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A note on locally elliptic actions on cube complexes

Nils Leder and Olga Varghese

We deduce from Sageev’s results that whenever a group acts locally elliptically
on a finite-dimensional CAT(0) cube complex, then it must fix a point. As an
application, we partially prove a conjecture by Marquis concerning actions on
buildings and we give an example of a group G such that G does not have prop-
erty (T), but G and all its finitely generated subgroups can not act without a
fixed point on a finite-dimensional CAT(0) cube complex, answering a question
by Barnhill and Chatterji.

1. Introduction

The questions we investigate in this note are concerned with fixed points on CAT(0)
cube complexes. Roughly speaking, a cube complex is a union of cubes of any
dimension which are glued together along isometric faces. Let C be a class of
finite-dimensional CAT(0) cube complexes. A group G is said to have property
FC if any simplicial action of G on any member of C has a fixed point. For a
subclass A consisting of simplicial trees the study of property FA was initiated by
Serre [1980].

Bass [1976] introduced a weaker property FA′ for groups. A group has property
FA′ if any simplicial action of G on any member of A is locally elliptic, i.e. each
g ∈ G fixes some point on a tree. We define a generalization of property FA′. A
group G has property FC′ if any simplicial action of G on any member of C is
locally elliptic, i.e. each g ∈ G fixes some point on a CAT(0) cube complex.

A finitely generated group which is acting locally elliptically on a simplicial tree
has a global fixed point; see [Serre 1980, §6.5, Corollary 2]. The following result
of Sageev is well known to the experts. It follows from the proof of Theorem 5.1
in [Sageev 1995].

Funded by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy EXC 2044–
390685587, Mathematics Münster: Dynamics-Geometry-Structure.
MSC2010: primary 20F65; secondary 51F99.
Keywords: cube complexes, locally elliptic actions, global fixed points.
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Theorem A. Let G be a finitely generated group acting by simplicial isometries
on a finite-dimensional CAT(0) cube complex. If the G-action is locally elliptic,
then G has a global fixed point.

In particular, a finitely generated group G has property FC′ if and only if G has
property FC.

The result of Theorem A was also observed by Caprace and Lytchak in [Chatterji
et al. 2016, Proposition B.8] and was proven for median spaces in [Fioravanti 2018,
Theorem 3.1].

Before we state the corollaries of Theorem A, we observe that the result in
Theorem A is not true for infinite-dimensional CAT(0) cube complexes. Let G be
a finitely generated torsion group. Then, by the Bruhat–Tits fixed point theorem
[Bridson and Haefliger 1999, Corollary II 2.8] follows, that G has property FC′

and thus by Theorem A the group G has property FC. Free Burnside groups are
finitely generated torsion groups and thus these groups have always property FC,
but many of these groups act without a fixed point on infinite-dimensional CAT(0)
cube complexes; see [Osajda 2018, Theorem 1].

The next corollary follows from Theorem A and is known in the case of trees
by a result of Tits [1970, Proposition 3.4].

Corollary B. Let G be a group acting by simplicial isometries on a finite-dimen-
sional CAT(0) cube complex X. If the G-action is locally elliptic, then G has a
global fixed point in X ∪ ∂X , where ∂X denotes the visual boundary of X.

Proof. For the proof we need the following result by Caprace [2010, Theorem 1.1]:
Let X be a finite-dimensional CAT(0) cube complex and {Xα}α∈A be a filtering

family of closed convex nonempty subsets. Then either the intersection
⋂
α∈A Xα

is nonempty or the intersection of the visual boundaries
⋂
α∈A ∂Xα is a nonempty

subset of ∂X .
Recall that a family F of subsets of a given set is called filtering if for all E, F

in F there exists D ∈ F such that D ⊆ E ∩ F .
Let X be a finite-dimensional CAT(0) cube complex and 8 a simplicial action of

G on X . For S ⊆G we define the set Fix(S)= {x ∈ X |8(s)(x)= x for all s ∈ S}.
It is closed and convex. If S is a finite set, it follows by Theorem A that Fix(S) is
nonempty. Further, we define Fix(G)∂ = {ξ ∈ ∂X |8(g)(ξ)= ξ for all g ∈ G} .

Now we consider the following family F = {Fix(S) | S ⊆ G and #S <∞} . If
S, T ⊆ G are finite subsets, we have Fix(S ∪ T )⊆ Fix(S)∩Fix(T ) and thus F is
a filtering. The result of Caprace stated above implies that⋂

F = Fix(G) is nonempty

or ⋂
{∂Fix(S) | S ⊆ G and #S <∞} ⊆ Fix(G)∂ is nonempty.
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Since the Davis realization of a right-angled building carries the structure of a
finite-dimensional CAT(0) cube complex, we can apply Corollary B to confirm
the following conjecture by Marquis [2015, Conjecture 2] in the special case of
right-angled buildings.

Conjecture. Let G be a group acting by type-preserving simplicial isometries on
a building 1. If the G-action on the Davis realization X of 1 is locally elliptic,
then G has a global fixed point in X ∪ ∂X.

Another fixed point property of interest is Kazhdan’s property (T). Niblo and
Reeves [1997, Theorem B] proved in that if a group G has Kazhdan’s property (T),
then G also has property FC. Barnhill and Chatterji raised the following question
[2008, Question 5.3]:

Question. Is FC equivalent to (T), or does there exist a group G such that G does
not have property (T), but G and all its finite-index subgroups have property FC?

With the next result we can answer this question in the negative.

Corollary C. Let G be the first Grigorchuk group. Then G and all its finitely gen-
erated subgroups have property FC, but G doesn’t have property (T). In particular,
all finite-index subgroups of G also have property FC.

Proof. The first Grigorchuk group G is a finitely generated infinite torsion group
(see [Grigorchuk 1980]) and thus G and all its finitely generated subgroups have
property FC. But G does not have property (T) since G is amenable, see [Grig-
orchuk 1984]. �

Further, many free Burnside groups have property FC, but don’t have property
(T), see [Osajda 2018, Theorem 1]. Other examples of groups with property FC and
without property (T) were given by Cornulier in [Cornulier 2015] and by Genevois
in [Genevois 2019].

Acknowledgement. We would like to thank Rémi Coulon for pointing us on The-
orem 5.1 in [Sageev 1995]. Further, we want to thank Elia Fioravanti and Anthony
Genevois for making us aware of important references.

2. Proof of Theorem A

In this section we give the proof of Theorem A, which is hidden in the proof of
Theorem 5.1 in [Sageev 1995] by Sageev. For definitions and properties of CAT(0)
cube complexes see [Sageev 1995].

We first need the following result.
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Proposition. Let X be a d-dimensional CAT(0) cube complex and S be a finite set
of hyperplanes in X. If #S ≥ d + d · (d + 1), then there exist three hyperplanes in
S that do not intersect pairwise.

Proof. Let T = {J1, . . . , Jk} ⊆ S be a maximal set of pairwise intersecting hyper-
planes. Then by Helly’s Theorem for CAT(0) cube complexes or [Sageev 1995,
Theorem 4.14] follows that

⋂
T is not empty. Further, since the dimension of X

is d we have: k ≤ d. By maximality of T , for each hyperplane J ∈ S − T there
exists i = 1, . . . , k such that J ∩ Ji =∅. This yields a well-defined map

q : S − T → {1, . . . , k}, J 7→min{i | J ∩ Ji =∅}.

Let Bi denote the preimage q−1(i) for i = 1, . . . , k. Since #S ≥ d+d · (d+1) and
k ≤ d, we have #(S − T ) ≥ d · (d + 1). Thus, by the pigeon-hole principle there
exists j ∈ {1, . . . , k} such that #B j ≥ d+1. By maximality of T , not all hyperplanes
of B j intersect pairwise, i.e there are H1, H2 ∈ B j such that H1 ∩ H2 =∅. Then,
J j , H1, H2 are three hyperplanes that do not intersect each other. �

Proof of Theorem A. Let G be a finitely generated group with a symmetric generat-
ing set Y = {g1, . . . , gn}. Let X be a d-dimensional CAT(0) cube complex, v ∈ X
be a vertex and G→ Isom(X) be a simplicial locally elliptic action.

For i = 1, . . . , n we choose a combinatorial geodesic λi from v to gi (v) . Further,
we denote by Si the set of hyperplanes crossed by λi . We have #Si = D(v, gi (v)),
where we denote by D the metric on the 1-skeleton of X . Hence the union S :=⋃n

i=1 Si is a finite set.
Let us assume that the action has no global fixed point. Then the Bruhat–Tits

fixed point theorem implies that the orbit of v is unbounded. Thus, there exists
g ∈ G such that

N := D(v, g(v))≥ #S · (d + d(d + 1)).

Since Y generates G, we can write g = gi1 . . . gil with gi j ∈ Y for i = 1, . . . , l. We
define

v j := gi1 . . . gi j (v) and γ j := gi1 . . . gi j (λi j+1).

The map γ j is a combinatorial geodesic from v j to v j+1. Hence α := γl . . . γ1λgi1

is a combinatorial path from v to g(v). Since D(v, g(v))= N , there exists a set of
hyperplanes T = {K1, . . . , KN } such that α crosses each hyperplane in T .

