′ ∈ C a shortest path between them in C is called a
geodesic. The geodesic closure of a set of chambers X is defined to be the set
X of all chambers lying on some geodesic of γ, γ ′ for any pair γ, γ ′ ∈ X . The
motivation for geodesic closures comes from the fact that in the chamber graph of
a building, the geodesic closure of two chambers at maximal distance apart yields
(the chambers of) an apartment.

Theorem 2.1. Let G denote one of the groups P�−6 (3) or G2(3), and let 0 denote
a GAB associated to one of these groups. Set C = C(0), and let γ0 be a fixed
chamber of C. Put B = StabG(γ0).

(i) Suppose G ∼= P�−6 (3) and 0 has diagram

and let γi ∈110(γ0), i = 1, . . . , 28 be B-orbit representatives of 110(γ0). Set
ni, j = |{γ0, γi } ∩1 j (γ0)|. Then:

j 0 1 2 3 4 5 6 7 8 9 10
n1, j , n2, j 1 3 4 6 6 4 6 6 4 3 1

n3, j , n4, j , n5, j , n6, j 1 2 2 3 3 2 3 3 2 2 1
n7, j , n8, j , n9, j , n10, j 1 3 4 5 6 5 4 4 3 2 1

n11, j , n12, j 1 3 4 6 6 4 4 4 2 2 1
n13, j , n14, j 1 1 2 1 1 2 1 1 2 1 1

n15, j , n16, j , n17, j , n18, j 1 3 4 4 5 6 5 4 4 3 1
n19, j , n20, j , n21, j , n22, j 1 2 3 4 4 5 6 5 4 3 1
n23, j , n24, j , n25, j , n26, j 1 2 2 2 2 2 2 2 2 2 1

n27, j , n28, j 1 2 2 4 4 4 6 6 4 3 1

(ii) Suppose G ∼= G2(3) and 0 has diagram

and let γ ′ ∈113(γ0). Set n j = |{γ0, γ
′} ∩1 j (γ0)|. Then:

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13
n j 1 6 15 23 24 26 25 25 26 24 23 15 6 1

(iii) Suppose G ∼= G2(3) and 0 has diagram

and let γi ∈112(γ0), i = 1, . . . , 14 be B-orbit representatives of 112(γ0). Set
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ni, j = |{γ0, γi } ∩1 j (γ0)|. Then:

j 0 1 2 3 4 5 6 7 8 9 10 11 12
n1, j , n2, j 1 3 6 9 9 10 12 10 9 9 6 3 1
n3, j , n4, j 1 5 9 13 13 13 18 13 13 13 9 5 1
n5, j , n6, j 1 6 14 17 25 29 26 29 25 17 14 6 1
n7, j , n8, j 1 3 5 6 6 7 7 8 7 7 5 3 1
n9, j , n10, j 1 5 12 15 18 18 16 18 18 15 12 5 1
n11, j , n12, j 1 3 5 7 7 8 7 7 6 6 5 3 1
n13, j , n14, j 1 5 8 12 12 13 16 13 12 12 8 5 1

Apartments of GABs associated with U6(2) and �+

8 (2). The GAB’s for U6(2) and
�+8 (2) possesses apartments (see [Kantor 1981]), viewed as the fixed chambers of
T . For U6(2) we take T to be a cyclic group of order 4, and for �+8 (2) we take
T to be an elementary abelian group order 4, see [Kantor 1981]. In both cases
the apartments are isomorphic and have diameter 8. They also have the property
that the distance between any two chambers in the apartment (as measured in the
apartment) is the same as in the chamber graph. So this is something one expects
from a building. However, for �+8 (2) the diameter of its chamber graph is 9, so
not equal to the diameter of the apartment — unlike the situation in a building.

Theorem 2.2. Suppose G ∼= �+8 (2), let 0 denote a GAB associated to G. Set
C = C(0), and let γ0 be a fixed chamber of C. Put B = StabG(γ0).

An apartment, A, of 0 containing γ0 cuts the discs as follows.

Disc i of C(0) 0 1 2 3 4 5 6 7 8 9
|A∩1i (γ0)| 1 3 5 8 11 13 13 8 2 0

Let A∩18(γ0) = {γ1, γ2}. For j = 1, 2 the geodesic closure of the γ0, γ j cuts
the discs as follows.

Disc i of C(0) 0 1 2 3 4 5 6 7 8
|{γ0, γ j } ∩1i (γ0)| 1 3 4 4 4 4 4 3 1

The graphs on the next page are the geodesic closures {γ0, γ1} and {γ0, γ2}. The
type of adjacency between two connected chambers is shown by the labelling on
the edges, where

1 2 3

The set of chambers in both geodesic closures are subsets of the apartment. The
intersection between {γ0, γ1} and {γ0, γ2} has size 18 and the chambers that lie in
both geodesic closures are labelled with squares rather than circles.
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γ0 γ1

11

2 1

2

3
2

1

2

2

1 2

1

13

1

2

1

2

3

2

1 3

2

3

2

3

2 3

2

3 1

3 2

3

2

γ0 γ21 2 3 2 1 2

3

2 1 2 3 2

1

23

2

3

2 1 2 3 2

1

1

2 3 2 1 2

3

Geodesic closures (see Theorem 2.2).

Theorem 2.3. Suppose G ∼=U6(2), and let 0 denote a GAB associated to G. Set
C = C(0), and let γ0 be a fixed chamber of C. Put B = StabG(γ0).

An apartment, A, of 0 containing γ0 cuts the discs as follows.

Disc i of C(0) 0 1 2 3 4 5 6 7 8
|A∩1i (γ0)| 1 3 5 8 11 13 13 9 1
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Let A∩18(γ0)= {γ
′
}. The geodesic closure of γ0, γ

′ cuts the discs as follows.

Disc i of C(0) 0 1 2 3 4 5 6 7 8
|{γ0, γ

′} ∩1i (γ0)| 1 3 4 4 4 4 4 3 1

The graph for the geodesic closure of the only B-orbit in the last disc of the
apartment in the GAB of U6(2) is identical to the first diagram on page 197.

Again, the set of chambers in the geodesic closure in Theorem 2.3 is a proper
subset of the apartment (once more not very building like).

Maximal opposite sets. A maximal opposite set of chambers is a set of chambers
of maximal size subject to having the property that any two chambers are opposite
to each other, meaning that their distance apart is the diameter of the graph.

Theorem 2.4. If G ∼= G2(3) and 0 has diagram

then a maximal opposite set of chambers consists of three chambers.

Proof. Suppose G ∼= G2(3) and 0 has diagram

Since Gγ0
is transitive on 113(γ0), we may assume our maximal opposite set con-

tains {γ0, γ1}, where γ1 ∈113(γ0) is the chamber corresponding to B ∗ DB[149]
(the right coset of B containing DB[149]). We identify a chamber γ with the
triple {F1(γ ), F2(γ ), F3(γ )} which corresponds to a point-line-quad triple. Us-
ing the action of B, we determine 113(γ0), and by applying DB[149] to this set
we obtain 113(γ1). We can then see that |113(γ0) ∩113(γ1)| = 1. If we take
γ2 ∈113(γ0)∩113(γ1) we can see that |113(γ0)∩113(γ1)∩113(γ2)| = 0, and so
{γ0, γ1, γ2} is a maximal opposite set. �

Theorem 2.5. If G ∼= G2(3) and 0 has diagram

then each choice of the B-orbits in the last disc gives rise to a maximal opposite
set of chambers consisting of four chambers. In particular all maximal opposite
sets consist of four chambers.

Proof. We proceed as in Theorem 2.4, starting with γ0 but then there are 14 possible
choices of γ1 ∈112(γ0) (one from each B-orbit in 112(γ0)). We give the details for
γ1 being the chamber corresponding to B ∗ DB[8] (the right coset of B containing
DB[8]). We use MAGMA to calculate 112(γ1) and find that 112(γ0)∩112(γ1) is
comprised of 21 chambers. One of these 21 chambers, γ2, has the property that
|112(γ0)∩112(γ1)∩112(γ2)| = 2. Two of the other twenty chambers give rise to
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an intersection of 1 and the others to 0. Taking γ3 to be either of the chambers in
112(γ0)∩112(γ1)∩112(γ2)we find that112(γ0)∩112(γ1)∩112(γ2)∩112(γ3)=∅.
Hence γ1 is contained in a maximal opposite set with four chambers, so proving
the theorem. �

Perhaps the most surprising overall result was how unalike the chamber graphs
of buildings and the chamber graphs of these GABs appear. In [Carr and Row-
ley 2018] and [Rowley 2009] all the geometries investigated were in some sense
“building like”, indeed their chamber graphs had at most two B-orbits in their final
disc. The only GAB investigated here displaying this type of behaviour was G2(3)
with diagram

There were also differences by other measures. For the two groups, �+8 (2) and
U6(2) possessing apartments we found that the geodesic closures were proper sub-
sets of the apartments rather than being equal. Furthermore the apartment of �+8 (2)
did not even span the whole diameter of the chamber graph as it would were it a
building.

Perhaps it would be of interest to try and characterise why a limited number of
these GABs have so few B-orbits in their last disc while most have so many. Could
it be that there is a more unifying lens through which to view these chamber graphs
that would justify the name “geometries that are almost buildings”?
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Groups of compact 8-dimensional planes:
conditions implying the Lie property

Helmut R. Salzmann

The automorphism group 6 of a compact topological projective plane with an
8-dimensional point space is a locally compact group. If the dimension of 6 is
at least 12, then 6 is known to be a Lie group. For the connected component 1
of 6 it is shown that dim1 ≥ 10 suffices, if 1 is semisimple or does not fix
exactly a nonincident point-line pair or a double-flag. 1 is also a Lie group, if
1 has a compact connected 1-dimensional normal subgroup and dim1≥ 11.

1. Introduction

A systematic study of compact 8-dimensional projective planes began with [Salz-
mann 1979]. Many of the results obtained in the following 15 years are presented
in Chapter 8 of the treatise Compact projective planes [Salzmann et al. 1995].
An up-to-date account of more recent contributions to the theme can be found
in [Salzmann 2014]. The classical model, the projective plane over the quaternion
field H, has the automorphism group PSL3 H of dimension 35. If P = (P,L) is
any other compact 8-dimensional plane, then its automorphism group 6 = AutP ,
taken with the compact-open topology, is a locally compact transformation group
of the point space P as well as of the line space L, and dim6 ≤ 18. All planes P
such that dim6 ≥ 17 have been described explicitly [Hähl 1986; Salzmann 2014].
The goal is to extend these results and to determine all pairs (P,1), where 1 is a
suitable connected subgroup of AutP . As in the cases of finite projective planes or
compact connected planes of smaller dimension, such a classification is possible
only if the group — in our case its dimension — is not too small. An important step
is to show that 1 is a Lie group. In all known examples, lines are homeomorphic
to the 4-sphere S4, each closed proper subplane is connected and has a point space
of dimension 2 or 4, and 6 is even a Lie group. In general, however, it is only
known that lines are homotopy equivalent to S4; it is conceivable that some planes

MSC2010: 22D05, 51H10.
Keywords: topological plane, Lie group.
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have compact 0-dimensional subplanes; and it is an open problem whether or not
6 is always a Lie group. According to [Priwitzer 1994], the following theorem
holds: if dim6 ≥ 12, then 6 is a Lie group. Depending on the structure of a
connected subgroup 1 and the configuration F1 of its fixed elements (points and
lines), sharper bounds will be obtained here.

2. Preliminaries and background

This section contains a collection of basic facts. P = (P,L) will always be a com-
pact 8-dimensional projective plane if not stated otherwise; 1 denotes a connected
closed subgroup of AutP .

Notation. The notation is more or less standard and agrees with that in the book
[Salzmann et al. 1995]. A flag is an incident point-line pair; a double flag consists
of two points, say u, v, their join uv, and a second line in the pencil Lv. Homeo-
morphism is indicated by ≈. As customary, Cs1 0 or just Cs 0 is the centralizer
of 0 in 1. Distinguish between the commutator subgroup 0′ and the connected
component 01 of the topological group 0. The coset space 1/0 = {0δ | δ ∈1}
has the (covering) dimension 1 : 0 = dim1− dim0. The group 1[c,A] consists
of the axial collineations in 1 with axis A and center c. A collineation group 0 is
said to be straight if each orbit x0 is contained in some line. In this case a theorem
of Baer [1946] asserts that either 0 = 0[c,A] is a group of axial collineations or the
fixed configuration F0 is a Baer subplane.

2.1. Baer subplanes. It is known that each 4-dimensional closed subplane B of a
compact 8-dimensional plane P is a Baer subplane; i.e., each point of P is incident
with a line of B (and dually, each line of P contains a point of B); see [Salzmann
2003, §3] or [Salzmann et al. 1995, 55.5] for details. Lines of a Baer subplane are
homeomorphic to S2. If P contains a closed Baer subplane B, it follows easily that
the pencil of lines through a point outside B is a manifold, and hence, the lines of
P are homeomorphic to S4; see [Salzmann et al. 1995, 53.10] or [Salzmann 2003,
3.7]. By a result of Löwen [1999], any two closed Baer subplanes of P have a point
and a line in common. Generally, 〈M〉 will denote the smallest closed subplane of
P containing the set M of points and lines. We write BlP if B is a Baer subplane.

2.2. Stiffness. In the classical plane H, the stabilizer 3 = 6e of any frame e

(= nondegenerate quadrangle) is isomorphic to SO3 R; in particular, 3 is compact
and dim3 = 3. In any plane, 3 can be identified with the automorphism group
of the ternary field Hτ defined with respect to e. The fixed elements of 3 form
a closed subplane E = F3. It is not known if E is always connected or if 3 is
compact in general. Therefore, the following stiffness results play an important
role:
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(1) dim3≤ 4 [Bödi 1994].

(2) If F3 is connected or if 3 is compact, then dim3≤ 3 [Salzmann et al. 1995,
83.12–13].

(3) If F3 is contained in a Baer subplane B, then F3 is connected and the con-
nected component 31 of 3 is compact ([Salzmann et al. 1995, 55.4 and 83.9]
or [Salzmann 1979, (*)]).

(4) If , moreover, B is 3-invariant, then dim3≤ 1 [Salzmann et al. 1995, 83.11],

(4̂) if F3 itself is a Baer subplane, then 3 is compact [Salzmann et al. 1995, 83.6].

(5) If 3 is compact, then 3 is commutative or 31 ∼= SO3 R [Salzmann 1979, 2(1)].

(6) The stabilizer � of a degenerate quadrangle has dimension at most 7 [Salz-
mann et al. 1995, 83.17].

(7) If dim�= 7, then �1 ∼= eR
· SO4 R and lines are 4-spheres [Salzmann 1979,

(**)].

(8) If a subgroup 8 ∼= SO3 R of 1 fixes a line W , then each involution in 8 is
planar. Either 8 has no fixed point on W or F8 is a 2-dimensional subplane
[Salzmann 2010, Observation].

2.3. Fixed elements. The Lefschetz fixed-point theorem implies that each homeo-
morphism ϕ : P→ P has a fixed point.

(a) By duality, each automorphism of P fixes a point and a line [Salzmann et al.
1995, 55.19].

(b) The solvable radical P=
√
1 of 1 fixes some element of P .

(c) If F1 = ∅, then 1 is semisimple with trivial center, or 1 induces a simple
group on some connected closed 1-invariant subplane.

Proof. Argument (A) If 2 is a commutative connected normal subgroup of 1
and if 1 6= ζ ∈ Cs2, then pζ = p for some point p, and either p2 = p, or p2

is contained in a fixed line of 2, or p2 generates a connected (closed) subplane
S = 〈p2〉 and ζ |S = 1. In the latter case, 2=2|S 6= 1, and S is a proper subplane
of P .

(b) The claim will be proved by induction over the solvable length. Suppose that
1 itself is solvable and that the normal subgroup 2 has no fixed element. Let S
be a proper subplane as given by (A). If dimS = 2, then S has no proper closed
subplane [Salzmann et al. 1995, 32.7], and 2 has a fixed element in S. If S is a
Baer subplane, then (A) can be applied to 2; again F2 6= ∅, say p2 = p. Then
2|p1 = 1. Either 1 fixed some element or D = 〈p1〉 is a proper subplane. In the
latter case, 1|D = (1/2)|D has a fixed element by induction.
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(c) This will be proved successively for planes R of dimension 2, 4, and 8. If 1
is not semisimple, then P =

√
1 6= 1 by definition, and P fixes some element by

step (b), say pP
= p. Assume also that F1 = ∅. Then p1 is not contained in a

line and 〈p1〉 = S ≤ R is a closed subplane; normality of P implies P|S = 1. If
ζ 6= 1 is a central element of 1, then (A) yields a common fixed element p of ζ
and P, and ζ |S = P|S = 1.

If dimR = 2, there is no proper closed subplane, P|R = 1 = ζ |R, and 1 is
semisimple with trivial center, and hence 1 is strictly simple; see [Salzmann et al.
1995, 33.7] or [Salzmann 1967, 5.2]. If dimR = 4, then P 6= 1 or ζ 6= 1 implies
S 6= R, dimS = 2, and 1 = 1|S 6= 1 is simple. Finally, let dimR = 8. Then
S = 〈p1〉 < R, dimS ≤ 4, and F1 = ∅. Either dimS = 2 and 1|S is simple by
what has just been proved, or dimS = 4 and 1 is semisimple with trivial center.
In the latter case 1 is simple by [Salzmann et al. 1995, 71.8]. �

2.4. Dimension formula. By [Halder 1971] or [Salzmann et al. 1995, 96.10], the
following holds for the action of 1 on P or on any closed 1-invariant subset M
of P , and for any point a ∈ M :

dim1= dim1a + dim a1 or dim a1 =1 :1a.