By construction, for each Ki in T there exists J ∈ S such that Ki = h J for some
h ∈ G. By pigeon-hole principle there exists a hyperplane J ∈ S such that

# {K ∈ T | ∃h ∈ G : K = h J } ≥ d + d(d + 1).

By the Proposition there exist three hyperplanes h1 J, h2 J and h3 J in

{K ∈ T | ∃h ∈ G : K = h J }
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whose pairwise intersection is empty. But each of these hyperplanes is crossed
precisely once by a combinatorial geodesic from v to g(v). Therefore one of these
hyperplanes separates the other two.

It is not difficult to verify the following: If there exist a hyperplane J ⊆ X and
g, h ∈ G such that J, g J, h J do not intersect pairwise and g J separates J and h J ,
then g, h or hg−1 is hyperbolic.

This completes the proof. �
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Tits arrangements on cubic curves

Michael Cuntz and David Geis

We classify affine rank three Tits arrangements whose roots are contained in the
locus of a homogeneous cubic polynomial. We find that there exist irreducible
affine Tits arrangements which are not locally spherical.

1. Introduction

Given a real reflection group, its set of reflecting hyperplanes defines a possibly
infinite arrangement of hyperplanes with the property that every chamber is an
open simplicial cone. Thus geometrically, a reflection group may be viewed as a
so-called simplicial arrangement.

Of course, very few simplicial arrangements come from reflection groups. An-
other source, for example, are the Weyl groupoids (see [Heckenberger and Welker
2011; Cuntz 2011a]). As Weyl groups are invariants of different types of algebras
in Lie theory, Weyl groupoids are invariants of (in a certain sense) more general
quantum groups, the so-called Nichols algebras (see for example [Heckenberger
2006]). Not much is known about the infinite dimensional Nichols algebras which
produce infinite Weyl groupoids. To go beyond the theory of finite dimensional
Nichols algebras, it turns out that one needs an appropriate notion of infinite sim-
plicial arrangement, which is the main contribution of [Cuntz et al. 2017], where
these are called Tits arrangements. Thus a deep understanding of Tits arrangements
would be beneficial for many reasons.

However, even the case of finite simplicial arrangements is poorly understood.
Simplicial arrangements are quite rare; it is a highly non-trivial problem to classify
simplicial arrangements, even finding further examples is very difficult. Among the
known (irreducible) simplicial arrangements of rank three (see [Grünbaum 2009;
Cuntz 2012]), one observes that the projective root vectors of almost all of them

We wish to thank Bernhard Mühlherr for many helpful discussions. The second author was supported
by a grant of the Deutsche Forschungsgemeinschaft (DFG)..
MSC2010: 20F55, 17B22, 52C35.
Keywords: simplicial arrangement, affine, cubic.
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are contained in a cubic curve since this holds for the known infinite families of
irreducible arrangements R(1) and R(2); see [Cuntz 2011b]. Thus one could hope
to obtain many, maybe even almost all of the infinite Tits arrangements of rank
three by concentrating on those for which the root vectors lie on a cubic curve.
Also, there is no infinite family of infinite Tits arrangements known yet, even in
the affine case, i.e. when the Tits cone is a half space.

There is yet another reason why cubic curves are interesting in this context:
simplicial arrangements of rank three are combinatorially extremal in the sense that
they have very few double points; one of the keys for the main result in [Green and
Tao 2013] is the fact that arrangements with few double points are close to having
the property that their root vectors lie on a cubic curve.

In this paper, we give a classification of affine rank three Tits arrangements
whose corresponding projective root vectors are contained in the locus of a ho-
mogeneous cubic polynomial. Our strategy for the classification builds upon the
results obtained in [Cuntz et al. 2017] and on elementary tools from the geometry
of the (real) projective plane, like Bézout’s theorem and the fact that the conic in
P2(R) is a selfdual curve.

We find that there are only two classes of irreducible affine Tits arrangements
satisfying the above property: namely the arrangement of type Ã2 whose corre-
sponding projective root vectors are contained in the union of three projective lines,
and a new class of arrangements which we call Ã0

2 (see Figure 1). The projective
root vectors of Ã0

2 are contained in the union of a projective conic σ and a projec-
tive line l touching σ . It turns out that the arrangement Ã0

2 is an example of an
irreducible affine Tits arrangement which is not locally spherical. More precisely,
we have the following main theorem (precise definitions are given in Section 2):

Theorem. Let the pair (A, T ) be an affine rank three Tits arrangement and assume
that the projective root vectors of A are contained in the locus of a homogeneous
cubic polynomial. Then up to projectivities, A is either a near pencil, an arrange-
ment of type Ã2, or it is an arrangement of type Ã0

2.

This result is established by proving Theorem 2 in Section 3. The necessary
definitions and notations are collected in Section 2. In Section 4 we discuss some
related open questions.

2. Definitions and notation

We start with the notion of a Tits arrangement in Rr (see [Cuntz et al. 2017]).

Definition 1. Let A be a (possibly infinite) set of linear hyperplanes in V := Rr

and let T be an open convex cone in V . We say that A is locally finite in T
if for every x ∈ T there exists a neighborhood Ux ⊂ T of x , such that the set
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Figure 1. A subset of the arrangement of type Ã0
2.

{H ∈ A | H ∩Ux 6= ∅} is finite. A hyperplane arrangement (of rank r) is a pair
(A, T ), where T is a convex open cone in V , and A is a set of linear hyperplanes
such that the following holds:

• H ∩ T 6=∅ for all H ∈A.

• A is locally finite in T .

Denote by T the topological closure of T with respect to the standard topology of
V . If X ⊂ T then the localization at X (in A) is defined as

AX := {H ∈A | X ⊂ H}.

If X = {x} we write Ax instead of A{x} and call (Ax , T ) the parabolic subarrange-
ment at x . The connected components of T \

⋃
H∈A H are called chambers or cells.

If K is a chamber then its walls are given by the hyperplanes contained in the set

W K
:= {H ≤ V | dim(H)= r − 1, 〈H ∩ K 〉R = H, H ∩ K =∅}.
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The arrangement (A, T ) is called thin if W K
⊂A for each chamber K . A simpli-

cial hyperplane arrangement (of rank r) is an arrangement (A, T ) such that each
chamber K is an open simplicial cone. T is called the Tits cone of the arrangement.
Finally, a simplicial arrangement is called a Tits arrangement if it is also thin.

Remark 1. i) If the pair (A, T ) is a Tits arrangement, we usually omit the reference
to T , since it should always be clear from the context.

ii) For a simplicial arrangement (A, T ), the closure of T can be reconstructed
from the chambers of A: we have T =

⋃
K∈K(A) K . In particular, the Tits cone T

is determined by A. For details on this, see [Cuntz et al. 2017, Lemma 3.24].

Definition 2. Let the pair (A, T ) be a Tits arrangement and denote the set of cham-
bers by K. Then we have the following thin chamber complex

S(A, T ) :=
{

K ∩
⋂

H∈X
H | K ∈ K, X ⊂W K

}
,

whose poset-structure is given by set-wise inclusion. If U ≤ V has dimension 1
such that v := K ∩U ∈ S(A, T ), then v is called a vertex. Similarly, if U ′ ≤ V has
dimension 2 such that e := K ∩U ′ ∈ S(A, T ), then e is called an edge or segment.
A Tits arrangement (A, T ) is called locally spherical if all vertices meet T . Finally,
if v is a vertex then we define its weight to be w(v) := |Av|.

Remark 2. Let (A, T ) be a Tits arrangement and let v be a vertex. If v meets T ,
then clearly w(v) <∞ because A is locally finite in T . However, if v is contained
in ∂T , then we necessarily have w(v)=∞ because A is thin. Altogether, it follows
that w(v)=∞ if and only if v ∈ ∂T .

Definition 3. i) Let (A, T ) be a Tits arrangement in V := Rr . If there is a linear
form 0 6= α ∈ V ∗ such that T = α−1(R>0) is a half-space, then we say that (A, T )
is an affine Tits arrangement.

ii) Let (A, T ) be a Tits arrangement in Rr . If T = Rr , then A is called a spherical
Tits arrangement.

iii) Let (A, T ) be a Tits arrangement in R3. Assume that there is H0 ∈ A and
a single vertex v such that v is contained in every H ∈ A \{H0} while H0 does
not contain v. Then A is called a near pencil (arrangement). A Tits arrangement
(A, T ) in R3 which is not a near pencil arrangement is said to be irreducible.

Remark 3. i) If (A, T ) is affine with corresponding linear form α, the boundary
∂T of the Tits cone is given by the hyperplane ker(α).

ii) If (A, T ) is spherical, then we have |A|<∞. Indeed, for such an arrangement
we have 0 ∈ T and 0 ∈ H for every H ∈A; as by definition A is locally finite in T ,
this proves the claim. Moreover, we note that a spherical Tits arrangement in Rr

induces a simplicial cell decomposition of the unit sphere Sr−1.
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iii) Near pencil arrangements are usually considered trivial.

In the following sections we will be concerned with the case of an affine Tits
arrangement (A, T ) of rank three. Then we may view A as set of projective lines
in P2(R) and the boundary ∂T of T is again a projective line. Further, in P2(R) we
have a duality between projective lines and projective points, for which we require
the following notation.

Notation. Let (A, T ) be a Tits arrangement of rank three. By abuse of notation
we denote the set of projective lines {g | ∃H ∈ A : g = π(H)} by A as well;
here π : {U ≤ R3

| dim U ≥ 1} → {U ≤ P2(R)} is the natural projection. If
p ∈ (P2(R))∗ then we denote the corresponding dual line by p∗⊂P2(R). Likewise,
if l ⊂ (P2(R))∗ is a projective line, then its corresponding dual point is denoted
by l∗ ∈ P2(R). Similarly, if A is a set of projective lines in P2(R), we write
A∗ ⊂ (P2(R))∗ for the corresponding set of dual projective points (and vice versa).
For a set of projective lines A, we call A∗ its corresponding dual point set.

Finally, we introduce the following notion of isomorphism of Tits arrangements.

Definition 4. Set V := R3 and let (A, T ), (A′, T ′) be two affine Tits arrangements
in V . Then these are called (projectively) isomorphic if there exists φ ∈ PGL(V ∗)
such that both φ(A∗)= (A′)∗ and φ(∂T ∗)= (∂T ′)∗.

3. Results and proofs

Now we are ready to prove our main theorem. The main strategy can be summa-
rized as follows: according to the possible factorizations of a homogeneous cubic
polynomial P , there are naturally three cases to consider. Namely, P may factor as
a product of three linear polynomials, or it may factor as a product of an irreducible
quadratic polynomial and a linear polynomial, or P may be irreducible. We exam-
ine all three cases and collect all (up to projectivity) affine Tits arrangements A
such that A∗ ⊂ V (P).

We start with the following lemma which will be used extensively to rule out
the possibility of existence of certain Tits arrangements. It basically says that near
pencils are the only rank three Tits arrangements containing a segment bounded
by two vertices of weight two.

Lemma 1. Let A be a Tits arrangement of rank three. Suppose there is a line
g ∈ A containing two vertices v1, v2 of weight two such that there is no other
vertex contained in the bounded segment between v1 and v2 on g. Then A is a near
pencil.

Proof. Denote by g1, g2 the two lines meeting g in v1 respectively v2 and set
v := g1 ∩ g2. Since w(v1)=w(v2)= 2, the vertices v1, v2 are in the interior of the
Tits cone by Remark 2, and it follows that there are two chambers with vertices
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v1, v2, v. Every other line g′ ∈A \{g} has to avoid these two chambers and hence
needs to pass through v. �

We state some more lemmata, which will turn out to be useful and may be inter-
esting in their own right.

Lemma 2. Let A be an affine Tits arrangement of rank three. Then there is at most
one vertex of A contained in ∂T .

Proof. By Remark 2, we have |Av| = ∞ for every vertex v ∈ ∂T . Now suppose
there were two different vertices v,w ∈ ∂T . There is a chamber K having v as
a vertex. As A is thin and locally finite, it follows that K has to be contained in
the cone C generated by two neighboring lines passing through v. Let ε > 0 and
consider the ball Bε(v) centered at v with radius ε. Write Cε := Bε(v)∩C and
note that there are infinitely many lines passing through w which accumulate at
∂T . From this, it follows that there is a line passing through w and intersecting Cε
for every ε > 0. Hence, A contains a line intersecting K , a contradiction. �

Lemma 3. Let A be a Tits arrangement of rank three. Assume that A∗ ⊂ V (P) for
some homogeneous polynomial P ∈R[x, y, z] of degree d. Write P = Q ·

∏
1≤i≤s li ,

where the l1, . . . , ls ∈ R[x, y, z] are (not necessarily distinct) linear forms and Q
has no linear factors. Then A determines at most s vertices of weight exceeding d.

Proof. A vertex v determined by A is a point in P2(R). Therefore, the dual l := v∗

is a line in (P2(R))∗. By Bézout’s theorem we know that |A∗∩ l| ≤ |V (P)∩ l| ≤ d ,
unless l is a component of V (P). As by assumption V (P) contains at most s linear
components, this proves the claim. �

Lemma 4. Let A be a Tits arrangement of rank three. Suppose there is a vertex v
of weight two which is surrounded by vertices v1, v2, v3, v4 of weight three. Then
A is spherical and |A| ∈ {6, 7}.

Proof. Notice first that all the vertices v, v1, v2, v3, v4 are in the interior of the Tits
cone by Remark 2. We denote the lines intersecting in v by l1, l2 and we agree that
v1, v3 ∈ l1 while v2, v4 ∈ l2. It is clear that there are no further vertices lying in
the segment between v1 and v4 and the same is true for the segments between v1

and v2, v2 and v3, v3 and v4. Denote the line passing through vi and v j by li, j and
observe that the spherical arrangement B ⊂A defined by B := {li, j | 1≤ i < j ≤ 4}
is simplicial. Moreover, there are chambers Ki, j of A which do not contain v but
which contain vi , v j for {i, j} ∈ {{1, 4}, {1, 2}, {2, 3}, {3, 4}}. As A is simplicial,
these chambers are simplicial cones.

Now suppose there was a line g supporting an edge of a chamber Ki, j such that
g ∈ A \ B. Then g needs to pass through either vi or v j . But then the weight of
either vi or v j needs to be strictly greater than three, contradicting our assumption.
This shows that there is precisely one line which one may add to B in such a way
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that the obtained arrangement is simplicial with w(vi )= 3 for 1≤ i ≤ 4. Namely,
the line passing through the points l1,2 ∩ l3,4 and l1,4 ∩ l2,3. �

The next proposition and theorem will simplify the proof of Proposition 2.

Proposition 1. Let A be a Tits arrangement of rank three. Assume that A∗ is
contained in the union of two lines. Then A is a near pencil.

Proof. Clearly, we may assume that |A|> 4. So suppose that A∗ ⊂ l1 ∪ l2. Then
after dualizing the lines l1 and l2 become two points v1, v2 ∈ P2(R) and we have
Av1 ∪Av2 =A. Without loss of generality we may assume that w(v1)= |Av1 |> 2.
Moreover, as A is a Tits arrangement there must exist a line l ∈A such that v1 /∈ l.
But l and every other line of A which does not pass through v1 has to pass through
v2. It follows from Lemma 3 that v2 is the only point on l which could potentially
be a vertex of weight greater than two. But as |Av1 | > 2, the line l contains at
least one segment bounded by two vertices of weight two. Hence by Lemma 1 it
follows that A is a near pencil (and a posteriori, there are at most two lines passing
through v2). �

Remark 4. In the situation of Proposition 1 there is a unique α ∈ A∗ such that
A∗ \{α} is contained in one of the two lines l1, l2 while α lies in the other one.

Theorem 1. Near pencils are the only Tits arrangements of rank three whose dual
point sets lie on a conic.

Proof. Let P ∈ R[x, y, z] be a homogeneous polynomial of degree two and set
σ := V (P). Suppose that A∗ ⊂ σ for some rank three Tits arrangement A. First,
assume that P factors in two distinct linear polynomials. Then by Proposition 1
the only Tits arrangements lying on σ are near pencils. If P factors as a square of a
linear polynomial, then every α ∈A∗ lies on a single line which means that all lines
of A pass through a single point. Hence A is not simplicial. Now, finally suppose
that P is irreducible. By Lemma 3, the weight of any vertex of A is bounded by
two. But this implies that A is a near pencil consisting of three lines. �

The next proposition is a first step towards our main theorem. Before stating it,
we need to introduce the affine reflection arrangement of type Ã2.

Definition 5. Let V :=R3 with standard basis e1, e2, e3 and denote the correspond-
ing dual basis vectors by α1, α2, α3 ∈ V ∗. Consider the matrix

C :=

 2 −1 −1
−1 2 −1
−1 −1 2

 .
For 1≤ i, j ≤ 3 we define reflections σi : V ∗→ V ∗ via the formulae

σi (α j ) := α j −Ci, jαi .
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Figure 2. A subset of an arrangement of type Ã2.

The (infinite) subgroup of GL(V ∗) generated by σ1, σ2, σ3 is called Ã2. Let O be
the union of the orbits of α1, α2, α3 under Ã2. Define the arrangement A := {α⊥ |
α ∈O}. It is well known that A defines an affine rank three Tits arrangement. Any
arrangement which is projectively isomorphic to A is then said to be of type Ã2.
(See Figure 2 for a visualization of such an arrangement.)

Remark 5. i) The matrices which give rise to affine Tits arrangement in the manner
of Definition 5 are called generalized Cartan matrices of affine type. A complete
classification as well as explicit descriptions of the corresponding root systems can
be found for instance in [Kac 1990]. We observe that all arrangements obtainable
in this way are locally spherical. Thus, one might believe that this is true for every
affine Tits arrangement. However, this is not the case (see the proof of Corollary 1).

ii) We observe that for any arrangement (A, T ) of type Ã2, there are three points
v1, v2, v3 ∈ ∂T such that A = Av1 ∪Av2 ∪Av3 . However, none of these forms a
vertex of A. In Figure 2, the points v1, v2, v3 are the intersection points at infinity
of classes of mutually parallel lines. Moreover, by the above we see that the dual
point set A∗ is contained in the union of three lines (dual to v1, v2, v3 respectively).

Proposition 2. Let A be an affine Tits arrangement of rank three. Suppose that A∗

is contained in the union of at most three lines and assume that A is not a near
pencil. Then A is an arrangement of type Ã2.