2.5. Approximation theorem, see [Salzmann et al. 1995, 93.8].

(a) Every locally compact group 0 has an open subgroup 1 which is an extension
of its connected component 11 by a compact group.

(b) If 1 is locally compact and 1/11 is compact, then 1 has arbitrarily small
compact normal subgroups N such that 1/N is a Lie group.

(c) If , moreover, dim1 is finite, then dim N = 0 for each sufficiently small sub-
group N≤1.

2.6. Groups with open orbits. Let L be a line of the 8-dimensional plane P , and
let 1 be a closed subgroup of AutP with L1 = L. If U ⊆ L is a 1-orbit which
is open or, equivalently, satisfies dim U = dim L , then L is a manifold and 1
induces a Lie group on U. It follows that all lines are manifolds homeomorphic
to S4 (adapted from [Salzmann et al. 1995, 53.2]).

2.7. Compact groups on S4 (Richardson). If a compact connected group 8 acts
effectively on the 4-sphere S, and if 8 has an orbit of dimension > 1, then 8 is a
Lie group and (8, S) is equivalent to the obvious standard action of a subgroup of
SO5 R on S4 or 8∼= SO3 R has no fixed point on S [Salzmann et al. 1995, 96.34].

2.8. Theorem (Löwen). If the connected subgroup 1 of AutP fixes the line W
and if 1x is a Lie group for each x /∈W , then 1 itself is a Lie group.
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Proof. The following has been shown in [Löwen 1976]. Let (0,M) be a locally
compact connected transformation group of finite dimension, where X = M ∪∞
is a Peano continuum, all cohomology groups Hq(X,Q) are finite-dimensional,
and Hq(X,Q) = 0 for some n and all q ≥ n; moreover, the Euler characteristic
χ(X,Q) 6= 0, 1. If all stabilizers 0x with x ∈ M are Lie groups, then 0 is a
Lie group. This result applies to (1, P \ W ): by [Salzmann et al. 1995, 51.6,
51.8, 52.12], the one-point compactification X of P \W is homeomorphic to the
quotient space P/W , and X is a Peano continuum (i.e., a continuous image of
the unit interval); moreover, X is homotopy equivalent to S8, and X has Euler
characteristic χ(X)= 2. �

2.9. Compact groups. Each compact connected group is of the form (A×3)/N,
where A is the connected component of the center and 3 is a direct product of
compact simply connected almost simple Lie groups; the kernel N is a compact
central subgroup of dimension dim N= 0. A compact connected commutative nor-
mal subgroup 2 of a connected group 1 is contained in the center of 1 [Salzmann
et al. 1995, 93.11, 93.19].

2.10. Groups of subplanes. The automorphism group of every proper connected
closed subplane is a Lie group by [Salzmann et al. 1995, 32.21, 71.2].

2.11. Lemma. Suppose that 8 is a compact connected Lie group and that the
compact connected 1-dimensional group 2 is not a Lie group. If 0 = 82 acts
effectively on a subspace M of the plane, if H=8∩2 is finite, and if 2a = 1 and
8a is finite for some a ∈ M , then dim a0 > dim a8.

Proof. First, let H = 1, so that 0 = 8×2. If dim a0 = dim a8, then the con-
nected component 4 of (82)a satisfies dim4 = 1. Consider the restrictions of
the projection maps π : 4 → 8 and % : 4 → 2. Both maps are continuous
homomorphisms. The kernel kerπ is contained in 2a = 1 and π is injective.
Compactness of 8 implies that 4 is isomorphic to a closed subgroup of 8; hence,
4 is a Lie group. From ker %≤8a we infer that ker % is finite, and [Salzmann et al.
1995, 93.12] shows that % is surjective, but then 2 would be a Lie group contrary
to the assumption. In the general case analogous arguments apply to the natural
maps π :4→8/H and % :4→2/H. �

2.12. Definition. For the remainder of this article, we shall call a compact, con-
nected 1-dimensional subgroup of 1 a serpentine subgroup. The letter 2 will be
reserved for such subgroups. They are 1-tori or, more frequently, solenoids; the
latter are not Lie groups.
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3. No fixed elements

Suppose in this section that F1 =∅.

3.1. Theorem. If dim1 ≥ 10, or if 1 is semisimple and dim1 ≥ 9, then 1 is a
Lie group.

Proof. By the approximation theorem, there is a compact 0-dimensional central
subgroup N such that 1/N is a Lie group. Suppose that 1 6= ζ ∈ N, and let pζ = p
be a fixed point of ζ . A slight variation of argument (A) in the proof of 2.3 shows
that E = 〈p1〉 is a connected proper subplane.

(a) If dim E = 2, then 1 induces on E a group 1∗ = 1/K of dimension at most
8, and stiffness yields dim K≤ 3. Hence, dim K≥ 1 and 1 : K≥ 6. In particular,
E is isomorphic to the classical real projective plane [Salzmann et al. 1995, 33.6],
and 1∗ is a subgroup of SL3 R. As 1∗ has no fixed element, 1∗ is simple by
[Salzmann 1967, 5.2] or [Salzmann et al. 1995, 33.1] (see also 2.3 above), and
then dim1∗ = 8, 1∗ ∼= SL3 R. If 1 is semisimple, the kernel K is also simple,
and dim K= 3. In any case, dim1≥ 10 and dim K≥ 2. Because N induces a Lie
group on E (see 2.10 or [Salzmann et al. 1995, 32.21]), we may assume that N<K.
Either Fζ lP for some ζ ∈ N \ {1}, or N acts freely on the set of exterior points
(points not belonging to E). In the first case, the stiffness result (4) would imply
dim K ≤ 1. Hence, Nz = 1 for each exterior point z on an interior line L (a line
of E). If dim1L−dim1z = 4, then1L induces a Lie group on the orbit z1L by 2.6.
Therefore, N is finite, and 1 would be a Lie group. Consequently 1 :1z ≤ 2+ 3.
Choose two interior points a, b /∈ L and consider the stabilizer �=1z,a,b; it fixes
also the point L ∩ ab and hence 3 collinear points of E . Linear algebra shows that
� fixes all interior points of ab; moreover, dim� ≥ 1 and �|zN = 1. Thus, F�
is a connected proper subplane of dimension 2 or 4, and N acts effectively on F�.
From 2.10 it follows that N is a Lie group, and so is 1.

(b) Finally, let E lP and note that 1∗ =1|E has no fixed element. According to
[Salzmann et al. 1995, 71.4, 71.8], the group 1∗=1/K is strictly simple. Stiffness
shows dim K≤ 1 and 1 : K> 8 (since dim1≥ 10 or dim K= 0). All possibilities
for 1∗ are listed in [Salzmann et al. 1995, 71.8]; only PSL3 C has dimension > 8.
Hence, dim1≥ 16, and 1 is a Lie group by [Priwitzer 1994]. �

Remark. Previously 3.1 was only known for dim1 ≥ 11; see [Salzmann 2010,
Theorem 1.1] or [Salzmann 2014, 2.1].

3.2. Compact normal subgroup. If 1 has a serpentine normal subgroup 2 and if
dim1≥ 9, then 1 is a Lie group or, conceivably, 1∼= SL3 R×2 induces the full
collineation group on some invariant 2-dimensional desarguesian subplane.
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Proof. The proof follows the scheme of the previous one, and the same notation
will be used. If 1 is not a Lie group, then dim1= 9 by 3.1.

(a) Let E = 〈p1〉 be a 2-dimensional subplane. Again E is the classical real plane
and 1∗ = 1/K ∼= SL3 R is simple. Hence, 2N ≤ K. Either 1′ ∼= 1∗ or 1′ is a
twofold covering of SL3 R. In the first case, each involution in 1′ is a reflection
of P (if Fβ lP for some involution β, then N induces a Lie group on Fβ by 2.10,
the induced map β|E is a reflection, 〈E,Fβ〉 = P , and 1 would be a Lie group).
Consequently, there is a translation group 1[L ,L] ∼= R2 for each interior axis L . It
remains an open problem whether or not 2 must be a Lie group in this situation.

In the second case, the center of 1′ contains an involution ι such that FιlP ,
and the lines of P are homeomorphic to S4 (see 2.1). Moreover, 2|Fι = 1 by the
stiffness property [Salzmann et al. 1995, 71.7(a)] or by [Grundhöfer and Salzmann
1990, XI.9.3] (recall that 2|E = 1). Hence, 2 acts freely on the set of points not
belonging to Fι. Let L be a line of E and put L ′ = L \Fι. The group 1′ has a
subgroup ϒ ∼= SU2 C, and the connected component 8 of ϒL is a torus. As L ′ is
dense in L , it follows that 8 acts effectively on L ′ (note that E is classical). Let
p ∈ L ′ such that p8 6= p, dim8p = 0, and 8p is finite. We have 8 ∩2 = 〈ι〉.
Therefore, Lemma 2.11 applies and shows that 1 = dim p8 < dim p82 = 2. By
[Salzmann et al. 1995, 96.24] or 2.7 above 1 is a Lie group.

(b) If 〈p1〉 = C l P , the lines of P are 4-spheres. From 2.3 and 2.9 it follows
that 2|C = 1 and that 1|C is semisimple of dimension 8. By 2.3(c) and [Salzmann
et al. 1995, 71.8], the group 1∗ = 1|C is isomorphic to SL3 R or to PSU3 (C, r),
r ≤ 1. For each of the unitary groups, there is an interior line L such that SU2 C acts
nontrivially on the set L ′ of exterior points of L . In particular, a maximal compact
subgroup of 1L has an orbit of dimension > 1 on L ′. Recall that N acts freely on
the set of exterior points. By Richardson’s theorem, 1L induces a Lie group on L ′.
Hence, N and 1 are Lie groups. If 1∗ ∼= SL3 R, then there exists a 1-invariant
2-dimensional subplane of C [Salzmann et al. 1995, 72.3], and dim L1 = 2 for a
suitable line L . Hence, 1′|L ′ contains a circle group 8. Again 8 acts effectively
on L ′. The proof can now be completed exactly as at the end of step (a). �

3.3. Normal vector group. If F1=∅, if1 has a minimal normal vector subgroup
4, and if dim1≥ 7, then 1 is a Lie group.

Proof. From 2.3 it follows that F = F4 is a proper connected 1-invariant subplane.
There is a compact group N G1 such that 1/N is a Lie group. We may assume
that dim N= 0, that N is not a Lie group, and that N|F = 1. Note that dim1≤ 9
by 3.1. If F lP , then 4|F = 1 by definition, and 4 would be compact by stiffness.
Hence, F is a 2-dimensional subplane.
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(a) First, let dim1 = 9. Then the induced group 1|F = 1/K is simple by 2.3;
in fact, 1/K∼= SL3 R. A maximal compact subgroup 8 of 1 is connected by the
Malcev–Iwasawa theorem, and N<8. Consequently, dim8= 4 (or 8∼= SO3 R by
[Salzmann et al. 1995, 93.12]), 8 is a product of 8′ and a compact group 2= K1,
4 ∩ 2 = 1, and 4 would be contained in 1/K1, which is locally isomorphic
to SL3 R.

(b) In the cases dim1 ∈ {7, 8} the induced group 1/K is simple by 2.3, and then
1 : K= 3 [Salzmann et al. 1995, 33.6,7], but dim K≤ 3 by stiffness. �

Remark. If F1 is not empty, 4 can be a group of axial collineations, and in the
case 4 G1 there are no sharper results than in general.

4. Exactly one fixed element

Up to duality, we may assume that F1 consists of a line W .

4.1. Semisimple groups. If the semisimple group 1 fixes exactly one line and pos-
sibly some points on this line, and if dim1> 3, then 1 is a Lie group [Salzmann
2010, Theorem 1.3].

4.2. Theorem. If F1 = {W } and if dim1≥ 9, then 1 is a Lie group.

Proof. (a) Again there exist arbitrarily small compact central subgroups N≤1 of
dimension 0 such that 1/N is a Lie group; see 2.5. If N acts freely on P \W , then
each stabilizer 1x with x /∈W is a Lie group because 1x∩N= 1, and 1 is a Lie
group by 2.8.

(b) If xζ = x /∈W for some ζ ∈N\{1}, then x1 is not contained in a line, ζ |x1 = 1,
and E = 〈x1,W 〉 is a proper connected subplane. Assume in this step that E is 2-
dimensional. In this case the claim follows by similar arguments as in 3.1(a): let
1∗ =1|E =1/K. Then 1 : K≤ 6 by [Salzmann 1967, 3.19] or [Salzmann et al.
1995, 33.6] together with the dimension formula 2.4, and dim K≤ 3 by stiffness.
It follows that dim K = 3, 1 : K = 6, and E \W is the classical real affine plane
[Salzmann 1967, 4.3]. As 1∗ is a Lie group, we may assume that N< K. Again N
acts freely on the set of exterior points. The remainder of the proof is as in 3.1(a)
with W instead of L .

(c) If 1 is not a Lie group, the case ElP will lead to a contradiction. Write again
1∗ =1|E =1/K. Note that K is compact and acts freely on the set of points not
in E . If 1 is transitive on W ∩ E ≈ S2, then a maximal compact subgroup of 1
induces a Lie group on W by 2.7. Hence, K and 1 are Lie groups. Therefore, 1
has a 1-dimensional orbit V ⊂W ∩ E . Brouwer’s theorem [Salzmann et al. 1995,
96.30] (see also [Hofmann 1965]) shows that 1|V =1/0 has dimension at most 3.
Consequently dim0 ≥ 6. Choose a point v ∈ V , a line L in E with v ∈ L , and an
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exterior point z ∈ L . By 2.6 we have dim z0L < 4. Note that 3= (0L ,z)
1 fixes V

pointwise and that dim3 > 0. Because N acts freely on L \ E and N ≤ Cs1, it
follows that F3 is a proper connected subplane. Now N is a Lie group by 2.10. �

5. Collinear fixed points

Suppose in this section that 1 fixes a unique line W and one or more points on W .

5.1. Theorem. Let F1 = {v,W } be a flag. If dim1≥ 10, then 1 is a Lie group.

Proof. By the approximation theorem, there is a compact 0-dimensional normal
subgroup N such that 1/N is a Lie group. Because of 2.8 we may assume that
xζ = x for some ζ ∈ N \ {1} and some x /∈ W . As x1 is not contained in a line
and ζ |x1 = 1, it follows that C = 〈x1, v,W 〉 is a proper connected subplane. If
C is 2-dimensional, then dim1|C ≤ 5 and dim1 ≤ 8 by stiffness. Therefore, C
is a 1-invariant Baer subplane. The induced group 1|C = 1/K is a Lie group
by 2.10. Hence, it may be supposed that N ≤ K. Obviously, K acts freely on the
set of exterior points (points not in C), and dim K≤ 1 by stiffness. Thus, 1 :K≥ 9,
and C is isomorphic to the classical complex plane [Salzmann et al. 1995, 72.8].
Choose interior points u, w ∈W , an interior line L in the pencil Lv , and an exterior
point z ∈ L . If N is not a Lie group, then the connected component 3 of 1u,w,z

has positive dimension by 2.6, because 1 :1u,w,L ≤ 6. Note that zN
⊂F3 and that

3 fixes all interior points of W , so that F3 is a connected proper subplane. Now
N is a Lie group by 2.10. �

5.2. Theorem. If F1 = 〈u, v〉 and if dim1≥ 8, then 1 is a Lie group.

For a proof see [Salzmann 2017, Lemma 6.0′].

5.3. Proposition. If 1 fixes at least 3 distinct points and exactly 1 line, and if
dim1≥ 8, then 1 is a Lie group.

Remark. This follows from 5.2. An easy proof is given in [Salzmann 2017, 7.0′].

5.4. Compact normal subgroup. Suppose that F1 is a flag and that 1 has a ser-
pentine normal subgroup 2. If dim1≥ 9, then 1 is a Lie group.

Proof. This can be proved in a similar way as 5.1 and the first arguments are the
same. Again there is a 1-invariant Baer subplane C and 1|C =1/K is a Lie group.
Note that 2≤ Cs1 by 2.9 and that 2|C is a Lie group.

(a) 2∗ =2|C does not contain any involution: as F1 is a flag, there is no reflection
in 2∗. If ι is a planar involution in 2∗, then C ∩Fι is a 1-invariant 2-dimensional
subplane and stiffness implies dim1≤ 5+ 1. Hence, 2∗ = 1 and 2≤ K.
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(b) Choose an interior line L ∈ Lv, and exterior points x ∈ L and z ∈ W . The
kernel K acts freely on the set of all exterior points. Result 2.6 implies that
1≤ dim xK, dim zK

≤ 3, so that 3 = (1x,z)
1 has positive dimension. Recall that

N≤K. Put 0=2N and E =〈x0, z0〉. Then E ≤F3 is a proper connected subplane,
0 acts faithfully on E , and 0, N, and 1 are Lie groups (2.10). �

5.5. Compact normal subgroup. Assume that F1 = 〈u, v, w〉. If dim1≥ 7, and
if 1 has a serpentine normal subgroup 2, then 1 is a Lie group.