Proof. Taking into account Theorem 1 it is enough to consider the case where
A∗ is contained in the union of exactly three lines: A∗ ⊂ l1 ∪ l2 ∪ l3. We define
v1 := l∗1, v2 := l∗2, v3 := l∗3 so that A = Av1 ∪Av2 ∪Av3 . Now we consider three
cases:
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a) Suppose that there is exactly one i ∈ {1, 2, 3} such that |Avi | = ∞. We may
assume that i = 1. Choose a line l ∈A such that l passes through v2 but not through
v1. As |Av3 |<∞, we conclude that l contains infinitely many vertices of weight
two but only finitely many vertices of weight possibly greater than two. Thus, we
find that l contains a segment bounded by vertices of weight two. Lemma 1 now
shows that A must be a near pencil, contradicting our assumption.

b) Suppose that there are exactly two indices i, j ∈ {1, 2, 3} such that |Avi | =

|Av j | =∞. We may assume that {i, j} = {1, 2}. Again, we choose a line l which
passes through v2 but not through v1. Because |Av3 |<∞, we may again conclude
that l contains infinitely many vertices of weight two but only finitely many vertices
of weight possibly greater than two. As in part a), Lemma 1 tells that A must be a
near pencil, which is impossible.

c) Suppose that |Av1 |= |Av2 |= |Av3 |=∞. Then the corresponding points v1, v2, v3

all lie on the line ∂T . In the affine space E :=P2(R)\∂T , the lines through v1, v2, v3

are given by three respective classes of mutually parallel lines. This shows that A
must be of type Ã2 (compare Figure 2). �

Remark 6. i) While case a) in the above proof is possible only for near pencil
arrangements, we note that there is no Tits arrangement at all satisfying the condi-
tions of case b).

ii) If we drop the condition on A to be affine, then we find some more possible
(spherical) arrangements such that A∗ is contained in the union of three lines: for
instance the arrangement of type A(10,3) (as denoted in [Grünbaum 2009]) and
some of its subarrangements.

Our next goal is to show that there is no affine Tits arrangement A such that A∗

is contained in the locus of an irreducible homogeneous cubic polynomial. This
is established in the following result, which uses the well known fact that an irre-
ducible singular cubic curve in P2(R) has precisely one singular point, which is
either an isolated point, a cusp or a double point.

Lemma 5. There is no affine Tits arrangement of rank three whose dual point set
is contained in the locus of an irreducible homogeneous cubic polynomial.

Proof. Assume that A∗ ⊂ C := V (P) for some homogeneous irreducible cubic
polynomial P . By Lemma 3, we see that w(v)≤ 3 for every vertex v. In particular,
the arrangement A cannot be a near pencil. Assume that there exists a vertex v of
weight two. Then the above together with Lemma 1 implies that every neighbor
of v has weight three. But then by Lemma 4, we conclude that A is spherical, a
contradiction. Thus, every vertex of A has weight three. In particular, every α ∈A∗

is a smooth point of C : every line through a pair of different points α, β ∈A∗ meets
C in a unique third point denoted α⊕ β ∈ A∗. Moreover, as A is assumed to be
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affine, the set A∗ is infinite with unique accumulation point (∂T )∗, in particular
(∂T )∗ ∈ C . Now we consider two cases.

Case a): Assume that (∂T )∗ is a smooth point of C . Then we can find α ∈ A∗

such that the line through α and (∂T )∗ meets C in a third point γ . Now choose
a sequence (αn)n∈N from A∗ \{α} converging towards (∂T )∗. Then by the above,
we see that the sequence (α⊕αn)n∈N consists of elements from A∗ and converges
towards γ . As by construction (∂T )∗ 6= γ , this is a contradiction to A having a
unique accumulation point.

Case b): Assume that (∂T )∗ is a singular point of C . As (∂T )∗ cannot be an
isolated point, we may assume that C has either a double point or a cusp at (∂T )∗.

i) Assume first that (∂T )∗ is a cusp of C . By the Weierstrass normal form for
cubic polynomials we may assume that P := y2z− x3, in particular (∂T )∗ = (0 :
0 : 1). Then in the affine z = 1 part of P2(R), the curve C consists of two branches
C1,C2 meeting in (∂T )∗ and given explicitly by

C1 := {(x : y : 1) ∈ P2(R) | y = x3/2
},

C2 := {(x : y : 1) ∈ P2(R) | y =−x3/2
}.

As (∂T )∗ is the unique accumulation point of A∗, there is a point α1 ∈ A∗ ∩
(C1 ∪C2) whose x-coordinate is maximal (when the z-coordinate is normalized to
1). In particular, we have (0 : 1 : 0) /∈A∗ ∩C . Without loss of generality, we may
assume that α1 ∈ C2. Let α2 ∈ C2 \{α1} be the point on C2 whose x-coordinate
is exceeded only by α1. Similarly, let α3 ∈ C2 \{α1, α2} be the point on C2 whose
x-coordinate is exceeded only by α1, α2. One checks that the point of A∗∩C1 with
maximal x-coordinate is then given by β := α1⊕α2 (remember that α⊕α′ ∈A∗

for α 6= α′ ∈A∗). In particular, if γ denotes the second point of C on the tangent
to C at β, then we see that α3 necessarily has x-coordinate strictly smaller than γ .
But then the point ((α1⊕ α2)⊕ α3)⊕ α1 ∈ A∗ ∩C2 is different from α2 and has
x-coordinate strictly greater than α3 but less than α1, contradicting the choice of α3.

ii) Now assume that C has a double point at (∂T )∗. We may assume that
C :=V (P) for P= y2z−x2(x+z). Then in the affine z=1 part of P2(R), the curve
C is given by the union of the following three sets C1,C2,C3 given explicitly by

C1 := {(x : y : 1) ∈ P2(R) | x > 0, y = x(x + 1)1/2},

C2 := {(x : y : 1) ∈ P2(R) | x > 0, y =−x(x + 1)1/2},

C3 := {(x : y : 1) ∈ P2(R) | −1≤ x ≤ 0, y =±x(x + 1)1/2}.

Using the fact that (∂T )∗ = (0 : 0 : 1) is an accumulation point of A∗, we see that
both C1 ∩A∗,C2 ∩A∗ are infinite. Focusing on these two sets, one can use the
same techniques as in i) to obtain another contradiction. �
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Remark 7. If one drops the assumption that A is affine, then there are candidates
for (spherical) Tits arrangements A such that A∗ ⊂ V (P) for an irreducible cubic
polynomial P: namely all spherical arrangements having only vertices of weight
two or three. Since these are precisely the arrangements A(6, 1), A(7, 1) and the
near pencils with at most four lines, we will not elaborate on this further.

It remains to consider the possibility that A∗ is contained in the locus of a cubic
homogeneous polynomial having an irreducible quadratic factor. As preparation,
we formulate the following remark and definition which will be useful later.

Definition 6. a) Let σ be an irreducible conic in P2(R) and consider a subset
M ⊂ σ . There exists a projectivity 9 such that 9(σ) is given by the polynomial
P := x2

+ y2
−z2 and is thus contained entirely in the affine z= 1 part of P2(R). We

say that p1, . . . , pk ∈ M are consecutive with respect to 9, if for any 1≤ i ≤ k− 1
it is true that one of the segments on 9(σ) bounded by 9(pi ),9(pi+1) contains
no other point of 9(M).

b) Consider the map φ : R3
×R3

→ R3 sending v1, v2 ∈ R3 to their vector product
v1× v2. This induces a map ψ :

(
P2(R)×P2(R)

)
\1→ (P2(R))∗, where 1 :=

{(x, x) | x ∈P2(R)}; (ψ(〈v1〉, 〈v2〉) is the line dual to the projective point 〈v1×v2〉).
By a slight abuse of notation, we write ψ(v1, v2) = v1 × v2 ∈ (P

2(R))∗ for two
different projective points v1, v2 ∈ P2(R). Observe that for p, q ∈ (P2(R))∗ the
vector product p× q gives the vertex in P2(R) obtained as the intersection of the
dual lines p∗, q∗. Similarly, if v, v′ are two points in P2(R), then the vector product
v×v′ gives the point in (P2(R))∗ which is dual to the line passing through v and v′.

Now we can prove the following statement. (Compare Theorem 3.6 in [Cuntz
2011b], where case c) of the following proposition is examined for spherical Tits
arrangements.)

Proposition 3. Suppose that A is an affine rank three Tits arrangement and assume
that A∗ ⊂ σ ∪ l for some irreducible conic σ ⊂ (P2(R))∗ and an arbitrary line
l⊂ (P2(R))∗. Then the following statements hold:

a) |A∗ ∩ σ | =∞, unless A is a near pencil.

b) |A∗ ∩ l| =∞ and (∂T )∗ ∈ l.

c) If |σ ∩ l| = 0 then A is a near pencil.

d) If |σ ∩ l| = 1 then σ ∩ l= (∂T )∗, unless A is a near pencil.

e) If |σ ∩ l| = 2 then A is a near pencil.

Proof. a) Define B∗ := A∗ ∩ σ and suppose that |B∗|<∞. Since A is affine and
hence necessarily infinite, the set L∗ := A∗ ∩ l is infinite. We have A = B ∪ L
and it is easy to see that we find a line in B containing a segment bounded by two
vertices of weight two: pick an arbitrary line g ∈ B \ L . Then each of the infinitely
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many lines in L produces a unique vertex on g. On the other hand, there are only
finitely many lines in B, which could turn some of the above vertices into triple
points. By Lemma 1 we conclude that A is a near pencil.

b) If A is a near pencil then both statements are easily seen to be true: in this case,
all lines except one pass through the point l∗, thus |A∗ ∩ l| = ∞. Using the fact
that A is locally finite in T , we conclude that l∗ ∈ ∂T , that is (∂T )∗ ∈ l. So we
may assume that A is not a near pencil. We show that the second statement is a
consequence of the first. So suppose that |A∗ ∩ l| =∞ and assume that (∂T )∗ /∈ l.
Dualizing we obtain that the point l∗ does not lie on the line ∂T . Hence l∗ lies
in T and there are infinitely many lines of A passing through l∗. But since A is
locally finite in T this is impossible. So it suffices to prove that |A∗ ∩ l| = ∞.
We show that |A∗ ∩ l| <∞ gives a contradiction: fix some q ∈ A∗ ∩ σ and for
q 6= p ∈ σ ∩A∗ consider the corresponding dual lines p∗, q∗ in P2(R). Different
choices of p will yield different vertices on q∗ and part a) implies that there are
infinitely many such vertices. If |A∗ ∩ l| <∞, then only finitely many of these
vertices can be turned into triple points. Thus, q∗ must contain a segment bounded
by two double points, which by Lemma 1 implies that A is a near pencil. This is
the desired contradiction.

For the proof of c) and d) it suffices to note that A must be a near pencil if (∂T )∗ /∈σ .
Indeed, if this is the case, then we necessarily have |A∗ ∩ σ |<∞, since points of
A∗ may accumulate only in a neighborhood of (∂T )∗ (because A is locally finite
in T ). But then part a) implies that A is a near pencil.

e) After applying a projectivity as in part a) of Definition 6, we may assume that
σ = V (P) where P := x2

+ y2
− z2. So σ is contained entirely in the affine

z = 1 part of (P2(R))∗. We write σ ′ for the conic in P2(R) defined by the same
polynomial.

Suppose that A is not a near pencil. As points of A∗ may accumulate only in a
neighborhood of (∂T )∗, we have (∂T )∗ ∈ σ ∩ l. Observe that for p = (a : b : 1) ∈
σ ∩A∗ ⊂ (P2(R))∗ the corresponding dual line p∗ is the tangent to σ ′ at the point
(−a : −b : 1) ∈ P2(R). In particular, if (∂T )∗ = (x : y : 1), this implies that there
is a sequence of tangent lines to σ ′ converging towards the tangent line at the point
(−x : −y : 1), and this tangent line is precisely ∂T . It remains to identify the dual
lines q∗ corresponding to q ∈ l∩A∗. We may assume without loss of generality
that in the z = 1 part of (P2(R))∗ the line l is given by the equation y = λ for some
0 ≤ λ < 1. Hence any q ∈ l will have homogeneous coordinates q = (x0 : λ : 1).
So if λ > 0, the equation of the dual line q∗ in the z = 1 part of P2(R) will be
y =− x0·x

λ
−

1
λ

; if on the other hand λ= 0, then the equation of q∗ will be x =− 1
x0

.
Hence if λ > 0, then all lines pass through the point (0 : − 1

λ
: 1) which implies

that l∗ = (0 : − 1
λ
: 1); if λ = 0, then all lines pass through l∗ = (0 : 1 : 0). This
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shows that l∗ /∈ σ ′. Since (∂T )∗ ∈ l we conclude that l∗ ∈ ∂T . Now we take ∂T
as line at infinity. Doing so, we obtain A as union of tangent lines to a parabola
together with infinitely many parallel lines each of which being non-parallel to the
symmetry axis of the parabola. But then A is not simplicial. �

The following lemma will be the key to proving the main theorem.

Lemma 6. Let σ be an irreducible conic together with a projectivity 9 as in part
a) of Definition 6. Assume that l is a line touching σ and let A be an irreducible
affine rank three Tits arrangement. If A∗ ⊂ σ ∪ l, then A is determined by spec-
ifying four points on σ which are consecutive with respect to 9. More precisely,
if p−1, p0, p1, p2, p3, p4 ∈ A∗ ∩ σ are six consecutive points (with respect to 9),
then we have the following formulae for p−1 and p4 in terms of p0, . . . , p3:

p4 =
(

p0×
(
l∗× (p1× p3)

))
×
(

p1×
(
l∗× (p2× p3)

))
, (1)

p−1 =
(

p2×
(
l∗× (p0× p1)

))
×
(

p3×
(
l∗× (p0× p2)

))
. (2)

Moreover, if v is a vertex of weight two of A with lines g1, g2 ∈A passing through
v, then l∗ ∈ g1 or l∗ ∈ g2.

Proof. Denote by L1, L2 ⊂ A the set of lines corresponding to elements in A∗ ∩
σ,A∗ ∩ l respectively. Observe that every h ∈ L2 passes through the point l∗ while
no line belonging to L1 passes through l∗: if l∗ ∈ g and g∗ ∈ σ for some g, then
g∗ = l ∩ σ = (∂T )∗, by part d) of Proposition 3. As A is thin by definition, we
conclude that g /∈A.

Note also that every vertex of weight two of A must lie on a line belonging to
L2. Indeed, assume there was a vertex v of weight two such that v = g∩ g′ for
some g, g′ ∈ L1. As A∗ ⊂ σ ∪ l and because no line belonging to L1 passes through
l∗, we may use Lemma 3 to conclude that every neighbor of v has weight bounded
by three. But then by Lemma 1 every neighbor of v has weight precisely three,
because by assumption A is not a near pencil. By Lemma 4 we obtain that A is
spherical, a contradiction. In particular, it follows that for every vertex v′ obtained
as intersection of elements in L1 there is a line h ∈ L2 passing through v′. Also,
every vertex of weight two is a neighbor of l∗, proving the last claim of the lemma.

These conditions already suffice to prove the claim. Let p0, p1, p2, p3 ∈A∗ ∩σ
be four consecutive points (with respect to 9). We need to construct the points
p−1, p4 ∈A∗∩σ such that both p−1, p0, p1, p2 and p1, p2, p3, p4 are consecutive
(with respect to 9). By symmetry, it suffices to construct p4. For this, denote the
line corresponding to pi by gi and let h be the line passing through the vertices
l∗, g1 ∩ g3. Similarly, denote by h′ the line passing through the vertices l∗, g2 ∩ g3.
Then g4 is the line passing through the vertices g0∩h, g1∩h

′. From this, one reads
off that (1) holds. This completes the proof. �
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Remark 8. Let P ∈ R[x, y, z] be a homogeneous cubic polynomial having an
irreducible quadratic factor and let A be a spherical Tits arrangement such that
A∗ ⊂ V (P). If A is not a near pencil, then one may use Lemma 3 to conclude that
there are two possibilities for A: either A is the arrangement A(7, 1) or A belongs
to the infinite family R(1) (see [Grünbaum 2009]).

Now we can construct the arrangement of type Ã0
2 and prove that up to projective

isomorphism, it is the only non-trivial affine rank three Tits arrangement whose
dual point set is contained in the locus of a cubic polynomial having an irreducible
quadratic factor:

Proposition 4. Up to projectivity, there is only one irreducible affine rank three
Tits arrangement A such that A∗ is contained in the locus of a cubic polynomial P
having an irreducible quadratic factor. The arrangement A may be defined by the
following set of dual points:

A∗ =
{(

k : k(k−1)
2 : 1

)
,
(
1 : k

2 : 0
)
| k ∈ Z

}
.

Proof. Let l⊂ (P2(R))∗ be the line corresponding to the linear factor of P and let
σ ⊂ (P2(R))∗ be the irreducible conic corresponding to the quadratic factor of P .
We then have A∗ ⊂ σ ∪ l⊂ (P2(R))∗ and by Proposition 3 we may assume that l
touches σ at the point (∂T )∗.

Let p1, p2, p3, p4 ∈A∗ ∩ σ be four consecutive points (with respect to some pro-
jectivity 9). After a change of coordinates we may assume that

(∂T )∗ = (0 : 1 : 0) , p2 = (1 : 0 : 1) ,

p3 = (2 : 1 : 1) , p4 = (3 : 3 : 1) .

We then have p1 = (x : y : z) for some x, y, z ∈ R. Now consider the vertices
v := p2× p3, v

′
:= p1× p4 ∈ P2(R) and let g⊂ P2(R) be the line passing through

v and v′. Then the last claim of Lemma 6 implies that g ∈ A and that g passes
through the vertex l∗. As l∗ ∈ ∂T , we may write l∗ = (a : 0 : b) for certain a, b ∈ R.
In order to prove the statement we will distinguish four cases.

Case 1. Assume that x = y = 0. This implies that p1 = (0 : 0 : 1). We claim that
l∗= (0 : 0 : 1). To see this write l∗= (a : 0 : b) for some a, b ∈R as above. The fact
that g passes through l∗ implies that a = 0 and therefore we have l∗ = (0 : 0 : 1).

Now consider the projectivity 8 : (P2(R))∗→ (P2(R))∗ taking the point pi to
pi+1 for 1≤ i ≤ 4. We obtain

A∗ ∩ σ =
{
8k(p1) | k ∈ Z

}
=
{(

k : k(k−1)
2 : 1

)
| k ∈ Z

}
,

using Lemma 6 and induction. Observe that the lines of A corresponding to points
in A∗ ∩ l are exactly the lines passing through l∗ and a vertex of the form p× p′
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for p, p′ ∈A∗∩σ (see the proof of Lemma 6). We conclude that A∗∩ l=
{(

1 : k
2 :

0
)
| k ∈ Z

}
. It is now easy to check that A∗ =

{(
k : k(k−1)

2 : 1
)
,
(
1 : k

2 : 0
)
| k ∈ Z

}
defines an irreducible affine Tits arrangement.