Proof. If 1 is not a Lie group, there exists a point p /∈ W = uv such that E =
〈p1, u, v, w〉 is a 2- or 4-dimensional subplane; see steps (a) and (b) in the proof
of 4.2. Put 1|E =1/K. In the first case, 1 :K≤ 3 and dim K≤ 3 by the dimension
formula and stiffness. Therefore, E lP and lines are homeomorphic to S4. Recall
that 2≤ Cs1 and that 2|E is a Lie group, either a torus or trivial. A torus would
contain a reflection [Salzmann et al. 1995, 55.21(c)], and 1 would fix some point
c /∈ W . Hence, E = F2 and 2 ≤ K. There is a compact central subgroup N<1

such that 1/N is a Lie group and N≤ K. As E is maximal in P , the kernel K acts
freely on the set of points outside E (the exterior points). Let x be an exterior point
on an interior line L in the pencil Lv . Because of 2.6, we have 1L :1x < 4. Hence,
3 = (1x)

1 satisfies dim3 ≥ 2. Stiffness implies that F3 is 2-dimensional. KN
acts freely on F3, and N is a Lie group by 2.10, but then 1 is also a Lie group. �

Arguments a little more intricate show that even the following is true:

5.6. Compact normal subgroup. Assume that F1 = 〈u, v〉. If dim1 ≥ 7, and if
1 has a serpentine normal subgroup 2, then 1 is a Lie group.

Proof. Suppose that 1 is not a Lie group. Again there is a point p /∈ W = uv
such that E = 〈p1, u, v〉 is a proper connected subplane; see steps (a) and (b) in
the proof of 4.2. Put 1|E =1/K. There is a compact central subgroup N<1 of
dimension dim N= 0 such that 1/N is a Lie group and N≤ K.

(a) If E is 2-dimensional, then dim K = 3 and 1 : K = 4. From [Salzmann et al.
1995, 33.9] it follows that E is the classical real plane; moreover, each compact
subgroup of 1|E is trivial, and 2|E = 1. Let L be a line of E in the pencil Lv
and consider a point x ∈ L \ E and a third point w ∈ uv ∩ E . Then 3=1x,w has
positive dimension and fixes each point of uv∩E . Hence, F3 is a proper connected
subplane, and N|F3 is a Lie group by 2.10. This is true for each choice of x . As P
is generated by E and at most two of such subplanes, N itself is a Lie group, and
so is 1.

(b) Thus, E lP and lines are homeomorphic to S4 by 2.1. Recall that 2≤ Cs1.
Again2|E is a compact Lie group by 2.10, and2|E is either a torus or trivial. In the
first case, the involution in 2|E is a reflection by [Salzmann et al. 1995, 55.21(c)],
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and 1 would fix its center and axis. Hence, 2|E = 1 and F2 = E . Choose L , x ,
and w as in step (a). Because of 2.6, we have dim1x ≥ 2. Put 3 = 1x,w and
note that 2N acts freely on L \ E . It follows that F3 is connected and that N
acts effectively on F3. Hence, F3 = P and 1x,w = 1 for each admissible w.
Therefore, 1x is sharply transitive on a cylinder and 1x has a torus subgroup 9.
If the involution ι ∈9 is planar, then 2N acts effectively on Fι, and N would be
a Lie group. Thus, ι is a reflection, its axis is L and its center is u. Interchanging
the roles of u and v, we find also a torus subgroup 8<1 such that the involution
σ ∈8 has the center v. We have 1w,L :1w,x ≤ dim x1 ≤ 3 and dim L1w =1w :
1w,L ≥ 5− 3. Consequently 1 is transitive on the set of admissible lines L , which
is homeomorphic to R2. Therefore, 8 fixes one of the lines L . This follows, e.g.,
from the much more general result [Poncet 1959, Théorème a]. The axis of σ is an
interior line in Lu and σ /∈8x so that 8x is finite. As L1≈R2 is simply connected,
a maximal compact subgroup X of 1L is connected [Salzmann et al. 1995, 93.10],
and X induces a connected group X on L \E . The group 8 yields a torus 8≤X. If
dim X= 2, then X=82 by [Salzmann et al. 1995, 93.12], and N<2. Moreover,
8∩2= 1 because 8 acts effectively on E , and dim x82> 1 by 2.11. If dim X> 2,
then dim xX

≥ 2 because Xx ≤ 1x and Xx is a torus. In both cases, X is a Lie
group by [Salzmann et al. 1995, 96.24], and then 1 is also a Lie group. �

6. Nonincident fixed elements

If1 fixes a nonincident point-line pair (and possibly further elements), then Löwen’s
criterion 2.8 does not apply.

6.1. Proposition. If 1 fixes a line W and if 1 is transitive on W , then 1 is a Lie
group [Priwitzer 1994, 2.1].

Alternative proof. By [Hofmann and Kramer 2015, Corollary 5.5], the induced
group 1|W is a Lie group and W is a manifold; in fact, W ≈ S4 [Salzmann et al.
1995, 52.3]. From [Salzmann et al. 1995, 96.19–22] it follows that 1|W has a
transitive subgroup SO5 R. The Malcev–Iwasawa theorem [Salzmann et al. 1995,
93.10] implies that a maximal compact subgroup 8 of 1 is connected. The result
[Salzmann et al. 1995, 55.40] shows that 8 has a subgroup ϒ ∼= Spin5 R. The
central involution in ϒ is a reflection with some center a /∈W . It suffices to show
that 8 is a Lie group. By the approximation theorem, there is an arbitrarily small
central subgroup N < 8 such that 8/N is a Lie group. As N centralizes each
stabilizer ϒz with z ∈W , we conclude that N|W = 1, i.e., N consists of homologies
with axis W and center a. Select a point v ∈ W and consider the action of 8v
on the line av. Note that ϒv ∼= Spin4 R fixes a second point u ∈ W , and that
ϒv has no subgroup of dimension 5. Put ϒv|av = ϒv/K. The homology group
K has dimension at most 3. Hence, ϒv has an orbit on av of dimension > 1, and
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Richardson’s theorem applies to 8v|av . In particular, 8v induces a Lie group on av,
and then N is a Lie group. �

6.2. Semisimple groups. Suppose that F1 is a nonincident point-line pair {a,W },
1 is semisimple, and dim1≥ 10. Then 1 is a Lie group.

Proof. By [Priwitzer 1994] we may assume that dim1< 12.

Case 1 (dim1 = 11). Then 1 = 09 is a product of two almost simple factors,
where dim0 = 3.

(a) Suppose that1 is not a Lie group, and denote the center of1 by Z. If 0Z|W 6=1,
then there is a point p such that G = 〈p0Z, a,W 〉 is a connected subplane (note
that 0|W = 1 implies p0 6= p). If dim p9 = 8, then 1 would be a Lie group
by [Salzmann et al. 1995, 53.2]. Therefore, 9p 6= 1 and 9p|G = 1, so that G is
a proper subplane (in fact a Baer subplane) and 0Z|G is a Lie group (see 2.10).
Thus, G = Fζ for some ζ ∈ Z. Consequently G1 = G, but 1 cannot act on the
4-dimensional plane G [Salzmann et al. 1995, 71.8].

(b) Hence, 0Z ≤ 1[a,W ]. From [Salzmann et al. 1995, 61.2] it follows that the
almost simple group 0 is compact. By [Salzmann et al. 1995, 55.32(ii)], the homol-
ogy group 0 does not contain a pair of commuting involutions. Hence, 0 ∼= SU2 C.
Moreover, 0 has 3-dimensional orbits on any line av, v ∈W . The group 9 acts al-
most effectively on W and 9 is not a Lie group. Therefore, 9|W ∼= PSU3 (C, 1). In
fact, 9|W is strictly simple because Z|W = 1, and 9|W is different from PSL3 R and
from the compact group PSU3 (C, 0) because these groups admit only finite cover-
ings and 9 is not a Lie group. The kernel K of the canonical map κ :9→9|W is
contained in Z. Let 8 be a maximal compact subgroup of 9. Then 8 is connected,
8κ ∼=U2 C, and dim8= 4. As 9 is not a Lie group, it follows that K is compact. If
lines are manifolds, then Richardson’s theorem as stated in [Salzmann et al. 1995,
96.34] applies and shows that 8 has two fixed points on W . Let v8 = v ∈W . Then
a maximal compact subgroup � of 1 fixes v, and � is connected by the Malcev–
Iwasawa theorem [Salzmann et al. 1995, 93.10]. Now �|av is a Lie group by 2.7,
and so are Z ≤ � and 1. Thus, lines are not manifolds, and 2.6 implies that all
orbits of 1 on W have dimension < 4.

(c) The structure theorem 2.9 shows that 8′ is a Lie group. In fact, 8′ ∼= SU2 C

because 8′κ 6∼= SO3 R. The restriction of κ to 8′ is an isomorphism, the involution
ω ∈ 8′ is in the center of 8, and ω is not planar (or lines would be manifolds);
moreover, ω is not a reflection with axis W . Hence, ω ∈1[u,av] for suitable points
u, v ∈W . Choose a maximal compact subgroup � of 1 such that 8≤�, so that �
fixes u and v. Both 8′ and 0 act effectively on au; the product of their involutions
is a reflection in 1[v,au]. Hence, 8′0|au ∼= SO4 R. From dim8 = 4 it follows
that dim�= 7. The structure theorem of compact groups [Salzmann et al. 1995,
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93.11] shows that � is a product of the connected component 2 of its center and
the groups 8′ and 0. Let U be some nontrivial orbit of � on au and note that
dim U < 4; in fact, dim U = 3 because 0 acts freely on U . By [Salzmann et al.
1995, 96.13] we have dim�|U ≤ 6. Consequently � has a 1-dimensional normal
subgroup acting trivially on U . The only possible kernel contains 2, but 2|U 6= 1
since Z acts freely on U . This contradiction proves that dim1 6= 11.

Case 2 (dim1 = 10). Then 1/Z ∼= PSp4 R ∼= O′5(R, 2); note that the other two
10-dimensional simple groups have simply connected double coverings [Salzmann
et al. 1995, 94.33] and hence cannot be images of non-Lie groups.

(a) The center Z acts freely on C = {x ∈ P \W | x 6= a}: suppose that pζ = p
for some p ∈ C and ζ ∈ Z \ {1}. Then ζ |p1 = 1, by assumption p1 is not
contained in a line, and D = 〈a, p1,W 〉 is a proper connected subplane. The
induced group 1|D is locally isomorphic to Sp4 R, and D is a Baer subplane, but
then dim1|D ≤ 8 because 1 fixes a,W ∈D. (According to [Salzmann et al. 1995,
72.8] a 4-dimensional plane with a group of dimension > 8 is classical, and 1|D
would be contained in GL2 C; see also [Salzmann 1971, 8.1].)

(b) If 1 contains a planar involution β, then Z induces a Lie group on Fβ , Fβ =Fζ
for some ζ ∈ Z, and Fζ would be a 1-invariant Baer subplane. This is impossible
for the same reasons as in step (a).

(c) As 1/Z has a subgroup SO3 R, the structure theorem 2.9 shows that 1 has
a subgroup 8 ∼= SU2 C: in the case 8 ∼= SO3 R one of 3 pairwise commuting
reflections of 8 would have the axis W [Salzmann et al. 1995, 55.35], but SO3 R

is simple.

(d) Suppose that lines are manifolds. Then W ≈S4 by [Salzmann et al. 1995, 52.3].
Some orbit of 8 on W has dimension at least 2. Consequently 1 induces a Lie
group 1/K on W (use Richardson’s theorem 2.7). The structure of 1 shows that
a maximal compact subgroup � of 1 is 4-dimensional. As K≤ Z and dim Z= 0,
it follows that dim�/K= 4. Note that �′ =8∼= SU2 C. Richardson’s theorem as
stated in [Salzmann et al. 1995, 96.34] shows that either 8|W ∼=8 has exactly two
fixed points u, v ∈W , where v is the center of the involution ι∈8, or8|W ∼= SO3 R

has a circle of fixed points and the central involution ι ∈ 8 is a reflection with
axis W . In any case, there is a point v ∈W such that v8 = v and 8|av ∼=8. By 2.7
each orbit c8 with a, v 6= c ∈ av is a 3-sphere. It follows that the orbit space av/8
is a closed interval J . The compact group K ≤ 1[a,W ] induces a group of order-
preserving homeomorphisms on J . Each endpoint b = c8 of an orbit xK

⊂ J is
a fixed element of K. Hence, K maps c8 onto itself. As K is central, cκ = cϕ(κ)

defines an injective continuous homomorphism K→8. Consequently K is finite
and � would be a Lie group.
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(e) Thus, lines are not manifolds, and by 2.6 each orbit of (a subgroup of) 1 on
a line has dimension at most 3. The group � is a product 28, where 2 is the
connected component of the center of �, 2∩8 ≤ 〈σ 〉 is trivial or generated by
the involution σ ∈8, and 2 is not a Lie group.

(f) Suppose that σ is not a reflection with axis W . Step (b) shows that σ has some
center u ∈ W and an axis av with v ∈ W . Consider an arbitrary point z ∈ Y :=
W \ {u, v}. We have dim8z = 0, and 8z is finite. With [Salzmann et al. 1995,
93.6] it follows that dim1z = 7 and dim1z8 = 10. Therefore, 1 = 1z8 and
z1 = z8. Thus, Y1 = Y and {u, v} would be 1-invariant, but F1 = {a,W }.

(g) Hence, σ ∈1[a,W ]. Recall that a maximal compact subgroup � =28 of 1
has dimension dim� = 4. If z1 ⊆ W is a nontrivial orbit, and if 1|z1 = 1/K,
then the kernel K is contained in Z (because 1 is almost simple). Therefore, �
acts almost effectively on z1. By [Salzmann et al. 1995, 96.13(a)] either z� = z
or dim z� = 3. Consequently, dim z1 = 3 for each z ∈ W . (Note that z1 6= z. If
dim z1 < 3, then �δ|z1 = 1 for all δ ∈1. As 1 is generated by all conjugates of �,
this is impossible.)

(h) 2 has (at least) 2 fixed points u, v ∈ W . This follows from [Löwen 1976,
Lemma 1 or 2]; see also 2.8 above.

(i) By 2.5, there is a sufficiently small compact central subgroup 4 of 1 such that
1/4 is a Lie group. Put N = 2∩4. Then 2/N is a Lie group, and so is �/N.
Hence, 1/N is also a Lie group. Denote the canonical map 1→1/N by λ. The
quotient space M =1λ/(1v)λ is a manifold, and M can be written in the form

{{Nγ | γ ∈1v}Nδ | δ ∈1} = {1vδ | δ ∈1} =1/1v ≈ v1,

since N<2<1v . Therefore, v1 is a 3-manifold. If v� 6= v, then [Salzmann et al.
1995, 96.11(a)] implies v� = v1. As 2 ≤ Cs�, we have 2|v� = 1 and hence
2|v1 = 1, i.e., 2 is in the kernel of the action of 1 on M . This kernel is contained
in Z because 1 is almost simple. Consequently dim2= 0, a contradiction showing
that v� = v.

(j) Consider the action of � and of 8 on K := av \ {a, v}. The only involution
in 8 is the reflection σ with axis W . Therefore, dim8c = 0 for each c ∈ K ,
and the compact group 8c is finite. Let 0 = (1v)1 and note that dim0 = 7,
dim c0 = dim c8= 3, dim0c= 4, dim0c8= 7, and hence 0=0c8, c2⊆ c0 = c8.
As1/Z is a Lie group and Zc=1 by step (a), it follows that the stabilizer5=2c is
a Lie group. The condition cϑ = cϕ(ϑ) defines a continuous injective isomorphism
of the compact group 2/5 onto a closed subgroup of 8. Hence, 2/5 is a Lie
group, and so are 2 and 1. �
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6.3. Compact normal subgroup. Suppose that F1={a,W } is a nonincident point-
line pair. If 1 has a serpentine normal subgroup 2 and if dim1≥ 11, then 1 is a
Lie group.

Proof. (a) 2 is contained in the center Z= Cs1 (see 2.9), and 1/Z is a Lie group.
Assume that Z is not a Lie group. If Z|W 6= 1, there is some point p /∈ W such
that pZ

6⊆ ap, and 1p|〈pZ〉 = 1. From [Salzmann et al. 1995, 53.2] it follows that
dim1p ≥ 4. Thus, E = 〈pZ

〉 is a proper connected subplane, and Z|E is a Lie group
by 2.10. Therefore, ζ |E = 1 for some ζ ∈ Z \ {1}. In particular, pζ = p, ζ |p1 = 1,
dim p1 ≤ 4, and dim1p ≥ 7. This contradicts stiffness and proves that Z≤1[a,W ].

(b) By assumption, 1 has no fixed point on W , and 6.1 shows that 1 is not tran-
sitive on W . Hence, there is some orbit V = v1 ⊂ W such that 0 < dim V < 4.
Choose points u, w ∈ V and c ∈ av \ {a, v} and note that dim c1v < 4 by 2.6. If
3=1c,u,w 6= 1, then F3 is a proper connected subplane, Z acts freely on F3, and
Z would be a Lie group by 2.10. We have dim1c ≥ 5 and dim u1c = 3 for each
u ∈ V \ {v}. Consequently 1 is doubly transitive on V .

(c) By [Salzmann et al. 1995, 96.16–17], either V is compact and the induced
group 1∗ =1|V is isomorphic to one of the simple groups PSL4 R,O′5(R, 1), or
PSU3 (C, 1), or 1∗ is an extension of R3

≈ V by a transitive linear group. In the
first case dim1> 15 and 1 is a Lie group. In the last case, dimw1u,v ≤ 1, 3 6= 1,
and 1 is also a Lie group. Only two possibilities remain: 1∗ is a simple group of
dimension 10 or 8.

(d) If dim1∗ = 10, then a maximal semisimple subgroup 9 of 1 is isomorphic
to the simple group O′5(R, 1) or to its double cover U2 (H, 1); a maximal compact
subgroup 8 of 9 is isomorphic to SO4 R or to Spin4 R. Accordingly 8v ∼= SO3 R

or 8v ∼= Spin3 R. In the first case, 8v would contain a reflection with axis W , but
SO3 R is simple. Hence, ϒ = 8v is simply connected. The involution ω ∈ ϒ is
contained in 1[a,W ], and each orbit cϒ , c ∈ av \ {a, v}, is 3-dimensional. Hence,
ω /∈ϒc and ϒc is finite. Moreover, 2c = 1 and ϒ ∩2≤ 〈ω〉. Lemma 2.11, applied
to ϒ2, shows that dim cϒ2 = 4. By 2.7 the group 2 is a Lie group and so is 1.