Case 2. Assume that x 6= 0 and y = 0. Then we may assume that p1 = (1 : 0 : z).
Write l∗= (a : 0 : b) for a, b∈R. The fact that g passes through l∗ implies that a 6=0.
Thus, we may assume that l∗ = (1 : 0 : b). It follows that z = b+4

3 and therefore
p1 =

(
1 : 0 : b+4

3

)
. Observe that the five given points (∂T )∗, p1, p2, p3, p4 on σ

determine its equation. Using this together with Lemma 6, the condition p5 ∈ σ

implies that b ∈ {−1,− 3
2 ,−

7
3 ,−3}. As p0, p5 6= pi for 1 ≤ i ≤ 4, we conclude

that b ∈ {−1,− 3
2 ,−3} is impossible. In the remaining case b = −7

3 , we observe
that the conic σ may be defined by the polynomial f =−10

3 X2
+ 2XY + 28

3 X Z −
10
3 Y Z − 6Z2. By assumption, we know that the line l touches σ at the point (∂T )∗.

Thus, as l∗ =
(
1 : 0 : − 7

3

)
, there exists 0 6= λ ∈ R such that the following equations

are satisfied:

1= λ
∂ f
∂X

∣∣
(∂T ∗), 0= λ

∂ f
∂Y

∣∣
(∂T ∗), −

7
3
= λ

∂ f
∂Z

∣∣
(∂T ∗).

The first equation gives λ= 1
2 . But then the third equation reads − 7

3 =−
5
3 . This

contradiction shows that Case 2 cannot occur.

Case 3. Assume that x = 0 and y 6= 0. Then without loss of generality, we may
assume that p1= (0 : 1 : z). Again, we write l∗= (a : 0 : b) for suitable a, b∈R and
as g passes through l∗, we obtain a 6= 0. Thus, we may assume that l∗ = (1 : 0 : b),
leading to z =− b+3

3 . We conclude that p1 = (0 : 1 : − b+3
3 ). The relation p5 ∈ σ

gives b ∈ {−3,−1}. As p5 6= pi for 1≤ i ≤ 4, we conclude that this is impossible.

Case 4. Assume that both x 6= 0 and y 6= 0. Then we may suppose that p1 =

(1 : y : z). Write l∗ = (a : 0 : b) for suitable a, b ∈ R. As before, by considering the
line g, we conclude that −3za− 3ay− by+ 4a+ b= 0. Suppose that a = 0. Then
without loss of generality b= 1 and we have y = 1, in particular p1 = (1 : 1 : z). As
p5 ∈ σ , we conclude that z ∈ {13 ,

1
2}. Again, this is not possible because p0, p5 6= pi

for 1≤ i ≤ 4.
Hence, we may assume that a = 1. In particular, we have z = 4

3 −
b(y−1)

3 − y
and p1 =

(
1 : y : 4

3 −
b(y−1)

3 − y
)
.

Suppose that b 6= −3. Using the condition p5 ∈ σ , we compute that y is one of
1, −3b2

−10b−7
2(b+3) , 2b2

+5b+3
2(b2+3b+3) . As p1 6= p4, we can exclude the case y = 1.

Likewise, if y is the last of the three numbers, we obtain p1= p5, a contradiction.
So we must have y= −3b2

−10b−7
2(b+3) . This implies that p1=

(
1 : −3b2

−10b−7
2(b+3) :

b2
+4b+5

2

)
.

Therefore, the conic σ may be defined by the polynomial

f := (b− 1)X2
+ 2XY − (b− 7)X Z − 2(b+ 4)Y Z − 6Z2.
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To see this, one only has to check that f (pi )= 0 for 1≤ i ≤ 5. The line l touches
σ at the point (∂T )∗ = (0 : 1 : 0). Therefore, as l∗ = (1 : 0 : b), we know that there
exists 0 6= λ ∈ R such that the following equations hold:

1= λ
∂ f
∂X

∣∣
(∂T ∗), 0= λ

∂ f
∂Y

∣∣
(∂T ∗), b = λ

∂ f
∂Z

∣∣
(∂T ∗).

The first equation gives λ = 1
2 . Thus, the third equation yields b = −2 and we

obtain p1 =
(
1 : 1

2 :
1
2

)
= (2 : 1 : 1)= p3, a contradiction.

It remains to consider the case b = −3. Then we have l∗ = (1 : 0− 3) and
p1 =

(
1 : y : 1

3

)
. Clearly, we have y 6= 1 because p1 6= p4. Then Lemma 6 yields

p5 = (3 : 3 : 1)= p4, another contradiction. �

Corollary 1. There are irreducible affine rank three Tits arrangements which are
not locally spherical.

Proof. This follows from Proposition 4. The arrangement constructed there is such
an example: the vertex l∗ is incident with infinitely many lines of A. �

Finally, using Proposition 2, Lemma 5, Proposition 3, and Proposition 4, we
obtain the promised main theorem:

Theorem 2. Let A be an affine rank three Tits arrangement such that A∗ is con-
tained in the locus of a homogeneous polynomial of degree three. Then up to projec-
tivity, A is either a near pencil, an arrangement of type Ã2, or it is an arrangement
of type Ã0

2.

4. Open questions and related problems

In this section we point out some possibly interesting related problems. First, we
ask if there exists an affine rank three Tits arrangement A (viewed as arrangement
of lines in the real projective plane) such that A∗ is contained entirely in the locus
of an irreducible homogeneous polynomial.

Problem 1. Is there an irreducible homogeneous polynomial P ∈ R[x, y, z] such
that A∗ ⊂ V (P) for a suitable irreducible affine rank three Tits arrangement A?

Observe that given a Tits arrangement A and an irreducible homogeneous poly-
nomial P of degree d such that A∗ ⊂ V (P), it follows immediately that A is
locally spherical. Indeed, suppose there was a vertex v of A such that infinitely
many lines of A pass through v. Then after dualizing it follows that infinitely many
points of A∗ lie on the line v∗. But since by assumption A∗ ⊂ V (P), it follows
that infinitely many points lie on the intersection V (P)∩ v∗. But Bézout’s theorem
tells that |V (P)∩ v∗| ≤ d · 1= d <∞, because P was assumed to be irreducible
and hence v∗ cannot be a component of V (P). This contradiction shows that A
must be locally spherical.
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This leads to the next problem. Are there other examples of irreducible affine
rank three Tits arrangements which are not locally spherical?

Problem 2. Classify (up to projectivities) all irreducible affine rank three Tits ar-
rangements A which are not locally spherical.

Observe that if A is not locally spherical, then by Lemma 2 there is precisely
one vertex v on the boundary of the Tits cone T . In particular, it follows that for
every line l 6= v∗ we have |A∗ ∩ l|<∞. If in addition we know that A∗ ⊂ V (P)
for some homogeneous polynomial P of degree d, then by Bézout’s theorem the
last inequality can be strengthened to

|A∗ ∩ l| ≤ |V (P)∩ l| ≤ d

for every line l 6= v∗ which is not a component of V (P).

We close this section by proposing the following final problem which is probably
the most difficult:

Problem 3. Classify (up to projectivities) all affine rank three Tits arrangements
A such that A∗ ⊂ V (P) for some homogeneous polynomial P ∈ R[x, y, z].

A solution to the last problem seems to be an important step towards a classifica-
tion of all affine rank three Tits arrangements. Indeed, if A is such an arrangement
and if A=

⋃
i∈I L i for some finite index set I and sets of mutually parallel lines

L i , i ∈ I , then A∗ is contained in the locus of a polynomial P of degree |I |: the
polynomial P is a product of linear factors corresponding to the sets L i , i ∈ I . For
example, affine Tits arrangements coming from Nichols algebras of diagonal type
are always of this type.

Even if we enlarge A by finitely many countable subsets of tangent lines to
certain conics, we still find a polynomial P ′ such that the enlarged arrangement is
contained in the locus of P ′. The polynomial P ′ may be taken as the product of
P together with the irreducible quadratic polynomials defining the (dual) conics in
question. This gives the impression that the class of rank three affine Tits arrange-
ments lying on the locus of some polynomial is rather large, as demonstrated by the
fact that only usage of at most quadratic polynomials already leads to nontrivial
considerations. It may even be conjectured that for every irreducible rank three
affine Tits arrangement B there is a certain polynomial Q such that B∗ ⊂ V (Q). If
this is true, then clearly a solution to Problem 3 amounts to a complete classification
of affine rank three Tits arrangements.
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Chamber graphs of minimal parabolic
sporadic geometries

Veronica Kelsey and Peter Rowley

We explore the minimal characteristic two parabolic geometries for the finite
sporadic simple groups, as introduced by Ronan and Stroth. The chamber graphs
of the geometries are studied, with the aid of Magma, focusing on their disc
structure and geodesic closures. For the larger sporadic geometries which are
beyond computational reach we give bounds on the diameter of their chamber
graphs.