(e) Finally, let 1∗ = 1/K ∼= PSU3 (C, 1). Note that the central group 2 is con-
tained in K. There exists an 8-dimensional semisimple subgroup 9 of 1 (see
[Salzmann et al. 1995, 94.27] or apply Levi’s theorem [Salzmann et al. 1995, 94.28]
to a Lie approximation of 1). Consequently K=

√
1 is the radical, 1=9K, and

K ≤ Cs19. Suppose that zK
6= z ∈ W , let c ∈ az \ {a, z}, and put 3 = 9c. If

dim3 = 0, then dim c1 = 8, and 1 would be a Lie group by [Salzmann et al.
1995, 53.2]. As 3 fixes a connected set of points on W , it follows that E = F3
is a connected proper subplane, and E2 = E because 2 ≤ Cs3. The fact that
2|V = 1 implies that 2 acts effectively on E , so that 2 would be a Lie group by
2.10 above. Therefore, K≤1[a,W ], and K contains a compact connected subgroup



216 HELMUT R. SALZMANN

of dimension at least 2 by [Salzmann et al. 1995, 61.2]. If lines are manifolds,
the claim follows from Richardson’s theorem 2.7. In the other case, 2.6 shows
dim z1 < 4 for each z ∈W . In fact, 1 is doubly transitive on each orbit z1 ⊆W ;
see step (b) of the present proof. Moreover, all transformation groups (1/K,U ),
where U is an orbit of 1 on W , are equivalent to (PSU3 (C, 1),S3) by [Salzmann
et al. 1995, 96.17(b)]. Consequently, 1v has a fixed point in each of these orbits.
Let again c ∈ av \ {a, v}. Then dim c1v < 4, 3 = 1c fixes a quadrangle, and
dim3≥ 5. This contradicts stiffness and completes the proof. �

7. Fixed double flag

Throughout this section, let F1 = 〈u, v, av〉 be a double flag.

7.0. Fact. If a semisimple group1 fixes a double flag, then dim1≤ 10 [Salzmann
2014, 6.1].

7.1. Semisimple groups. Suppose that F1 is a double flag. If 1 is semisimple and
if dim1≥ 10, then 1 is a Lie group.

Proof. (a) We have dim1 = 10 by 7.0, and 1 is almost simple. Let 8 be a
maximal compact subgroup of 1. If 1 is not a Lie group, then 1 maps onto
PSp4 R (or else 8 is locally isomorphic to SOk R, k ∈ {4, 5}, and 1 would be a Lie
group). Hence, 8′ is locally isomorphic to SU2 C. The center Z of 1 is an infinite
compact 0-dimensional subgroup, and Z acts freely on P \ (uv ∪ av): if xζ = x
for some x not on a fixed line and ζ ∈ Z \ {1}, then ζ |〈x1〉 = 1 and 〈x1〉 is a proper
connected subplane, but the almost simple group 1 cannot act on this subplane
[Salzmann et al. 1995, 71.8]. By the Malcev–Iwasawa theorem Z≤8.

(b) Any involution σ ∈ 8 is a reflection with axis av; in particular, 8′ ∼= SU2 C

and 8′|av ∼= SO3 R. In fact, σ is not planar (or else Z would induce a Lie group on
Fσ and the kernel of the induced action would not act freely on P \ (uv ∪ av)). If
σ ∈1[a,uv], then σ1σ would be a normal subgroup of translations of dimension
1 :1a . Hence, σ ∈1[u,av].

(c) Z consists of homologies with axis av. Suppose that aZ
6= a. Then dim1a ≤ 7

by [Salzmann 1979, (*)] or [Salzmann et al. 1995, 83.17], and d = dim a1 ≥ 3.
It follows that av ≈ S4: in the case d = 3, dim1a = 7 [Salzmann 1979, (**)];
otherwise apply 2.6. Moreover, 2.6 implies that 8|av is a Lie group, since 8′ has
an orbit of dimension > 1 on av. More precisely, 8|av ∼= SO3 R and 2=

√
8 acts

trivially on av; see the explicit form of Richardson’s theorem in [Salzmann et al.
1995, 96.34].

(d) 1 acts faithfully on uv, in particular, 8[uv] = 1: this holds since 1 is almost
simple and 1[uv] ≤ Z≤1[av].
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(e) Recall that 8′ ∼= SU2 C and that 8=8′2 is not a Lie group. If dim z8
′

= 2 for
some z ∈ uv \ {u, v}, then 8′z would contain an involution σ , but σ is a reflection
in 8[u,av]. Hence, dim z8

′

= 3≤ dim z8. Note that all the assumptions of Lemma
2.11 are satisfied by8 instead of 0; in fact, 8′∩2≤ 〈σ 〉, 2≤1[u,av], and2z = 1;
moreover, dim8′z = 0 and 8′z is finite. Consequently dim z8 = 4 and 2.6 implies
that 1 is a Lie group. �

7.2. Compact normal subgroup. If 1 has a serpentine normal subgroup 2, and
if dim1≥ 11, then 1 is a Lie group.

Proof. Assume that 1 is not a Lie group. By the approximation theorem, there is
a compact subgroup N G1 such that 1/N is a Lie group and dim N= 0. From 2.9
it follows that 0 :=2N≤ Cs1.

(a) If 0 is straight, then F0 lP or 0 is a group of axial collineations with fixed
center and axis in F1 [Baer 1946]. In the first case, 1 induces on F0 a group of
dimension at most 6, and dim1≤ 7 by stiffness. Letting a ∈F0 , we get dim1a ≤ 5.

(b) If 0 has the center v, then the axis passes through u and is fixed by 1, i.e.,
0 ≤1[v,uv] and 0a = 1. From 2.6 it follows that there is a suitable point a such
that dim a1 < 4. Let z ∈ uv \ {u, v}. The group 0 acts effectively on the connected
subplane D = 〈a0, z, u〉 and 1a,z|D = 1. In the cases D < P both 0 and 1 would
be Lie groups by 2.10. Therefore, 1a,z = 1, dim1≤ 7, and dim1a ≤ 4.

(c) If 0 has the center u, then the axis of 0 is av. For a given point a there are
points z ∈ uv and b ∈ au such that dim z1, dim b1< 4. As 0 is not a Lie group, the
connected subplane D = 〈a, b, v, z0〉 coincides with P . Consequently 1a,b,z = 1,
so that dim1a ≤ 6 and dim1≤ 10.

(d) If 0 is not straight, there is a point x such that E = 〈x0, u, v, av〉 is a connected
subplane and 1x |E = 1. In particular, 0x |E = 1 and 0 acts effectively on E . Again
E = P , and then dim1≤ 7 by 2.6. Similarly, dim1a ≤ 6. �

Remark. In any case, dim1a ≤ 6. This proves 8.2.

8. Fixed triangle

Let F1 = {a, u, v} be a triangle.

8.0. Theorem. If dim1≥ 10, then 1 is a Lie group.

Proof. If 1 is not a Lie group, then 2.6 implies that 1 has only orbits of dimension
at most 3 on two sides of the fixed triangle, say on uv and av. Hence, dim1z = 7
for z ∈ uv \{u, v}, and [Salzmann 1979, (**)] applies to 1z . Choose c ∈ av \{a, v}
and put x = az∩cu. Then dim1c,z ≥ 4, but 2.2(7) or [Salzmann 1979, (**)] asserts
that 1x ∼= SO3 R, a contradiction. �
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8.1. Semisimple groups. If F1 is a triangle, if 1 is semisimple, and if dim1≥ 9,
then 1 is a Lie group.

Proof. Suppose that 1 is not a Lie group. Only the case dim1 = 9 has to be
considered. Then 1 has a 3-dimensional factor 0 which is not a Lie group. Either
the complement 9 of 0 is locally isomorphic to SL2 C, or 9 is a product of two
3-dimensional factors. Let D = P \ (au ∪ av ∪ uv).

(a) The center Z of 1 acts freely on D: if xζ = x ∈ D for some ζ ∈ Z \ {1}, then
〈x1〉 is a proper subplane, and dim1x ≥ 5 contrary to stiffness 2.2.

(b) 0|uv 6= 1 and 0/Z ∼= PSL2 R: in the case 0 ≤ 1[a,uv] it would follow from
[Salzmann et al. 1995, 61.2] that 0 is compact and hence a Lie group. For the
same reason, 0 acts nontrivially on the other sides of the fixed triangle.

(c) There is at most one fixed line, say uv, such that Z|uv is a Lie group: otherwise
0 itself would be a Lie group.

(d) dim x1 ≤ 6 for each x ∈ D, and dim1x ≥ 3: as Z|au and Z|av are not Lie
groups, 2.6 implies that all orbits on these two sides of the fixed triangle have
dimension < 4.

(e) There is some p ∈ D such that (Z9)p = 1, and 3= (1p)
1 satisfies dim3= 3;

moreover, (0Z)p = 1: if p0 6⊆ ap (such a point p exists by step (b)), then 〈p0〉 is
a connected subplane, and 〈p0Z

〉 = P , or else Z would be a Lie group by 2.10. On
the other hand, (Z9)p|p0Z = 1, dim p9 = 6, dim1p = 3 by step (d), 〈p9〉 = P ,
and (0Z)p|p9 = 1.

(f) 3 ∼= 0/Z and any involution ι ∈ 3 is planar: consider the canonical epimor-
phism κ : 1→ 1/Z and note that 1κ = 0κ×9κ . Let π be the projection onto
the first factor. Then κ : 3 ∼= 3κ since 3∩Z = 1. The restriction π : 3κ → 0κ

is injective because 3 ∩9Z = 1, and it is surjective since dim3 = dim0 = 3
[Salzmann et al. 1995, 93.12]. A reflection in 3 would have one of the fixed lines
as axis, but 3 is simple; moreover, ι fixes a nondegenerate quadrangle. Therefore,
ι is indeed planar. Now Z acts effectively on Fι by step (a), and Z is a Lie group
contrary to the assumption. �

8.2. Compact normal subgroup. If 1 has a serpentine normal subgroup 2, and
if dim1≥ 7, then 1 is a Lie group (see the remark after 7.2).

Summary

The following table lists our conditions implying that 1 is a Lie group. There
are always three conditions to be combined: the first column specifies the fixed
configuration F1, the first row lists possible assumptions on the structure of 1, and
in the body of the table, a lower bound for dim1 is given. The abbreviations in
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the first line mean, in this order, that 1 is semisimple, that 1 contains a serpentine
normal subgroup in the sense of 2.12, that 1 contains a normal vector group, or
that no condition is imposed on the structure of 1.

F1 1 s-s 2 G1 Rt
G1 1 arbitr. references

∅ 9 9∗ 7 10 3.1, 3.2, 3.3
{W } 4 9 4.1, 4.2
flag 4 9 10 4.1, 5.4, 5.1

〈u, v〉 4 7 8 4.1, 5.6, 5.2
〈u, v, w〉 4 7 8 4.1, 5.5, 5.3
{o,W } 10 11 12 6.2, 6.3, [Priwitzer 1994]

〈u, v, ov〉 10 11 12 7.1, 7.2, [Priwitzer 1994]
〈o, u, v〉 9 7 10 8.1, 8.2, 8.0
arbitrary 10 11 12 [Priwitzer 1994]

Here 9∗ means that also 1∼= SL3 R×2 is conceivable.
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On two nonbuilding but simply connected
compact Tits geometries of type C3

Antonio Pasini

A classification of homogeneous compact Tits geometries of irreducible spheri-
cal type, with connected panels and admitting a compact flag-transitive automor-
phism group acting continuously on the geometry, has been obtained by Kramer
and Lytchak (2014; 2019). According to their main result, all such geometries
but two are quotients of buildings. The two exceptions are flat geometries of
type C3 and arise from polar actions on the Cayley plane over the division
algebra of real octonions. The classification obtained by Kramer and Lytchak
does not contain the claim that those two exceptional geometries are simply
connected, but this holds true, as proved by Schillewaert and Struyve (2017).
Their proof is of topological nature and relies on the main result of (Kramer and
Lytchak 2014; 2019). In this paper we provide a combinatorial proof of that
claim, independent of (Kramer and Lytchak 2014; 2019).

1. Introduction

We presume that the reader has some knowledge of diagram geometry, in particular
Tits geometries, namely geometries belonging to Coxeter diagrams, and buildings.
A celebrated theorem of Tits [1981] states that Tits geometries generally come from
buildings. Explicitly, a Tits geometry of rank n ≥ 3 is 2-covered by a building if
and only if all of its residues of type C3 or H3 are covered by buildings; moreover,
buildings of rank n ≥ 3 are 2-simply connected.

Having mentioned coverings and simple connectedness, I recall that, for 1 ≤
k ≤ n, a k-covering of geometries of rank n is a type-preserving morphism which
induces isomorphims on rank k residues (with the convention that an n-covering
is just an isomorphism), the domain of a k-covering being called a k-cover of the
codomain. A geometry is said to be k-simply connected if it does not admit any
proper k-cover [Pasini 1994, Chapter 12]. (It goes without saying that a k-covering
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is proper if it is not an isomorphism.) I warn that (n − 1)-coverings are usually
called coverings, for short (which forbids us from using the word “covering" as a
possible abbreviation for k-covering). Accordingly, a geometry of rank n is said to
be simply connected if it is (n− 1)-simply connected. In particular, coverings of
geometries of rank 3 are 2-coverings and when we say that a geometry of rank 3
is simply connected we just mean it is 2-simply connected.

Turning back to the above theorem of Tits, that theorem shows the importance
of the investigation of C3 geometries. As noticed by Tits [1981], geometries of
type C3 that have no relation at all with buildings can be constructed by some kind
of free construction, but more examples exist that are not covered by buildings.
Classifying them all is perhaps hopeless. Nevertheless, with the help of some rea-
sonable additional hypotheses, something can be done. For instance, the following
is well known [Aschbacher 1984; Yoshiara 1996]:

Theorem 1.1. There exists a unique flag-transitive finite thick C3-geometry which
is not a building. It is simply connected and its automorphism group is isomorphic
to the alternating group Alt(7).

The exceptional geometry of Theorem 1.1 is called the Alt(7)-geometry (also
Neumaier geometry after its discoverer Neumaier [1984]). Calling the elements of
a C3 geometry points, lines and planes as explained by the picture

• • •

points lines planes

the Alt(7)-geometry has 7 points, 35 lines and 15 planes. Moreover, all of its
points are incident with all of its planes; therefore, this geometry is flat. We refer to
[Neumaier 1984] (also [Rees 1985; Pasini 1994, §6.4.2, §12.6.4]) for more details
on the Alt(7) geometry.

A number of flag-transitive locally finite (even finite) thick Tits geometries of
irreducible type are known that admit the Alt(7)-geometry as a proper residue (see,
e.g., [Buekenhout and Pasini 1995, §3] for a survey), but none of them belongs to
a diagram of spherical type. Indeed, as proved by Aschbacher [1984], the Alt(7)-
geometry cannot occur as a rank-3 residue in any flag-transitive finite thick Tits
geometry of irreducible spherical type and rank n > 3. Moreover, no finite thick
geometry of type H3 exists (as no finite thick generalized pentagons exist [Feit and
Higman 1964]) and no finite thick building of irreducible type and rank at least 3
admits proper quotients [Brouwer and Cohen 1983]. Consequently:

Corollary 1.2. Apart from the Alt(7)-geometry, all flag-transitive finite thick Tits
geometries of irreducible spherical type are buildings.
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Results in the same vein as Theorem 1.1 and Corollary 1.2 have recently been
obtained by Kramer and Lytchak [2014; 2019] for compact Tits geometries with
connected panels admitting a flag-transitive and compact group of automorhisms
acting continuously on 0. Before reporting on those results, I must explain what
a compact geometry is and what we mean when saying that it admits connected
panels.

Let 0 be a geometry over a (finite) set of types I . Assume that for every i ∈ I
a compact Hausdorff topology is given on the set 0i of i-elements of 0 and let
Vi be the topological space thus defined on 0i . For every J ⊆ I the set 0J of
J -flags of 0 is a subspace, say VJ , of the product space

∏
j∈J V j . If VJ is closed

(equivalently, compact) for every J ⊆ I , then 0 is said to be a compact geometry.
(We warn that this definition is not literally the same as in [Kramer and Lytchak
2014, §2.1], but it is equivalent to it; see Remark 1.7 below.) When saying that
0 has connected panels we mean that, for every type i ∈ I , the i-panels of 0 are
connected as subspaces of Vi (or of VI , if we regard panels as sets of chambers).

With 0 a compact geometry as defined above, let G be a flag-transitive group
of type-preserving automorphisms of 0. Suppose that G is a locally compact
topological group (we recall that for topological groups local compactness entails
Hausdorff, by convention) and that G acts continuously on Vi for every i ∈ I
(explicitly, the function ρ :G×Vi→Vi that maps (g, x) ∈G×Vi onto g(x) ∈Vi

is continuous). Then the pair (0,G) is called a homogeneous compact geometry
[Kramer and Lytchak 2014, §2.1]. We call 0 and G the geometric support and the
group of (0,G).

If (0,G) is a homogeneous compact geometry, then G also acts continuously
on VJ for every J ⊆ I . Consequently, for every flag X ∈ 0J , the stabilizer G X

of X in G is closed in G (recall that, as VJ is Hausdorff, the singleton {X} is
closed in VJ ). The function ρX : G/G X → VJ which maps every coset gG X onto
the flag g(X) ∈ VJ is a continuous bijection from the coset space G/G X to VJ .
If moreover G/G X is compact (which is obviously the case when G is compact),
then ρX is a homeomorphism. Indeed every continuous bijective mapping from a
compact space to a Hausdorff space is a homeomorphism.

Conversely, without assuming any topology on the sets 0i , let G be a flag-
transitive automorphism group of 0 carrying the structure of a locally compact
group such that G X is closed and G/G X is compact for every flag X of 0. Note that,
as G is Hausdorff and G X is closed, the coset space G/G X is Hausdorff (see, e.g.,
[Freudenthal and de Vries 1969, §4.8]). For every i ∈ I and chosen x ∈ 0i , we can
copy the topology of G/Gx on 0i via the bijection ρx : G/Gx → 0i , thus defining
a compact Hausdorff space Vi on 0i . As G/Gx ≈ G/G y for any two elements
x, y ∈ 0i , the space Vi does not depend on the particular choice x ∈ 0x . The group
G acts continuously on the space Vi . Thus, 0 is turned into a compact geometry
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and (0,G) is a homogeneous compact geometry. By the previous paragraph, we
also have G/G X ≈ VJ for any J ⊆ I and any flag X ∈ VJ .

In this way, as noticed in [Kramer and Lytchak 2014], one can see that all build-
ings of spherical type associated to semisimple or reductive isotropic algebraic
groups defined over local fields are (geometric supports of) homogeneous compact
geometries.

We add one more definition and a few conventions. Given two homogeneous
compact geometries (0̃, G̃) and (0,G) of rank n≥ 2 with compact groups G̃ and G,
a compact covering from (0̃, G̃) to (0,G) is a 2-covering γ : 0̃→ 0 such that γ
is continuous as a mapping from the space Ṽ of elements of 0̃ to the space V of
elements of 0, the group G̃ normalizes the deck group D of γ and γ induces a
continuous isomorphism from the topological group G̃/G̃ ∩ D to the topological
group G. Clearly, G̃ ∩ D is compact.

The category of homogeneous compact geometries with compact groups and
compact coverings as morphisms is named HCG in [Kramer and Lytchak 2014].
We have defined compact coverings only for homogenous compact geometries with
compact groups since these are the objects of HCG. According to this restriction,
when we say that a given homogeneous compact geometry (0,G) with G compact
is compactly covered by another homogeneous compact geometry (0̃, G̃), it must
be understood that G̃ too is compact.

We warn the reader that the name “compact covering" is not used in [Kramer
and Lytchak 2014]. We have introduced it with the hope that it can remind the
reader of the objects and the morphisms of the category HCG.

We say that a homogeneous compact geometry is a Tits geometry (in particu-
lar, a building) if its geometric support is a Tits geometry (a building). Accord-
ingly, when saying that a homogeneous compact geometry with compact group
is compactly covered by a building, we mean that it is compactly covered by a
homogenous compact geometry, the geometric support of which is a building. It
goes without saying that, when speaking of coverings of geometric supports, we
mean coverings in the usual “combinatorial” sense, recalled at the beginning of
this Introduction.

More generally, when we say that (0,G) has some geometric property which
neither refers to the topology of 0 nor to the group G (such as being a flat C3-
geometry, for instance) we mean that the geometric support 0 of (0,G) has that
property as a diagram geometry.

We are now ready to state the main result of Kramer and Lytchak [2014; 2019].

Theorem 1.3. Let (0,G) be a homogeneous compact Tits geometry of type C3

with connected panels and compact group G. Then either (0,G) is compactly
covered by a building or it is one of two exceptional flat geometries where G is
either ((SU(3)×SU(3))/C3)oC2 or SO(3)×G2, respectively, in its polar action
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on the Cayley plane of real octonions. Moreover, the geometric supports of these
two exceptional geometries are not covered by any building.

It is convenient to have a name for the two exceptional geometries mentioned in
Theorem 1.3. We shall call them OP2-geometries where O stands for the octonion
algebra over the reals and OP2 is the Cayley plane, namely the projective plane
over O.

By exploiting Theorem 1.3, Kramer and Lytchak [2014; 2019] also obtain:

Corollary 1.4. Apart from the two OP2-geometries, all homogeneous compact Tits
geometries of irreducible spherical type, rank at least 2, with connected panels and
compact group, are compactly covered by buildings.

The two OP2-geometries, or rather the group actions giving rise to them, were
first discovered by Podestà and Thorbergsson [1999] and Gorodski and Kollross
[2016], in the context of an investigation of polar actions of Lie groups on sym-
metric spaces. A purely algebraic construction of (the geometric supports of) these
two geometries is given by Schillewaert and Struyve [2017]. We shall report on
that construction in the next section.

Let (0,G) be any of the two OP2-geometries. The reader should be warned
that in the final part of Theorem 1.3 it is not claimed that 0 is simply connected.
It is only stated that the universal cover 0̃ of 0 is not a building. Thus, in view
of the rest of the statement of Theorem 1.3, if 0̃ 6= 0, then either 0̃ is not the
geometric support of any homogeneous compact geometry with compact group or,
if it is such, no compact covering exists from that homogeneous compact geometry
to (0,G). So, it is natural to ask if 0 is simply connected. The following theorem,
due to Schillewaert and Struyve [2017], answers this question in the affirmative.

Theorem 1.5. The geometric support of either of the two OP2-geometries is simply
connected.

The proof that Schillewaert and Struyve give for this theorem is of topological
nature. They prove that, if (0,G) is any of the two OP2-geometries, then the
universal cover 0̃ of 0 carries a compact Hausdorff topology and G lifts to a
compact group G̃ ≤ Aut(0̃), so that (0̃, G̃) is a compact cover of (0,G). Having
proved this, the conclusion follows from Theorem 1.3: necessarily 0̃ = 0. How-
ever, Schillewaert and Struyve [2017] also collect a great deal of information of
combinatorial nature on homotopies of closed paths of the two OP2-geometries.
In this paper we shall exploit that information to arrange a combinatorial proof of
Theorem 1.5, with no use of [Kramer and Lytchak 2014] or [2019].

Remark 1.6. As the title of [Kramer and Lytchak 2019] makes clear, an error
occurs in [2014]: the OP2-geometry associated to SO(3)×G2 is missing in [2014].
That gap is filled in [2019].
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Remark 1.7. In the definition of compact geometry as stated in [Kramer and
Lytchak 2014, §2.1], a compact Hausdorff topology V is assumed on the set of
elements of 0 such that for every J ⊆ I the set 0J is closed in the power space VJ .
In particular, 0i is closed in V for every i ∈ I . So, {0i }i∈I is a finite partition of
V in closed sets. Accordingly, V is the “free” union of the spaces Vi induced by
V on the sets 0i for i ∈ I , the open sets of V being just the unions

⋃
i∈I Ai with

Ai open in Vi . Clearly, VJ and its subspace
∏

j∈J V j induce the same topology
on 0J . Thus, we can forget about V and start from a compact Hausdorff space Vi

defined on 0i for each i ∈ I , as we have done in our definition.

2. The two OP2-geometries

A description of the two OP2-geometries as coset geometries is given by Kramer
and Lytchak [2014] (for the geometry with group G = (SU(3)× SU(3))/C3 oC2)
and in [2019] (for G = SO(3)×G2). On the other hand, Schillewaert and Struyve
[2017] propose a purely algebraic construction for these geometries, which we are
going to recall in this section.

2A. Algebraic background. Let A be a division algebra over the field R of real
numbers. It is well known that A has dimension 1, 2, 4 or 8 over R. Accordingly,
A is either R itself or the field C of complex numbers or the division ring H or
real quaternions or the Cayley–Dickson algebra O of real octonions. In any case,
A comes with a norm | · | : A→ R and a conjugation · : A→ A.

Explicitly, when A=R, then | · | is the usual absolute value and · is the identity;
if A = C, then | · | and · are the usual modulus and conjugation. When A = H,
then A can also be regarded as a right C-vector space with canonical basis {1, j}.
The C-span C= 1 ·C of 1 is a subring of H, j2

=−1 and x j = j x for any x ∈ C.
The norm and the conjugation of H map x + j y onto

√
|x |2+ |y|2 and x − j y,

respectively. The conjugation of H is an involutory antiautomorphism. Clearly,
{1, i, j , j i} is a basis of H over R (the canonical one), where i stands for any of
the two square roots of −1 in C.

Finally, O contains H as a subring and is generated by H together with an extra
element k such that k2

=−1 and

uk = ku for u ∈ H, (1)

where · denotes the conjugation in H as defined above. Moreover,

(ku)v = k(vu)= v(ku) and (ku)(kv)=−vu for all u, v ∈ H. (2)
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Conditions (2) imply (uv)k = v(uk)= v(ku). Jointly with (1) they also imply that
the elements of O admit the representation

u+ kv for u, v ∈ H. (3)

In spite of (3), the multiplication of O does not yield an H-vector space on O, as it
follows from the first equality of (2) and the fact that H is noncommutative. More
precisely, O does carry an H-vector space structure, as is clear from (3), but the
scalar multiplication of that space is not the multiplication of O restricted to O×H.
On the other hand, for x, y ∈ C we have

(kx)y = k(yx)= k(xy),

(k j x)y = (k(x j))y = k(y(x j))= k((yx) j)= (k j)(yx)= (k j)(xy).

So, the multiplication of O restricted to O×C defines a 4-dimensional C-vector
space on O, with {1, j , k, k j} as the canonical basis. Needless to say, {1, i, j , j i, k,
ki, k j , k( j i)} is a basis of O over R (the canonical one).

The norm and the conjugation of O map u+ kv onto
√
|u|2+ |v|2 and u− kv,

respectively. The conjugation of O is an involutory antiautomorphism.
In any case, the norm of A induces a positive definite R-bilinear form ( · | · )R

which maps (x, y) ∈ A×A onto the real part Re(x y) of the product x y. Clearly,
|x | =

√
(x, x)R. We denote by ⊥R K the orthogonal complement of a subspace K

of A with respect to ( · | · )R.
Let F be R or C, with F = R when A = R. Regarding F as a subfield of A in

the usual way, namely as the F-span of 1, we set PuF(A) := ⊥R F (in particular,
PuF(A)= 0 when A = F). Clearly, PuF(A) is a subspace of the F-vector space A

and A = F⊕PuF(A). The elements of PuF(A) are said to be F-pure.
As A = F ⊕ PuF(A), every element x ∈ A splits in a unique way as a sum

x = x1 + x2 with x1 ∈ F and x2 ∈ PuF(A). We call x1 and x2 the F-part and the
F-pure part of x .

When F= C we also define a Hermitian inner product ( · | · )C : A×A→ C by
taking (x | y)C equal to the complex part of x y. Obviously, Re((x | y)C)= (x | y)R.
Hence, we also have |x | =

√
(x | x)C for every x ∈ A.

The elements of A of norm 1 are called unit elements. Clearly, the set Un(A) of
unit elements of A is closed under multiplication and taking inverses in A and

A = Un(A) · |R| := {x · |t | | x ∈ Un(A), t ∈ R}.

We recall that a homomorphism of F-algebras is an F-linear mapping which also
preserves multiplication. In the sequel we shall deal with a particular class of
homorphisms of F-algebras, which we shall call sharp F-morphisms. We define
them as follows:
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Definition 2.1. With F equal to R or C, let A and let B be two division algebras
over R containing F. When F= C both A and B can also be regarded as algebras
over C. Thus, in any case, both A and B are F-algebras.

A sharp F-morphism from A to B is a homomorphism of F-algebras from A

to B which also preserves the inner product ( · | · )F.

Let φ : A → B be a sharp F-morphism. Then φ is injective, since it pre-
serves ( · | · )F. Consequently, φ(1) = 1; hence, φ(PuF(A)) ⊆ PuF(B). Moreover,
φ(Un(A)) ⊆ Un(B). We have x = x−1 for every unit element x . Therefore,
φ(x)= φ(x) for every x ∈ Un(A). Finally, φ also preserves conjugation.

As sharp F-morphisms are injective, every sharp F-morphism from A to A is an
automorphism. We call it a sharp F-automorphism.

Setting 2.2. From now on we assume that A and F are as follows: either A = H

and F= R or A =O and F= C.

The following is proved in [Schillewaert and Struyve 2017, Proposition 2.1]:

Lemma 2.3. With F and A as in Setting 2.2, let a1, a2 ∈PuF(A) and b1, b2 ∈PuF(B)

be such that (a1 | a2)F= (b1 | b2)F, |ai | = |bi | for i = 1, 2 and a1F 6= a2F. Then there
exists a unique sharp F-morphism from A to O mapping ai onto bi for i = 1, 2.

Lemma 2.4. Every sharp R-morphism from H to O can be extended to a sharp
R-automorphism of O.

Proof. Let φ :H→O be a sharp R-morphism. Put i ′ := φ(i) and j ′ := φ(i) and re-
call that φ(1)= 1. Then φ(H) is the R-span H′ := 〈1, i ′, j ′, j ′ i ′〉R of {1, i ′, j ′, j ′ i ′}
and φ is a sharp R-isomorphism from H to H′. We can construct a copy O′ of O

starting from H′ instead of H, and if k′ is the element of O′ corresponding to k,
a sharp R-isomorphism ψ :O→O′ is uniquely determined which maps i , j and
k onto i ′, j ′ and k′, respectively, which coincides with φ in H. If we can choose
k′ ∈O, then ψ can also be regarded as a sharp F-automorphism of O and we are
done.

So it remains to prove that we can choose k′ ∈O, namely O contains an element
k′ orthogonal to H and such that (k′)2 = −1. But this is obvious. Indeed every
unit element orthogonal to H has this property. The conclusion follows. �

2B. Construction of the geometries. With A and F as in Setting 2.2, let PG(A)
be the projective space of the F-vector space A. For every nonzero vector x ∈ A,
we denote by [x] the corresponding point of PG(A), and for every subset X of A

we put [X ] := {[x] | x ∈ X \ {0}}. In particular, if X is a subspace of A, then [X ]
is the corresponding subspace of PG(A).

We write ( · | · ) instead of ( · | · )F and ⊥ instead of ⊥F, for short. As usual,
F∗ stands for the multiplicative group of F. Following Schillewaert and Struyve
[2017], we construct a C3-geometry 0F(A) as follows.
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Definition 2.5. The elements (points, lines and planes) of 0F(A) are defined as
follows:

(A1) The points are the points of [PuF(A)].

(A2) The lines are the sets of pairs [x, u] := {(xt, ut) | t ∈ F∗} with x ∈ PuF(A),
u ∈ PuF(O) and |x | = |u| 6= 0.

(A3) The planes are the sharp F-morphisms φ : A→O.

The incidence relation is defined as follows:

(B1) Every point is incident with all planes.

(B2) A line [x, u] and a point [y] are declared to be incident when y ∈ x⊥.

(B3) A line [x, u] and a plane φ : A→O are incident precisely when φ(x)= u.

Clearly, the conditions defining point-line and line-plane incidences do not de-
pend on the particular choice of the pair (x, u)∈ [x, u]. It is proved in [Schillewaert
and Struyve 2017, Proposition 4.3] that 0F(A) is indeed a C3-geometry. According
to clause (B1) of Definition 2.5, this geometry is flat.

Lemma 2.6. Both the following hold:

(1) Two lines [x, u] and [y, v] are coplanar if and only if (x | y)= (u | v). If this
is the case, then the unique sharp F-morphism φ : A→O such that φ(x)= u
and φ(y) = v (see Lemma 2.3) is the unique plane incident with both [x, u]
and [y, v].

(2) If two lines have two distinct points in common, then they have the same set
of points.

Proof. Claim (1) immediately follows from Lemma 2.3 (see also [Schillewaert and
Struyve 2017, Lemma 4.2]). Claim (2) follows from clause (B2) of Definition 2.5
and the fact that PuF(A) has dimension 3 over F (see also [Schillewaert and Struyve
2017, Lemma 5.1]). �

The set of points of a line [x, u] is the line x⊥ ∩ PuF(A) of PG(PuF(A)). We
call it the shadow of [x, u] and also a shadow-line. With this terminology, we can
rephrase claim (2) of Lemma 2.6 as follows:

Corollary 2.7. The set of points of 0F(A) equipped with the shadow lines as lines
coincides with the projective plane PG(PuF(A)).

2C. Automorphism groups. Let AutF(A) and AutF(O) be the groups of sharp F-
automorphisms of A and O. The product AutF(A)×AutF(O) acts on 0F(A) as a



230 ANTONIO PASINI

group of automorphisms. Explicitly, given an element (α, ω)∈AutF(A)×AutF(O),

(α, ω) : [x] → [α(x)] for every point [x] of 0F(A),

(α, ω) : [x, u] → [α(x), ω(u)] for every line [x, u] of 0F(A),

(α, ω) : φ→ ωφα−1 for every plane φ of 0F(A).

The first questions one may ask are whether this action is faithful and whether
all automorphisms of 0R(A) arise in these way. Both questions are answered by
Schillewaert and Struyve [2017], but the answers are different according to whether
(F,A)= (R,H) or (F,A)= (C,O).

Let F= R and A = H. Then both questions are answered in the affirmative:

Aut(0R(H))= AutR(H)×AutR(O)= SO(3)×G2.

(Recall that AutR(H) = SO(3) and AutR(O) = G2.) When F = C and A = O

the answer is sligthly different. Indeed AutC(O)×AutC(O) acts nonfaithfully on
0C(O), with kernel a group C3 of order 3 contributed by elements (ζ, ζ ) with ζ in
the center of SU(3) (recall that SU(3)=AutC(O)). Moreover, the conjugation in C

also induces an automorphism γ of 0C(O) which, being semilinear as a mapping
of O×O, does not belong to AutC(O)×AutC(O). All automorphisms of 0C(O)

belong to the group generated by (AutC(O)×AutC(O))/C3 and γ . To sum up,

Aut(0C(O))= ((AutC(O)×AutC(O))/C3)oC2

= ((SU(3)×SU(3))/C3)oC2.