1. Introduction

In this paper, with the aid of computer programs [Kelsey and Rowley 2019], we in-
vestigate the chamber graphs of the characteristic two minimal parabolic geometries
for the finite sporadic simple groups which are listed in [Ronan and Stroth 1984].
The motivation for the Ronan and Stroth catalogue was to obtain geometries which
captured certain features seen in the buildings associated with the finite groups of
Lie type.

The common thread of these geometries is a generalization of the idea of a
minimal parabolic subgroup of a group of Lie type. We briefly review minimal
parabolic subgroups, following Ronan and Stroth. Suppose G is a finite group, p
a prime and S ∈ Sylp(G). Set B = NG(S). A subgroup P of G which properly
contains B with Op(P) 6= 1 and for which B is contained in a unique maximal
subgroup of P is called a minimal parabolic subgroup of G with respect to B.

Let P1, . . . , Pn be minimal parabolic subgroups of G with respect to B. Put
I = {1, . . . , n}. If 〈Pi | i ∈ I 〉 = G and 〈Pj | j ∈ J 〉 6= G for all proper subsets
J of I , we call {Pi | i ∈ I } a characteristic p minimal parabolic system of G of
rank n.

From now on we suppose {Pi | i ∈ I } is a rank n minimal parabolic system. For
nonempty J ⊆ I , we set PJ = 〈Pj | j ∈ J 〉 and for J = ∅, PJ = B. If for all
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Keywords: chamber graph, geometries, sporadic simple groups.
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subsets J, K ⊆ I we have

Pj ∩ Pk = PJ∩K

the minimal parabolic system {Pi | i ∈ I } is called a geometric system.
We shall concentrate here on the case p = 2 with systems that are geometric.

In fact, it is the chamber graph of these geometries we focus on. Chamber graphs
were employed by Tits to give an alternative approach to buildings; see [Ronan
2009; Tits 1981]. They have proved to be a fruitful way of viewing buildings and
so it is natural to study the chamber graphs of related geometries.

We recollect the salient features of chamber systems and chamber graphs that
we need. Let 0 be the geometry associated with {Pi | i ∈ I }. In the group theory
context, the chambers of the chamber system are {Bg | g ∈ G}. The chambers are
the vertices of the chamber graph C(0).

Two (distinct) chambers Bg and Bh of C(0) are i-adjacent if gh−1
∈ Pi , and two

chambers are adjacent in the chamber graph, C(0), if they are i-adjacent for some
i ∈ I . Since B is self-normalizing in G, C(0) may also be described as having
{Bg
| g ∈ G} as its vertex set with Bg and Bh i-adjacent if gh−1

∈ Pi .
All the chamber systems we consider here will be flag transitive. See [Bueken-

hout 1995, Chapter 3] for further background on group geometries.
In [Ronan and Stroth 1984] a dictionary of rank 2 subdiagrams is given, re-

sulting in diagrams for these geometries analogous to the Dynkin diagrams of
buildings. Usually these diagrams for the sporadic geometries have just one rank 2-
subdiagram which is not associated with a crystallographic root system. So in this
sense they look very close to buildings. This raises the question as to how chamber
graphs of buildings and chamber graphs of the sporadic geometries compare. We
recall that all essential properties of a building are encoded in its chamber graph
(see [Tits 1981], for example) and so we cannot expect them to be too similar.

For γ a chamber of C(0) and i ∈ N,

1i (γ )= {γ
′
∈ C(0) | d(γ, γ ′)= i},

where d( , ) is the usual distance metric on the chamber graph C(0). We refer to
1i (γ ) as the i -th disc of γ . For γ, γ ′ ∈ C(0) any path of shortest distance between
them in C(0) is called a geodesic. The geodesic closure of a set of chambers X is
defined to be the set X of all chambers lying on some geodesic of γ, γ ′, for any
pair γ, γ ′ ∈ X . The graph theoretic structure and size of 1i (γ ) tells us much about
C(0). Suppose d = Diam C(0), the diameter of C(0), then we call 1d(γ ) the last
disc of γ .

Assume that γ ∈ C(0) is such that StabG(γ )= B. If G is a Lie type group and
0 its associated building, then the last disc of γ displays a number of interesting
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facets of 0. Firstly, S acts simply transitively on the chambers in the last disc of
γ (and so the size of this disc is |S|). More importantly if we choose any γ ′ in
the last disc of γ , then the geodesic closure of γ and γ ′ gives the chambers of an
apartment of 0.

Accordingly, for the minimal parabolic sporadic geometries we investigate here
we shall be looking for those with a small number of B-orbits in the last disc,
and for these we shall also probe their geodesic closures. The minimal parabolic
geometries of M12,M24, J2, J3, He,McL and Ru fall into this category.

2. Statement of results

Our first result concerns the diameter of C(0).

Theorem 2.1. The diameter, or bounds for the diameter, of the chamber graphs
of the minimal parabolic sporadic geometries are as shown in Table 1.

In the table, the second column gives the set {Pi/O2(Pi ) | i ∈ I }, which we refer
to as the set of induced panel residues of 0. The third column gives the diameter
of C(0), and the last gives the number norbits of B orbits of 1d(γ0).The use of −
indicates we have no information.

In Theorem 2.1, M23 has two different minimal parabolic geometries whose
induced panel residues are the same. They differ in the choice of 24

: L3(2) (
=〈P1, P3〉 or 〈P3, P4〉 in [Ronan and Stroth 1984]) in H = 24

: Alt (7). One choice
leaves a 1-space of O2(H) invariant and the other a 3-space of O2(H) invariant.
The former is called the 1-geometry and the latter the 3-geometry. Also in Theorem
2.1, to distinguish two of the McL geometries we use the same notation for minimal
parabolic subgroups as in [Ronan and Stroth 1984].

Surveying the last column of Theorem 2.1 we see a number of geometries for
which the last disc consists of relatively few B-orbits. These geometries certainly
warrant further attention — indeed, those of M24 and He have been dissected in
[Carr and Rowley 2018].

There has been considerable effort expended in collecting geometries, just as
in [Ronan and Stroth 1984], which share properties similar to those in buildings.
See [Buekenhout 1979a; 1979b; 1995; Kantor 1981; Ronan and Smith 1980; Tits
1980] for an overview of these. The, so-called, GABs which stands for geometries
that are almost buildings are among this collection. Perversely, from the point of
view of the number of B-orbits in the last disc these geometries are very different
from buildings; see [Kelsey and Rowley 2019]. In this sense some of the sporadic
geometries in Theorem 2.1 are more like buildings.
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group induced panel residues d = Diam C(0) norbits

M12 {L2(2), L2(2)} 12 1
M22 {L2(2), Sym(5)} 5 12
M23 {L2(2), L2(2), Sym(5)} 7 228

1-geometry
{L2(2), L2(2), Sym(5)} 7 224

3-geometry
M24 {L2(2), L2(2), L2(2)} 17 2
J2 {L2(2), L2(4)} 8 2
J3 {L2(2), L2(4)} 14 1
J4 {L2(2), L2(2), Sym(5)} 12≤ d ≤ 75 –

Co3 {L2(2), L2(2), L2(2)} 13≤ d –
Co2 {L2(2), L2(2), Sym(5)} 15 86
Co1 {L2(2), L2(2), L2(2), L2(2)} 15≤ d ≤ 48 –
HS {L2(2), Sym(5)} 8 39
He {L2(2), L2(2), L2(2)} 21 1
Ly {L2(2), Sym(9)} 5≤ d –

{L2(2), Sym(5)} 15≤ d –
McL {L2(2), L2(2), L2(2)} 20 4

{L2(2), L2(2), Sym(5)} 11 1596
{P1, Pσ

1 , P5}

{L2(2), L2(2), Sym(5)} 10 2042
{Pσ

1 , Pσ
2 , P5}

{L2(2), L2(2), L2(2), L2(2)} 14 881
O’N {L2(2), L3(4).2} 5≤ d –
Ru {L2(2), Sym(5)} 12 3
Sz {L2(2), L2(2), L2(4)} 16 57

Fi22 {L2(2), L2(2), Sym(5)} 8≤ d ≤ 18 –
Fi23 {L2(2), L2(2), L2(2), Sym(5)} 11≤ d ≤ 32 –
Fi ′24 {L2(2), L2(2), L2(2), L2(2)} 21≤ d ≤ 90 –
Th {L2(2), Alt (9)} 9≤ d ≤ 11 –
HN {L2(2), Alt (5) oZ2} 9≤ d ≤ 11 –
B {L2(2), L2(2), L2(2), Sym(5)} 17≤ d ≤ 64 –
M {L2(2), L2(2), L2(2), L2(2), L2(2)} 42≤ d ≤ 344 –

Table 1. Information on the the diameter of the chamber graphs of the minimal
parabolic sporadic geometries. The second column gives the set {Pi/O2(Pi ) | i ∈ I },
the third gives the diameter of C(0), and the last gives the number norbits of B orbits
of 1d(γ0).The use of − indicates we have no information.
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Our second result describes the disc structure of some of the minimal parabolic
sporadic geometries.

Theorem 2.2. Let G denote one of the sporadic simple groups M12, M22, M23, J2,
J3, Co2, HS, McL and Ru. Let 0 denote a minimal parabolic geometry associated
to one of these groups. Set C = C(0), and let γ0 be a fixed chamber of C. Put
B = StabG(γ0) and let norbits be the number of B orbits of 1d(γ0).