2D. Recognizing 0F(A) as an OP2-geometry. Let 0 := 0F(A) and G := Aut(0).
As shown by Schillewaert and Struyve [2017, §5], in either of the two cases that
we have considered, (0,G) is a homogeneous compact geometry. They obtain this
conclusion by noticing that in either case G is compact and the stabilizers in G of
the flags of 0 are closed in G, but a direct proof is also possible. We shall briefly
sketch it here.

In order to stick to the notation used in the Introduction of this paper, let 01,
02 and 03, respectively, be the sets of points, lines and planes of 0. In either case
each of 01, 02 and 03 can be equipped with a natural compact topology.

Explicitly, 01 = [PuF(A)] carries the topology of the real projective plane RP2

when (F,A)= (R,H) and the topology of the complex projective plane CP2 when
(F,A)= (R,H). Either of these spaces is both Hausdorff and compact.

When (F,A) = (R,H), the line-set 02 carries the topology of the quotient
(S2
×S6)/Z of the product space S2

×S6
⊂ R10 over the center Z of SL(R10).

When (F,A) = (C,O) then 02 carries the topology of the quotient (U ×U )/3
where U := {x ∈ C3

| |x | = 1} is the standard unital of C3 and 3 is the group of
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scalar transformations λ · id of C6 with |λ| = 1. Again, either of these spaces is
Hausdorff and compact.

When (F,A)= (C,O) then 03 carries the same topology as AutC(O)= SU(3),
which is (Hausdorff and) compact. Finally, let (F,A) = (R,H). Then every
sharp R-morphism from H to O can be regarded as the restriction of a sharp R-
automorphism of O (Lemma 2.4). Accordingly, the planes of 0 naturally corre-
spond to the cosets ωH of the elementwise stabilizer H of H in G :=AutR(O)=G2.
The group H is the intersection H =

⋂
x∈H Gx of the stabilizers Gx for x ∈H, which

are closed. Hence, H is closed as well. Thus, 03 can be regarded as a copy of the
quotient-space G/H , which is still compact and Hausdorff since H is closed.

As in the Introduction, let V1, V2 and V3 be the spaces defined on 01, 02 and 03

as above. It is straighforward to check that 0{i, j} is closed in Vi ×V j for every
choice of 1≤ i < j ≤ 3 and the set of chambers 0{1,2,3} is closed in V1×V2×V3.
So 0 is a compact geometry. Each of the groups Aut(0R(H))= SO(3)×G2 and
Aut(0C(O))= ((SU(3)× SU(3))/C3)oC2 is compact and acts continuously on
V1, V2 and V3.

It remains to show that the group G acts flag-transitively on 0. Clearly, in either
case G is transitive on the set of point-line flags of 0. So in order to prove flag-
transitivity, we only must show that the stabilizer in G of a given point-line flag
([u], [v, x]) of 0 acts transitively on the set of sharp F-morphisms φ of 0 such that
φ(v)= x . This follows from Lemma 2.4. So:

Result 2.8. The pair (0,G) is indeed a homogeneous compact geometry.

As G acts flag-transitively on 0, we can recover 0 as a coset-geometry from G,
where the flags naturally correspond to the cosets of the stabilizers of the flags
contained in a selected chamber of 0, two flags being incident precisely when the
corresponding cosets meet nontrivally (see, e.g., [Tits 1974, §1.4] or [Pasini 1994,
§10.1]). Accordingly, 0 is uniquely determined by the complex of the stabilizers
in G of the subflags of a chamber of 0. This complex, as described by Schillewaert
and Struyve [2017] for the case (F,A) = (C,O), is the same as computed for G
regarded as the automorphism group of the OP2-geometry considered in [Kramer
and Lytchak 2014] (see also [Schillewaert and Struyve 2017]). Similarly for the
case (F,A)= (R,H) and the OP2-geometry of [Kramer and Lytchak 2019]. So:

Result 2.9. The C3-geometries 0R(H) and 0C(O) are the (geometric supports of
the) two OP2-geometries.

Remark 2.10. The two cases of Setting 2.2 correspond to the two cases of [Schille-
waert and Struyve 2017] with B=O. Schillewaert and Struyve [2017] also consider
one more case, with F = R and A = B = H, which leads to a flat C3-geometry
which is a quotient of the building associated to the Chevalley group O(7,R) and
admits SO(3)× SO(3) as a flag-transitive automorphism group. This geometry
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also appears in [Rees 1985, §1.6, (2.2)(ii)] as a member of a larger family of flag-
transitive flat C3-geometries, obtained as quotients from O(7, K )-buildings, with
K any ordered field. Note that the construction used by Rees [1985] is primarily
geometric.

This geometry is indeed worth further investigation, but I have preferred to leave
it aside in order to stick to the subject of this paper.

3. A combinatorial proof of Theorem 1.5

3A. Preliminaries. We follow [Pasini 1994] for basics on diagram geometry. We
recall that, according to [Pasini 1994], all geometries are residually connected, by
definition. In particular, all geometries of rank at least 2 are connected.

Throughout this subsection 0 is a given geometry of rank n ≥ 2. Recall that 0
can be regarded as a simplicial complex, where the vertices are the elements of the
geometry and the simplices are the flags. Moreover, with {1, 2, . . . , n} chosen as
the type-set of 0, the vertices of the complex are marked by positive integers not
greater than n, according to their type as elements of 0. The incidence graph of 0
is just the skeleton of the complex 0.

We firstly state some notation and recall a few basics on homotopy of paths.
Given two paths α = (a0, . . . , ak) and β = (b0, . . . , bh) of 0 with ak = b0, the join
of α with β, also called the product of α and β, is the path:

α ·β := (a0, a1, . . . , ak = b0, b1, . . . , bh).

A null path is a path of lenght 0. The opposite (also called the inverse) of a path
α = (a0, a1, . . . , ak) is the path α−1

:= (ak, ak−1, . . . , a0).
Two paths α= (a0, a1, . . . , ak) and β= (b0, b1, . . . , nh)with a0=b0 and ak=bh

are said to be elementarily homotopic if α = γ ·α′ · δ and β = γ ·β ′ · δ for suitable
subpaths γ, δ, α′ and β ′ with α′ and β ′ contained in the same simplex (namely flag)
of 0. More generally, two paths α and β are said to be homotopic if there exists a
sequence α0, α1, . . . , αm of paths with α = α0, β = αm and such that αi−1 and αi

are elementarily homotopic for i = 1, 2, . . . ,m.
If α and β are homotopic we write α ∼ β. We say that a closed path α based at

a vertex a is null homotopic if it is homotopic with the null path (a). Equivalently,
α splits in triangles each of which is contained in a simplex and, possibly, paths of
the form β ·β−1.

Clearly, homotopy is an equivalence relation. We denote by [α] the homotopy
class of a path α. Given a vertex a of 0, the homotopy classes of closed paths
of 0 based at a form a group π1(0, a), with [(a)] as the identity element and
multiplication defined as follows: [α]·[β] := [α ·β]. The group π1(0, a) is called the
fundamental group of 0 based at a. As 0 is connected, we have π1(0, a)∼=π1(0, b)
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for any two vertices a, b ∈ 0. Explicitly, for very choice of a path γ from a to b,
the mapping

[α] ∈ π1(0, a) 7→ [γ−1
·α · γ ] ∈ π1(0, b)

is an isomorphims from π1(0, a) to π1(0, b). So, as far as we are interested only
in the isomorphism type of π1(0, a), we are free not to keep a record of the base
point a of π1(0, a) in our notation, thus writing π1(0) for π1(0, a) and calling
π1(0) the fundamental group of 0, for short.

It is well known (see, e.g, [Pasini 1994, §12.6.1]) that the geometry 0 is simply
connected (namely (n− 1)-simply connected) if and only it is simply connected
as a complex, namely π1(0) is trivial; equivalently, every closed path is null-
homotopic.

Lemma 3.1. For 1 ≤ i < j ≤ n, let 0i, j be the {i, j}-truncation of 0, namely the
subgeometry induced by 0 on the set of elements of 0 of type i or j . Then every
path of 0 starting and ending at 0i, j (in particular, every closed path based at an
element of type i or j) is homotopic to a path of 0i, j .

Proof. Let α = (a0, a1, . . . , ak) be a path of 0 with a0, ak ∈ Fi, j . We argue
by induction on the length k of α. When k ≤ 1 there is nothing to prove. Let
k = 2. If a1 ∈ 0i, j there is nothing to prove as well. Let a1 6∈ 0i, j . By the so-
called strong connectedness property [Pasini 1994, Theorem 1.18], the intersection
Res(a1)∩0i, j of the residue Res(a1) of a1 with 0i, j contains a path

β = (b0 = a0, b1, . . . , bh−1, bh = a2)

from a0 to a2. We have (bi−1, bi )∼ (bi−1, a1, bi ) for every i = 1, 2, . . . , h, since
{bi−1, a1, bi } is a flag. Moreover, (a1, bi , a1) ∼ (a1) for every i = 1, 2, . . . , h.
Therefore

β ∼ γ := (b0, a1, b1, a1, b2, . . . , bh−1, a1, bh)∼ (b0, a1, bh)= (a0, a1, a2)= α.

The claim is proved. Let now k> 2. If ak−1 ∈0i, j the claim follows by the inductive
hypothesis on the subpath (a0, a1, . . . , ak−1). Let ak−1 6∈ 0i, j . If ak−2 ∈ 0i, j then
the conclusion follows by the above on the subpath (ak−2, ak−1, ak) and the induc-
tive hypothesis on (a0, a1, . . . , ak−2). Let ak−2 6∈ 0i, j . Then Res(ak−2, ak−1) ∩

0i, j 6=∅, since neither i nor j belong to the type of the flag {ak−2, ak−1} and every
flag is contained in a chamber. Pick an element c ∈ Res(ak−2, ak−1) ∩ 0i, j and
consider the paths

α′ := (a0, a1, . . . , ak−2, c), α′′ := (c, ak−1, ak).

The path α′ has length k− 1. So, by the inductive hypothesis, a path β ′ exists in
0i, j from a0 to c such that β ′ ∼ α′. Similarly, as we have already proved the claim
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for paths of length 2, a path β ′′ exists in 0i, j from c to ak such that β ′′ ∼ α′′. So,
β := β ′ ·β ′′ ∼ α′ ·α′′ ∼ α is a path of 0i, j with the required properties. �

The following lemma is implicit in [Pasini 1994, Lemma 12.60].

Lemma 3.2. Given two elements v and w of 0, let α and β be two paths of 0 from
v to w. If an element u exists in 0 such that its residue Res(u) contains both α and
β, then α ∼ β.

Proof. Let α = (a0, a1, . . . , ak) with a0 = v, ak = w and α ⊆ Res(u). For every
i = 1, 2, . . . , k put αi = (ai−1, u, ai ). As (ai−1, ai )∼ (ai−1, u, ai ) and (u, ai , u)∼
(u), we have

α ∼ α1 ·α2 · · · · ·αk = (a0, u, a1, u, a2, . . . , ak−1, u, ak)∼ (a0, u, ak).

So, α ∼ (a0, u, ak)= (v, u, w). Similarly, β ∼ (v, u, w). Therefore α ∼ β. �

3B. Peculiar properties of C3-geometries. From now on 0 is a geometry of type
C3. The integers 1, 2 and 3 are taken as types and stand for points, lines and planes
respectively.

Definition 3.3. A primitive path of 0 is a closed path α := (p, L , q,M, p) where
p and q are points and L and M lines. If p = q or L = M then α is said to be
degenerate.

Clearly, degenerate primitive paths are null-homotopic. The following is also
well known [Tits 1981, Proposition 9] (see also [Pasini 1994, Corollary 7.39]).

Lemma 3.4. The geometry 0 is a building if and only if all of its primitive paths
are degenerate.

The proof of the next lemma is implicit in [Schillewaert and Struyve 2017, §6.6].
We make it explicit.

Lemma 3.5. Every closed path of 0 based at a point is homotopic to a primitive
path.

Proof. Let α be a closed path based at a point p. In view of Lemma 3.1, we
may assume that α is contained in 01,2. So, α = (p0, L1, p1, . . . , Lk, pk) where
p0 = pk = p and, for i = 1, . . . , k, pi is a point and L i a line. We argue by
induction on k. If k = 1 there is nothing to prove. Let k > 1. Suppose firstly that
L i−1 and L i are coplanar. Let ξ be the plane on L i−1 and L i and let M be the line
of Res(ξ) through pi−2 and pi . Then (pi−2, L i−1, pi−1, L i , pi ) ∼ (pi−2,M, pi )

by Lemma 3.2. Accordingly, α ∼ α′ := (p0, L1, . . . , pi−2,M, pi , . . . , Lk, pk).
However α′, being shorter than α, is homotopic to a primitive path, by the inductive
hypothesis. Hence α too is homotopic to a primitive path.

Assume now that L i−1 and L i are never coplanar, for any i = 2, . . . , k. Choose
a plane ξ2 on L2. The residue Res(p1) of p1 contains a unique line-plane flag
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(M1, ξ1) such that L1 and M1 are incident with ξ1 and ξ2 respectively. Similarly,
Res(p2) contains a unique line-plane flag (M2, ξ3) such that L3 and M2 are incident
with ξ3 and ξ2 respectively. Let q be the meet-point of M1 and M2 in Res(ξ2), let
M0 be the line through p0 and q in Res(ξ1) and let M3 be the line through p3 and
q in Res(ξ3). By Lemma 3.2 we have the following homotopies:

(p0, L1, p1)∼ (p0,M0, q,M1, p1),

(p1, L2, p2)∼ (p1,M1, q,M2, p2),

(p2, L3, p3)∼ (p2,M2, q,M3, p3).

Therefore

(p0, L1, p1, L2, p2, L3, p3)= (p0, L1, p1) · (p1, L2, p2) · (p2, L3, p3)

∼ (p0,M0, q,M1, p1) · (p1,M1, q,M2, p2) · (p2,M2, q,M3, p3)

= (p0,M0, q,M1, p1,M1, q,M2, p2,M2, q,M3, p3)

∼ (p0,M0, q,M3, p3).

Accordingly, α is homotopic to the path, say β, obtained by replacing the subpath
(p0, L1, p1, L2, p2, L3, p3) of α with (p0,M0, q,M3, p3). The path β is shorther
than α, whence it is homotopic to a primitive path by the inductive hypothesis. As
α ∼ β, the same holds for α. �

By Lemma 3.5 we immediately obtain the following:

Corollary 3.6. The geometry 0 is simply connected if and only if all of its primitive
paths are null-homotopic.

Let φ : 0̃→ 0 be the universal covering of 0. As 0̃ is simply connected, all
of its closed paths (in particular, all of its primitive paths) are null-homotopic. A
closed path of 0 is null-homotopic if and only if it lifts through φ to a closed path
of 0̃. In particular:

Corollary 3.7. A primitive path of 0 is null-homotopic if and only if it is the φ-
image of a primitive path of 0̃.

Corollary 3.8. The geometry 0 is covered by a building if and only if none of its
nondegenerate primitive paths is null-homotopic.

Proof. Let 0̃ be a building. Then, by Lemma 3.4, no nondegenerate primitive path
occurs in 0̃. By Corollary 3.7, none of the nondegenerate primitive paths of 0 can
be null-homotopic. On the other hand, let 0̃ be not a building. Then 0̃ admits
at least one nondegenerate primitive path α̃, necessarily null-homotopic since 0̃
is simply connected. Accordingly, α := φ(α̃) is a null-homotopic nondegenerate
primitive path of 0. �
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Definition 3.9. Let α = (p, L , q,M, p) be a nondegenerate primitive path. Recall
that Res(q) is a generalized quadrangle, the lines L and M being points of this
quadrangle. So, lines on q exist which are coplanar with each of L and M . Let
N be such a line and r a point of N . The line N is different from each of L and
M , as L and M are noncoplanar. Let ξ be the plane on N and L and let L ′ be the
line of ξ through p and r . Similarly, if χ is the plane on N and M , let M ′ be the
line of χ through p and r . Then (p, L ′, r,M ′, p) is a primitive path. We denote it
by σ N

q→r (α) and call it the shift of α from q to r along N . We also say that N is
admissible for the path α.

Lemma 3.10. Let α = (p, L , q,M, p) be a nondegenerate primitive path, N a
line admissible for α and r a point of N . Then:

(1) We have σ N
q→r (α)= α if and only if r = q.

(2) The shift σ N
q→r (α) is a nondegenerate primitive path and the line N is admis-

sible for it.

(3) σ N
r→q(σ

N
q→r (α))= α.

(4) α ∼ σ N
q→r (α).

Proof. Claims (1), (2) and (3) are trivial. Claim (4) can be proved as follows:

(p, L ,q,M, p)∼ (p, ξ, L ,q,M, χ, p)∼ (p, ξ,q, χ, p)

∼ (p, ξ, N ,q, N , χ, p)∼ (p, ξ, N , χ, p)∼ (p, ξ, N , r, N , χ, p)

∼ (p, ξ, r, χ, p)∼ (p, L ′, ξ, r, χ,M ′, p)∼ (p, L ′, r,M ′, p).

(This is essentially the same argoment as used by Schillewaert and Struyve to prove
Lemma 6.6 of [2017].) �

3C. Primitive paths in OP2-geometries. Henceforth 0 = 0F(A) (see Section 2B).
Recall that the point-line geometry with the same points as 0 and the shadow-lines
as lines coincides with PG(PuF(A))∼= PG(2, F) (Corollary 2.7). In particular, two
lines of 0 either have just one point in common or have exactly the same points.

Definition 3.11. Let L and M be two lines of 0 with the same shadow, namely
L = [a, u] and M = [b, v] for a, b ∈ PuF(A) and u, v ∈ PuF(O) with |a| = |u| 6= 0,
|b| = |v| 6= 0 and [a] = [b]. Suppose we have chosen the pairs (a, u) and (b, v) in
such a way that a = b, as we can. Then we put (L | M) := (u | v)/|u||v|.

Given a primitive path α = (p, L , q,M, p) we put `(α) := (L | M) and we call
`(α) the line-invariant of α.

Clearly, |(L | M)| ≤ 1 by Cauchy–Schwartz inequality, with equality if and only
if u and v are proportional. Moreover (L | M) = 1 if and only if L = M . So,
`(α) 6= 1 whenever α is nondegenerate.
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The hypothesis a = b is necessary for the above definition of (L | M) to make
sense. Indeed, without it, only the modulus |(u | v)|/|u||v| of (u | v)/|u||v| is
determined by the pair L and M . It is also clear that (L | M) can be defined only
when L and M have the same shadow. On the other hand, the particular choice of a
in the representations L = [a, u] and M = [a, v] is irrelevant. Indeed, if we replace
a with a′ = ta for some t ∈ F \ {0} then we must also replace u with u′ = tu and v
with v′ = tv. Accordingly, (u′ | v′)/|u′||v′| = |t |2(u | v)/|t2

||u||v| = (u | v)/|u||v|.

Remark 3.12. Schillewaert and Struyve [2017] call `(α) the P L-invariant of α.

Definition 3.13. We say that a primitive path α = (p, L , q,M, p) is orthogonal if
p⊥ q . Assuming that α is nondegenerate but not that it is orthogonal, an orthogonal
shift of α is a shift σ N

q→r (α) with p ⊥ r .

Lemma 3.14. Every nondegenerate primitive path α = (p, L , q,M, p) admits or-
thogonal shifts along every line N admissible for it and, once N has been chosen,
the orhogonal shift of α along N is uniquely determined. Moreover, if α is orthog-
onal, then α is its own orthogonal shift.

Proof. As N is coplanar with either of L and M , it has at most one point in common
with L or M . However N contains q . Hence it cannot contain p. By Corollary 2.7,
the line p⊥ ∩ [PuF(A)] of PG(PuF(A)) meets the shadow of N in just one point.
(This argument is the same as in the proof of Lemma 6.6 of [Schillewaert and
Struyve 2017].) The first part of the lemma is proved. The last claim of the lemma
is obvious. �

Henceforth we denote by σ N
⊥
(α) the orthogonal shift of α along a line N admis-

sible for α.

Lemma 3.15. Given a nonorthogonal nondegenerate primitive path α of 0 and a
line N admissible for α, let β = σ N

⊥
(α) be the orthogonal shift of α along N and

let `= `(β) be the line-invariant of β.
We can always choose the line N in such a way that ` 6= −1.

Proof. We must distinguish two cases and two subcases for each of them.

Case 1. 0 = 0R(H). Modulo automorphisms of 0, we can always assume that

L = [ j , j ], M = [ j , im1+ jm2], m2
1+m2

2 = 1,

p = [i], q = [iq1+ j iq3], q2
1 + q2

3 = 1.

So, `(α) = m2. Note that q1 6= 0 (otherwise p ⊥ q, while α is nonorthogonal by
assumption) and q3 6= 0 (otherwise p = q). Let N = [b, x] be admissible for α,
where

b = ib1+ jb2+ j ib3, b2
1+ b2

2+ b2
3 = 1,

x = ix1+ j x2+ j ix3+ kx4+ kix5+ k j x6+ k( j i)x7, |x | = 1.
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Modulo automorphisms of O that leave H elementwise fixed, we can always as-
sume that

x = ix1+ j x2+ j ix3+ kx4, (x2
1 + x2

2 + x2
3 + x2

4 = 1).

For N to be admissible for α the following must hold: (iq1+ j iq3 | b)= 0 (namely
q belongs to N ) and ( j | b)= ( j | x)= (im1+ jm2 | x) (Lemma 2.6, claim (1)).
Explicitly:

b1q1+ b3q3 = 0, (4)

and b2 = x2 = m1x1+m2x2, namely

b2 = x2, m1x1 = (1−m2)b2. (5)

Let r = [ir1 + jr2 + j ir3] be the unique point of {[b], p}⊥. So, r1 = 0, namely
r = [ jr2+ j ir3], and

b2r2+ b3r3 = 0. (6)

Moreover we assume r2
2 + r2

3 = 1, as we can. We have already noticed that q1 6= 0.
We also have r2 6= 0, otherwise equations (4) and (6) force b1 = b3 = 0, hence
b = ± j , contrary to the fact that N is coplanar with L and M . Thus, by (4) and
(6) we obtain

b1 =−b3q3q−1
1 , b2 =−b3r3r−1

2 . (7)

These equations show that b3 6= 0 (otherwise b = 0, which is ridiculous). Recalling
that b2

1+ b2
2+ b2

3 = 1 now we get

b3 =±
q1r2√

q2
1 + r2

2 − q2
1r2

2

=±
q1r2√

q2
1r2

3 + 1− r2
3

=±
q1r2√

1− q2
3r2

3

. (8)

Equation (8) is equivalent to the following

r2 =±
b3√

b2
2+ b2

3

,

which better shows that the point r depends on the choice of the line N but, in view
of the sequel, (8) is more convenient. We shall now consider two subcases: either
m2 =−1 or −1<m2 < 1 (note that m2 = 1 is impossible, since m2 = (L | M) and
(L | M) 6= 1 because L 6= M).

Subcase 1.1. m2 = −1. Equivalently, m1 = 0. Then b2 = x2 = 0 by (5), r3 = 0
by (7) and since b3 6= 0, whence r2 = ±1 (as r2

2 + r2
3 = 1) and b3 = ±q1 by (8).

Consequently, b1 =±q3, since b2
1+ b2

3 = q2
1 + q2

3 = 1. Summarizing:

m1 m2 r2 r3 b1 b2 b3 x2

0 −1 ±1 0 ±q3 0 ±q1 0.
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Let now ξ be the plane on L and N and χ the plane on M and N . Then ξ and
χ , regarded as sharp R-morphisms from H to O, are uniquely determined by the
following conditions (Lemma 2.3): ξ( j) = j , χ( j) = im1 + jm2 and ξ(b) =
χ(b)= x . By entering the above values for m1,m2 and x2 we get

ξ( j)= j , χ( j)=− j , ξ(b)= χ(b)= ix1+ j ix3+ kx4. (9)

Clearly i = i(b1− jb3)(b1− jb3)
−1
= b(b1+ jb3). Therefore, and taking (9) into

account,
ξ(i)= (ix1+ j ix3+ kx4)(b1+ jb3),

χ(i)= (ix1+ j ix3+ kx4)(b1− jb3).
(10)

Let now L ′ and M ′ be the lines through p and r in ξ and χ respectively. Then
L ′ = [a, ξ(a)] and M ′ = [a, χ(a)] where a = ia1+ ja2+ ka3 is orthogonal with
both p and r and we assume a2

1 + a2
2 + a2

3 = 1, as we can. Orthogonality with p
and r forces a1 = 0= a2. Therefore a =± j i . Accordingly, and recalling (10),

ξ(a)=± j(ix1+ j ix3+ kx4)(b1+ jb3),

χ(a)=∓ j(ix1+ j ix3+ kx4)(b1− jb3).
(11)

With β = σ N
⊥
(α)= (p, L ′, r,M ′, p) we have `(β)= (ξ(a) | χ(a)). Equations (11)

allow to explicitly compute the inner product (ξ(a) | χ(a)). We obtain:

(ξ(a) | χ(a))= x2
1(b

2
3− b1)

2
+ x2

3(b
2
3− b2

1)+ x2
4(b

2
3− b2

1)

= (x2
1 + x2

3 + x2
4)(b

2
3− b1)

2
= b2

3− b2
1 = q2

1 − q2
3 . (12)

So, (ξ(a) | χ(a))= q2
1 − q2

3 . As q1, q3 6= 0, we have −1< (ξ(a) | χ(a)) < 1.

Subcase 1.2. m1 6= 0, namely m2 6= −1. In this case the second equation of (5)
yields

x1 =
1−m2

m1
b2. (13)

The planes ξ and χ on L and N and on M and N are determined by the following
conditions:

ξ( j)= j , χ( j)= im1+ jm2,

ξ(b)= χ(b)= ix1+ j x2+ j ix3+ kx4 =

(
i
1−m2

m1
+ j

)
b2+ j ix3+ kx4.

(14)
Moreover, x2

3 + x2
4 = 1− ((1−m2)

2m−2
1 + 1)b2

2 = 1− 2(1+m2)
−1b2

2. Therefore

x2
3 + x2

4 = 1−
2

1+m2
b2

2. (15)
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Now i = (b − jb2)(b1 − jb3)
−1
= (b − jb2)(b1 + jb3)(b2

1 + b2
3)
−1. Recalling

equations (7), we obtain

i =
(

b+ j
r3

r2
b3

)
( jq1− q3)q1b−1

3 . (16)

As in Subcase 1.1, let L ′ = [a, ξ(a)] and M ′ = [a, χ(a)] be the lines through p
and r in ξ and χ respectively, where a = ia1+ ja2+ ka3 with |a| = 1. The vector
a is orthogonal with both p and r . Orthogonality with p still forces a1 = 0 but
orthogonality with r only implies a2r2 + a3r3 = 0. So a2 = −a3r3r−1

2 and the
condition |a| = 1 implies a3 =±r2. Hence a2 =±r3. Summarizing

a =±( jr3+ j ir2). (17)

Exploiting (14), (16) and (17), we can compute ξ(a) and χ(a) explicitly, whence
(ξ(a) | χ(a)) too. We firstly obtain (ξ(a) | χ(a))= A(x3

3 + x2
4)+ B where

A = (q2
3 m2+ q2

1 )q1r2
2 b−2

3 ,

B = (−m1r3+ (x1−m1b2)q2
1r2b−1

3 )x1q2
1 b−1

3 + r2
3 m2

+ (m2− 1)r3r2q2
1 b2b−1

3 + (x1m2q3−m1q3b2)x1q3q2
1r2

2 b−2
3 .

By exploiting (7), (8) and (15) we eventually obtain the following:

(ξ(a) | χ(a))=−r2
3

q4
1 m2

2

1+m2
+ q2

3 m2+ q2
1 . (18)

In this equation (ξ(a) | χ(a)) is expressed as a function of r3 rather than b3, but
recall that r is uniquely determined by b. Note that the coefficient of r2

3 in (18) is
negative except when m2 = 0. If m2 = 0 then (ξ(a) | χ(a))= q2

1 , which is strictly
positive and less than 1, since neither q1 nor q3 are zero.

Case 2. 0 = 0C(O). As in Case 1, we can assume that

L = [k, k], M = [k, jm1+ km2], |m1|
2
+ |m2|

2
= 1,

p = [ j ], q = [ jq1+ k jq3], |q1|
2
+ |q3|

2
= 1.

So, `(α)= m2. As in Case 1, we have q1 6= 0 6= q3. Let N = [b, x] be admissible
for α, where

b = jb1+ kb2+ k jb3, |b1|
2
+ |b2|

2
+ |b3|

2
= 1,

x = j x1+ kx2+ k j x3, |x1|
2
+ |x2|

2
+ |x3|

2
= 1.

For N to be admissible for α the following must hold: ( jq1+ k jq3 | b) = 0 and
(k | b)= (k | x)= ( jm1+ km2 | x). Explicitly:

q1b1+ q3b3 = 0, (19)
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and b2 = x2 = m1x1+m2x2, namely

b2 = x2, m1x1 = (1−m2)b2. (20)

Let r = [ jr1 + kr2 + k jr3] be such that {r} = {[b], p}⊥. So, r = [kr2 + k jr3],
where we assume |r2|

2
+ |r3|

2
= 1, and

r2b2+ r3b3 = 0. (21)

Recall that q1 6= 0 because p 6⊥ q by assumption. We also have r2 6= 0, otherwise
N cannot be coplanar with either of L and M . Thus, by (19) and (21) we obtain

b1 =−b3
q3

q1
, b2 =−b3

r3

r2
. (22)

These equations show that b3 6= 0. Recalling that |b1|
2
+ |b2|

2
+ |b3|

2
= 1 we get

b3 = ε ·
q1r2√

|q1|2+ |r2|2− |q1|2|r2|2
= ε

q1r2√
1− |q3|2|r3|2

(23)

for a suitable multiplier ε with |ε| = 1. We shall now consider two subcases: either
|m2| = 1 or |m1|< 1.

Subcase 2.1. |m2| = 1. Equivalently, m1 = 0. Then b2 = x2 = 0 by (20), r3 = 0
by (22) and since b3 6= 0, whence |r2| = 1 and |b3| = |q1| by (23). Consequently,
|b1| = |q3|.

Let now ξ be the plane on L and N and χ the plane on M and N . Then ξ and χ ,
regarded as sharp C-autorphisms of O, are uniquely determined by the following
conditions: ξ(k) = k, χ(k) = jm1 + km2 and ξ(b) = χ(b) = x . In view of the
above:

ξ(k)= k, χ(k)= km2, ξ(b)= χ(b)= j x1+ k j x3. (24)

It is easy to check that

j = ( jb1+ k jb3)(b1+ kb3)= b(b1+ kb3).

By this and (24) we get

ξ( j)= ( j x1+ k j x3)(b1+ kb3),

χ( j)= ( j x1+ j k j x3)(b1+ km2b3).
(25)

Let L ′ = [a, ξ(a)] and M ′ = [a, χ(a)] be the lines through p and r in ξ and χ
respectively, where a = ja1 + ka2 + k ja3 is orthogonal with both p and r and
|a1|

2
+ |a2| + |a3|

2
= 1. Orthogonality with p and r forces a1 = 0= a2. Therefore

a = k jη for a suitable η with |η| = 1. By this and (25),

ξ(a)= k(( j x1+ k j x3+ k)(b1+ kb3))η,

χ(a)= km2(( j x1+ k j x3+ kx4)(b1+ km2b3))η.
(26)
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Equations (26) allow to explicitly compute the inner product (ξ(a) | χ(a)). We
obtain:

(ξ(a) | χ(a))= |b3|
2
+ |b1|

2m2 = |q1|
2
+ |q3|

2m2. (27)

So, |(ξ(a) | χ(a))| = |q1|
4
+ |q3|

4
+ |q1|

2
|q3|

2(m2 + m2) < 1, as m2 + m2 is a
real number not less than −2 and less than 2 (because |m2| = 1 but m2 6= 1) and
|q1|

2
+ |q3|

2
= 1.

Subcase 2.2. m1 6= 0, namely |m2| < 1. In this case the second equation of (20)
yields

x1 =
1−m2

m1
b2. (28)

The planes ξ and χ on L and N and on M and N are determined by the following
conditions:

ξ(k)= k, χ(k)= jm1+ km2,

ξ(b)= χ(b)= j x1+ kx2+ k j x3 =

(
j
1−m2

m1
+ k

)
b2+ k j x3.

(29)

Moreover, |x3|
2
= 1− (1+ |1−m2|

2
|m1|

−2)|b2|
2 by (28) and x2 = b2. Therefore

|x3|
2
= 1−

2−m2−m2

|m1|2
|b2|

2. (30)

Now j = (b− kb2)((b1+ kb3)(1−|b2|
2)−1). Recalling equations (22), we obtain

j =
(

b+ k
r3

r2
b3

)
((kq1− q3)q1b−1

3 ). (31)

Let L ′ = [a, ξ(a)] and M ′ = [a, χ(a)] be the lines through p and r in ξ and χ
respectively, where a = ja1 + ka2 + k ja3 is orthogonal with both p and r and
|a| = 1. Orthogonality with p forces a1 = 0 but orthogonality with r only implies
r2a2+ r3a3 = 0. So a2 =−a3r3r2

−1 and the condition |a| = 1 implies |a3| = |r2|,
namely a3 = r2η for some η with |η| = 1. Hence

a = (−kr3+ k jr2)η = (k(−r3+ r2 j))η = (k(−r3+ jr2))η. (32)

By exploiting (29), (31) and (32) as well as (22) and (30) one can compute ξ(a)
and χ(a) explicitly, whence (ξ(a) | χ(a)) too, but these computations are terribly
toilsome. However, in order to prove the lemma, we do not need to perform them.
It is enough to show that, for a lucky choice of N = [b, x], whence of r , satisfying
the above conditions, we get ` 6= −1. We will go on in this way, referring the
interested reader to Remark 3.16 for a way to express (ξ(a) | χ(a)) in the general
case.
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The previous conditions on r , b and x allow to choose r3 = 0. Accordingly,
|r2| = 1. Hence b2 = 0 by the second equation of (22) and b3 = λq1 for some λ
with |λ| = 1 by (23). Therefore b1 =−λq3 by the first equation of (22). Moreover
x1 = x2 = 0 by (20) and (28), whence |x3| = 1. Accordingly,

j = b((kq1− q3)λ
−1) (33)

by (31) and since b1 = λq1 and

a = k jr2η (34)

by (32) and since r3 = 0. By (33), recalling that x1 = x2 = 0, we obtain

ξ( j)= x((kq1− q3)λ
−1)= k j x3(kq1λ

−1
− q3λ

−1)

= jq1x3λ− k jq3x3λ,

χ( j)= x((( jm1+ km2)q1− q3)λ
−1)

= k j x3( jm1q1λ
−1
+ km2q1λ

−1
− q3λ

−1)

= jm2q1x3λ− km1q1x3λ− k jq3x3λ.

(35)

(Recall that λ−1
= λ since |λ| = 1.) By combining (34) with (35) we obtain

ξ(a)= (k( jq1x3λ− k jq3x3λ))r2η

= jq3x3r2λη+ k jq1x3r2λη,

χ(a)= (( jm1+ km2)( jm2q1x3λ− km1q1x3λ− k jq3x3λ))r2η

= jm2q3x3r2λη− km1q3x3r2λη+ k jq1x3r2λη.

Therefore (ξ(a) | χ(a))= (|q3|
2m2+ | q2

1 )(|x3|
2
|r2|

2
|λ|2|η|2. Finally, recalling that

|x3| = |r2| = |λ| = |η| = 1,

(ξ(a) | χ(a))= |q3|
2m2+ |q1|

2. (36)

The right side of (36) is equal to −1 only if q1 = 0 and m2 =−1. However, q1 6= 0
because p 6⊥ q. Therefore (ξ(a) | χ(a)) 6= −1. �

Remark 3.16. In Subcase 2.2 of the above proof, with no additional hypotheses
on [b, x] we get

(ξ(a) | χ(a))= A|r2|
2
|b3|
−2
− 2 Im(m1q1q3|q3|

2r2r3b−1
3 )+ |r3|

2 B

where Im(.) stands for imaginary part and

A = |q1q3|
2m2+ |q1|

4,

B = m2− A− |q1q3|
2
+ |q1|

4(m3
2+m2− 2)|m1|

−2.
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This shows that (ξ(a) | χ(b)) depends on r2, r3 and x2 nontrivially. Thus, we
can always choose the line N = [b, x] in such a way that |(ξ(a) | χ(a))| < 1.
Accordingly, Lemma 3.15 can be given a stronger formulation: we can always
choose N in such a way that |`|< 1.

Remark 3.17. It follows from above proof that when |m2|= 1 then |`|< 1 for every
choice of the admissible line N = [b, x]. However, for certain values of m2 we can
also choose N in such a way that `=−1. For instance, when (F,A)= (R,H), this
is possible in the following cases:

(1) q4
1 = q2

3 (namely q2
1 = (
√

5− 1)/2) and −1≤ m2 ≤−(
√

5+ 1)/4;

(2) q2
1 > q2

3 and −1≤ m2 ≤ (1−
√

4q6
1 + 8q4

1 − 3)/(q4
1 − q2

3 );

(3) q2
1 < q2

3 and 1≥ m2 ≥ (−1+
√

4q6
1 + 8q2

1 − 3)/(q2
3 − q4

1 ).

Lemma 3.18. Every orthogonal nondegenerate primitive path α of 0C(O) such
that |`(α)| = 1 but `(α) 6= −1 is homotopic with an orthogonal nondegenerate
primitive path β such that |`(β)|< 1.

See [Schillewaert and Struyve 2017, Lemma 6.7] for the above. The following
lemma is also proved in [Schillewaert and Struyve 2017, Lemma 6.8].

Lemma 3.19. Let `∈F such that |`|< 1. Then, for every choice of two distinct lines
L and M with the same shadow, there exists a sequence L0 = L , L1, . . . , Ln = M
of lines with the same shadow as L and M and such that (L i−1 | L i )= ` for every
i = 1, 2, . . . , n.

The next statement is implicit in what Schillewaert and Struyve say to justify
[2017, Remark 6.9]. We make it explicit.

Corollary 3.20. Let ` ∈ F such that |`| < 1 and let α = (p, L , q,M, p) be a
nondegenerate primitive path of 0 = 0F(A). Then α ∼ α1 · α2 · · · · · αn for a
suitable sequence of nondegenerate primitive paths α1, α2, . . . , αn of 0 with the
same points p and q as α and such that `(αi )= ` for every i = 1, 2, . . . , n.

Proof. By Lemma 3.19 there exist lines L0 = L , L1, . . . , Ln = M such that (L i−1 |

L i ) = ` for i = 1, 2, . . . , n. For i = 1, 2, . . . , n put αi = (p, L i−1, q, L i ). Thus,
the product α1 ·α2 · · · · ·αn is well defined. Note that

αn−1 ·αn = (p, Ln−2, q, Ln−1, p, Ln−1, q, Ln, p)∼ (p, Ln−2, q, Ln)=: α
′

n−1.

So, α1 · α2 · · · · · αn−1 · αn ∼ α1 · α3 · · · · · α
′

n−1. By iterating this argument we
eventually obtain α1 ·α2 · · · · ·αn ∼ (p, L0, q, Ln, p)= α. �

We can now prove the main theorem of this subsection.

Theorem 3.21. Either 0F(A) is simply connected or it is covered by a building.
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Proof. Suppose that 0=0F(A) is not covered by a building. Then, by Corollary 3.8,
at least one of its nondegenerate primitive paths is null-homotopic. By Lemma 3.10
(claim (4)) and Lemma 3.14, at least one orthogonal nondegenerate primitive path,
say α, is null-homotopic. Let ` = `(α) be its line-invariant. The action of G :=
Aut(0) on A and O makes it clear that G acts transitively on the set of orthogonal
primitive paths with line-invariant equal to `. Thus, all orthogonal primitive paths
with line invariant ` are null-homotopic.

Suppose firstly that |`| < 1. Then every orthogonal primitive path β is null
homotopic, by Corollary 3.20 and the above remark. In this case 0 is simply
connected by Lemmas 3.10 and 3.14 and Corollary 3.6.

Let |`| = 1. If ` 6= −1 (whence 0 = 0C(O)) then α ∼ β for some orthogonal
primitive path β with |`(β)|< 1, by Lemma 3.18. Thus, we can replace α with β
and we are back to the previous case.

Finally, let `(α)=−1. Clearly α admits a nonorthogonal shift β ∼ α, necessarily
nondegenerate (Lemma 3.10). In its turn β admits an orthogonal shift γ with
`(γ ) 6= −1, by Lemma 3.15. Moreover β ∼ γ by Lemma 3.10. Hence α ∼ γ .
Therefore γ is null-homotopic. We can now replace α with γ and we are back to
the first or second one of the two previous cases, according to whether |`(γ )|< 1
or |`(γ )| = 1. �

Remark 3.22. What Schillewaert and Struyve say to explain their Remark 6.9
in [2017] amounts to a sketch of the first three paragraphs of the above proof.
However, as they had nothing like Lemma 3.15 at their disposal, they could only
refer to the case ` 6= −1 in that remark.

3D. End of the proof of Theorem 1.5. Let 0̃ be the universal cover of 0 = 0F(A).
In view of Theorem 3.21, either 0̃ = 0 or 0̃ is a building. In order to finish the
proof of Theorem 1.5 it only remains to prove that 0̃ cannot be a building. This
immediately follows from the last claim of Theorem 1.3. However, as we have
promised not to use that theorem, we shall give an explicit proof of this claim.

We firstly recall a few general properties of universal coverings and state some
notation for quadratic and hermitian forms and related polar spaces.

3D1. Lifting automorphisms through universal coverings. Let φ : 0̃→ 0 be the
universal k-covering of a geometry 0 of rank n > k. Let G := Aut(0) and Ĝ :=
Aut(0̃).

Pick a chamber C of 0 and a chamber C̃ ∈ φ−1(C). For every g ∈ G and every
chamber X̃ ∈ φ−1(g(C)) there exists a unique g̃ ∈ Ĝ, called a lifting of g to 0̃
through φ, such that φ · g̃ = g · φ and g̃(C̃) = X̃ [Pasini 1994, Theorem 12.13].
The set of all liftings of the elements g ∈ G is a subgroup G̃ of Ĝ and the function
pφ : G̃→ G which maps every g̃ ∈ G̃ onto the unique g ∈ G such that φ · g̃ = g ·φ
is a (surjective) homomorphism of groups. The kernel of pφ , namely the group of
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all liftings of the identity automorphisms of 0, is the deck group D(φ) of φ and
0 ∼= 0̃/D(φ) [Pasini 1994, Theorem 12.13].

Given a subflag F ⊂ C of rank k, let F̃ be the corresponding subflag of C̃ and
let G F be the stabilizer F in G. The stabilizer G̃ F̃ of F̃ in G̃ meets D(φ) trivially.
Hence pφ induces an isomorphism from G̃ F̃ to G F . We call G̃ F̃ the lifting of G F

to 0̃ through φ based at F̃ .
Moreover, let KF E G F be the elementwise stabilizer in G F of the residue

Res0(F) of F in 0. Similarly, let K̃ F̃ be the elementwise stabilizer of Res0̃(F̃) in
G̃ F̃ . Then pφ isomorphically maps K̃ F̃ onto KF .

In order to complete the notation adopted above, we denote by Ĝ F̃ and K̂ F̃ the
stabilizer of F̃ in Ĝ and the elementwise stabilizer of Res0̃(F̃) in Ĝ F̃ . Needless to
say, G̃ F̃ and K̃ F̃ are subgroups of Ĝ F̃ and K̂ F̃ respectively and K̃ F̃ = K̂ F̃ ∩ G̃ F̃ .

The group KF (respectively K̃ F̃ or K̂ F̃ ) is often called the kernel of G F (respec-
tively G̃ F̃ or Ĝ F̃ ), as a shortening for “kernel of the action of G F on Res0(F)".
We shall adopt this terminology too in the sequel.

3D2. Some notation for quadratic and hermitian forms. For a positive integer n,
let f F

n be the usual scalar product on Fn and let L( f F
n ) be the group of all linear

mappings preserving f F
n . So, L( f R

n )= O(n) and L( f C
n )= U(n) (notation as usual

for Lie groups).
Given two positive integers n,m with n ≤ m, let f F

n,m := (− f F
n )⊕ f F

m . Namely,
f F
n,m admits the following representations, according to whether F= R or F= C,

where x = (xi )
n+m
i=1 and y = (yi )

n+m
i=1 (vectors of Fn+m):

(F= R) f R
n,m(x, y) := −

n∑
i=1

xi yi +

m∑
i=1

xi+n yi+m,

(F= C) f C
n.m(x, y) := −

n∑
i=1

xi yi +

m∑
i=1

xi+n yi+m .

Clearly, n is the Witt index of f F
n,m . We also recall that, by Sylvester’s law of

inertia, every nondegenerate bilinear form on Rn+m of Witt index n ≤ m can be
expressed as f R

n,m or its opposite, modulo a suitable choice of the basis of Rn+m

(see, e.g., [Bourbaki 1959, §7, n.2]). The same for hermitian forms of Cn+m .
Let L( f F

n.m) be the group of linear trasformations of Fn+m preserving f F
n,m . So

we have L( f R
n,n)= O+(2n,R), L( f R

n,n+1)= O(2n+ 1,R), L( f C
n,n)= U(2n,C) and

L( f C
n,n+1)= U(2n+ 1,C) (notation as usual for Chevalley groups).

Let 0( f F
n,m) be the polar space associated to f F

n,m . Recall that its full automor-
phims group Aut(0( f F

n,m)) is the projectivization PL( f F
n,m) of L( f F

n,m), extended by
two (possibly trivial) outer automorphism groups, henceforth denoted by d and f .
The group d is contributed by linear transformations of Fn+m which do not preserve
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f F
n,m but multiply it by a scalar. However, as we deal with PL( f F

n,m) rather than
L( f F

n,m), it turns ut that d is either trivial or isomorphic to the group C2 of order 2,
according to whether n+m is odd or even. The group f is trivial when F= R and
isomorphic to C2 when F=C. In the latter case, the unique nontrivial involution of
f is contributed by the usual conjugation of C and the extension (PL( f C

n,m)·d)· f is
split: it can be realized as the semidirect product (PL( f C

n,m) ·d)o〈ι〉 of PL( f C
n,m) ·d

with the group 〈ι〉 generated by a suitable involutory semilinear transformation ι
of Cn+m .

3D3. The case (F,A)= (C,O). Let φ : 0̃→ 0 be the universal covering of 0 =
0C(O). We already know that either 0̃ = 0 or 0̃ is a building. We want show that
0̃ cannot be a building.

By contradiction, suppose that 0̃ is a building, namely a polar space of rank 3.
We know that the residues of the planes of 0 are isomorphic to the complex pro-
jective plane CP2

= PG(2,C) while the panels of type 3 (namely the residues of
the point-line flags) are homeomorphic to the 3-dimensional sphere S3 [Kramer
and Lytchak 2014]. The same properties hold for 0̃. So, in view of Tits’s classi-
fication of polar spaces [Tits 1974, Chapter 8], necessarily 0̃ = 0( f C

3,4), with full
automorphism group

Ĝ := Aut(0( f C
3,4))= PU(7,C)o f ∼= PSU(7,C)oC2.

We set G := Aut(0)= ((SU(3)×SU(3))/C3)oC2 (see Section 2C).
Let ξ̃ be a plane of 0̃ and ξ = φ(ξ̃ ). With the notation and the terminology

of Section 3D1, let Gξ , Ĝ ξ̃ and G̃ ξ̃ be respectively the stabilizer of ξ in G, the
stabilizer of ξ̃ in Ĝ and the lifting of Gξ to 0̃ through φ at ξ̃ and let Kξ , K̂ ξ̃ and
K̃ ξ̃ be their kernels. It is not difficult to check that

Gξ = PSU(3)oC2 with Kξ = 1.

(See also [Schillewaert and Struyve 2017].) Hence G̃ ξ̃
∼= PSU(3)oC2 and K̃ ξ̃ = 1.

On the other hand, Ĝ ξ̃ is the semidirect product Ĝ ξ̃ =U oL of its unipotent radical
U and a Levi complement L , where U ∼= C6

× R3 ∼= R15, with C6, R3 and R15

being regarded as additive groups, and L ∼= GL(3,C)o f = 0L(3,C). Moreover
K̂ ξ̃ =U o Z where Z = Z(L) is the center of L (see, e.g., [Weiss 2003, Chapter
11]). The group G̃ ξ̃

∼= PSU(3)oC2 is contained in Ĝ ξ̃ =U o L but, as its kernel is
trivial, it meets K̂ ξ̃ =UoZ trivially. Accordingly, the group L ∼=0L(3,C) contains
a copy of G̃ ξ̃ = PSU(3)oC2. The group L indeed contains copies of SU(3)oC2,
but no copy of PSU(3)oC2. Indeed SU(3) is not a semidirect product of its center
C3 and a copy of PSU(3).

We have reached a contradiction. Hence in this case 0̃ = 0.
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3D4. The case (F,A)= (R,H). Let now φ : 0̃→ 0 be the universal covering of
0 = 0R(H). By contradiction, suppose that 0̃ is a building. The residues of the
planes of 0 are isomorphic to the real projective plane PG(2,R) and the panels
of type 3 are homeomorphic to the 5-dimensional sphere S5 [Kramer and Lytchak
2019]. By Tits’s classification of polar spaces [1974] we see that 0̃ = 0( f R

3,8), with
full automorphism group Ĝ := Aut(0( f R

3,8)) = PL( f R
3,8). We set G := Aut(0) =

SO(3)×G2 (see Section 2C). As in the previous case, let ξ̃ be a plane of 0̃ and
ξ := φ(ξ̃ ). We now have

Gξ = (SU(2)×SU(2))/〈(−ι,−ι)〉 = 2·(PSU(2)×PSU(2)),

Kξ = 2· PSU(2)= SU(2),

Gξ/Kξ
∼= PSU(2)∼= SO(3).

Here ι stands for the identity element of SU(2), whence (ι, ι) is the identity element
of SU(2)×SU(2). The extension 2·(PSU(2)×PSU(2)) is nonsplit.

On the other hand, Ĝ ξ̃ =U o L where L ∼= GL(3,R)× SO(5) and U =U0
·U1

with U0 and U1 isomorphic to the additive groups of R3 and R15 respectively. The
group U0 is both the center and the commutator subgroup of U . Moreover, K̂ ξ̃ =

U o (Z ×SO(5)), where Z is the center of GL(3,R).
We have G̃ ξ̃

∼= Gξ = 2·(PSU(2)× PSU(2)), K̃ ξ̃
∼= Kξ = SU(2) and K̃ ξ̃ must

be placed in K̂ ξ̃ . As U E K̂ ξ̃ , the intersection K̃ ξ̃ ∩U is normal in K̃ ξ̃ . However
K̃ ξ̃
∼= SU(2) is quasisimple as an abstract group, with center of order 2, while every

nontrivial subgroup of U is infinite. Therefore K̃ ξ̃ ∩U = 1, namely K̃ ξ̃ ≤ L ∩ K̂ ξ̃ =

Z × SO(5). Moreover K̃ ξ̃ ≤ SO(5), since SU(2) doesn’t split as the direct product
of its center and a copy of PSU(2). So far, no contradiction has arised; indeed
SO(5) actually contains copies of SU(2).

Similarly, G̃ ξ̃/K̃ ξ̃
∼= PSU(2) must be placed in Ĝ ξ̃/K̂ ξ̃ = L/(Z × SO(5)) =

PGL(3,R). This can be done as well, since PGL(3,R) contains copies of SO(3)∼=
PSU(2). However these copies of SO(3) inside GL(3,R) meet the center Z of
GL(3,R) trivially. It follows that G̃ ξ̃ is the direct product G̃ ξ̃ = K̃ ξ̃ × X for a
subgroup X ∼= SO(3) ∼= PSU(2) of GL(3,R). In short, G̃ ξ̃ = SU(2)× PSU(2).
However G̃ ξ̃

∼= Gξ = (SU(2)× SU(2))/〈(−ι,−ι)〉, which is not a direct product
of SU(2) and PSU(2). Eventually, we have reached a contradiction.

Therefore 0̃ = 0 in this case too. The proof of Theorem 1.5 is complete.
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