(i) If G ∼= M12 and 0 has induced panel residues {L2(2), L2(2)}, then C has
1485 chambers, 44 B-orbits, diameter 12 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8 9 10 11 12
|1i (γ0)| 4 8 16 32 64 128 256 384 320 192 64 16

norbits 2 2 2 2 3 4 6 6 6 6 3 1

(ii) If G ∼= M22 and 0 has induced panel residues {L2(2), L2(2)}, then C has
3465 chambers, 60 B-orbits, diameter 5 and this disc structure:

i-th disc 1 2 3 4 5
|1i (γ0)| 16 56 432 1040 1920

norbits 4 6 15 17 17

(iii) If G ∼= M23 and 0 has induced panel residues {L2(2), L2(2), Sym(5)}, the
1-geometry, then C has 79,695 chambers, 835 B-orbits, diameter 7 and this
disc structure:

i-th disc 1 2 3 4 5 6 7
|1i (γ0)| 18 92 664 3104 10,728 36,032 29,056

norbits 5 13 32 81 157 318 228

(iv) If G ∼= M23 and 0 has induced panel residues {L2(2), L2(2), Sym(5)}, the
3-geometry, then C has 79,695 chambers, 835 B-orbits, diameter 7 and this
disc structure:

i-th disc 1 2 3 4 5 6 7
|1i (γ0)| 18 92 664 3104 10,728 36,544 28,544

norbits 5 13 32 81 157 322 224

(v) If G ∼= J2 and 0 has induced panel residues {L2(2), L2(4)}, then C has 1575
chambers, 20 B-orbits, diameter 8 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8
|1i (γ0)| 6 16 48 128 384 640 288 64

norbits 2 2 2 2 3 3 3 2
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(vi) If G ∼= J3 and 0 has induced panel residues {L2(2), L2(4)}, then C has
130,815 chambers, 370 B-orbits, diameter 14 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8 9 10 11 12 13 14
|1i (γ0)| 6 16 48 128 384 1024 3072 7936 20,736 42,240 42,432 10,944 1656 192

norbits 2 2 2 2 3 4 10 22 55 114 115 30 7 1

(vii) If G ∼= Co3 and 0 has induced panel residues {L2(2).L2(2), L2(2)}, then C
has 484,147,125 chambers, 484,680 B-orbits and this disc structure as far
as i = 14 (note incomplete data here):

i-th disc 1 2 3 4 5 6 7 8 9
|1i (γ0)| 6 24 84 258 792 2344 6976 19,552 53,728

norbits 3 6 12 20 34 56 100 162 281

i-th disc 10 11 12 13 14
|1i (γ0)| 144,960 382,464 1,006,720 2,567,232 6,494,720

norbits 512 999 1991 3963 8133

(viii) If G∼=Co2 and 0 has induced panel residues {L2(2), L2(2), Sym(5)}, then C
has 161,382,375 chambers, 2791 B-orbits, diameter 15 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8 9
|1i (γ0)| 18 92 664 3104 11,264 46,912 159,360 5,501,44 1,597,952

norbits 5 11 28 53 83 139 187 265 303

i-th disc 10 11 12 13 14 15
|1i (γ0)| 4,143,104 11,051,008 27,033,600 47,185,920 47,054,848 22,544,384

norbits 338 377 365 347 203 86

(ix) If G ∼= HS and 0 has induced panel residues {L2(2), Sym(5)}, then C has
86,625 chambers, 270 B-orbits, diameter 8 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8
|1i (γ0)| 16 56 440 1312 7872 17,664 40,448 18816

norbits 4 6 15 19 47 50 89 39

(x) If G∼=McL and 0 has induced panel residues {L2(2), L2(2), L2(2)}, then C
has 7,016,625 chambers, 57,866 B-orbits, diameter 20 and this disc structure:
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i-th disc 1 2 3 4 5 6 7 8 9 10 11 12
|1i (γ0)| 6 20 56 144 376 936 2210 5124 11,656 26,640 60,544 136,032

norbits 3 5 8 13 24 45 82 135 216 383 714 1408

i-th disc 13 14 15 16 17 18 19 20
|1i (γ0)| 284,880 588,800 1,162,272 1,934,416 2,019,280 745,408 37,568 256

norbits 2638 5033 9432 15,379 16,026 6002 315 4

(xi) If G ∼= McL and 0 has induced panel residues {L2(2), L2(2), Sym(5)},
{P1, Pσ1 , P5}, then C has 7,016,625 chambers, 57,866 B-orbits, diameter 11
and this disc structure:

i-th disc 1 2 3 4 5 6 7 8 9 10 11
|1i (γ0)| 18 112 770 3964 17400 71440 294760 1078784 2789696 2555840 203840

norbits 5 16 52 138 358 998 3037 9182 22326 20157 1596

(xii) If G ∼= McL and 0 has induced panel residues {L2(2), L2(2), Sym(5)},
{Pσ1 , Pσ2 , P5}, then C has 7,016,625 chambers, 57,866 B-orbits, diameter
10 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8 9 10
|1i (γ0)| 18 116 880 5288 28,062 154,772 711,008 2,560,688 3,296,208 259,584

norbits 5 16 53 162 518 1814 6418 20769 26068 2042

(xiii) If G ∼= McL and 0 has induced panel residues {L2(2), L2(2), L2(2), L2(2)},
then C has 7,016,625 chambers, 57,866 B-orbits, diameter 14 and this disc
structure:

i-th disc 1 2 3 4 5 6 7 8 9
|1i (γ0)| 8 40 176 704 2384 7936 26,048 79,616 238,720

norbits 4 11 26 66 134 253 560 1228 2651

i-th disc 10 11 12 13 14
|1i (γ0)| 661,632 1,581,184 2,658,560 1,646,848 112768

norbits 5844 12,564 20,777 12,866 881

(xiv) If G ∼= Ru and 0 has induced panel residues {L2(2), Sym(5)}, then C has
8,906,625 chambers, 847 B-orbits, diameter 12 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8 9 10 11 12
|1i (γ0)| 16 56 440 1344 10560 32000 231936 647168 3588096 3997696 385024 12288

norbits 4 6 11 12 27 33 65 94 304 250 37 3
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3. Diameters and geodesic closures

We first give three results concerning the diameter of chamber graphs. For 0 a
geometry and x ∈ 0, the residue of x , denoted 0x , is the subgeometry consisting
of all y ∈ 0 incident with x .

Lemma 3.1. Suppose that 0 is a string geometry with diagram

0 1 n− 1
,

where the type 0 and type 1 objects are, respectively, the points and lines of 0. Let
G(0) be the point-line collinearilty graph of 0. Assume that

(i) G = Aut (0) acts flag transitively on 0;

(ii) for x a point of 0, the chamber graph C(0x) is connected with Diam C(0x)= e;
and,

(iii) G(0) is connected with DiamG(0)= f .

Then
Diam C(0)≤ f (1+ e).

Proof. Let γ1 = {x1, x2, . . . , xn} be a chamber of 0 with x = x1, a point and `= x2

a line. Note that x and ` are incident. Let y be a point incident with ` and y 6= x .
Since 0 is a string geometry γ2 = {y, `, x3, . . . , xn} is a chamber of 0. Moreover,
in C(0), d(γ1, γ2) = 1. Also {`, x3, . . . xn} is a chamber in 0y . Hence for any
chamber γ of 0 which contains y, we have d(γ1, γ )≤ 1+ e. Let γ0 be a chamber
of 0. Because, by assumption, G(0) is connected, a straight forward induction
argument shows d(γ0, γ )≤ f (1+ e) for any chamber γ of 0. Hence, as G is flag
transitive on 0, we deduce that Diam C(0)≤ f (1+ e). �

Lemma 3.2. Suppose 0 = {P1, . . . , Pn} is a minimal parabolic geometry, and set
ai = [Pi : B], for i = 1, . . . , n. Let

a =
n∑

i=1
(ai − 1) and b =

n∑
i=1

(
(ai − 1)(a− (ai − 1))

)
.

Then

Diam C(0)≥
⌈

loga−1

(
a−2

b
(
|C(0)| − (1+ a)

)
+ 1

)⌉
+ 1.

Proof. Let γ be a type i neighbour of γ0, then γ is i-adjacent to all other type i
neighbours of γ0. And so γ is joined to at least ai − 1 chambers in 11(γ0)∪ {γ0}.
Hence γ has at most a−(ai−1) neighbours in12(γ0). There are (ai−1) chambers
of type i in11(γ0), and so there are at most

∑n
i=1

(
(ai−1)[a−(ai−1)]

)
chambers

in the second disc.
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For i ≥ 2, each chamber in 1i (γ0) has at most a − 1 neighbours in 1i+1(γ0).
Consequently the number of chambers in 1i+1(γ0) is at most (a − 1)|1i (γ0)|.
Hence summing across the discs up to and including 1k+2(γ0), there are at most
1+ a+ b+ b(a− 1)+ · · ·+ b(a− 1)k chambers. Set d = Diam C(0). Then

|C(0)| ≤ 1+ a+ b+ b(a− 1)+ · · ·+ b(a− 1)d−2
= 1+ a+

b
(
(a− 1)d−1

− 1
)

a− 2

and hence

(a− 1)d−1
≥

a− 2
b

(
|C(0)| − (1+ a)

)
+ 1.

Taking log base a− 1 gives the inequality in the lemma. �

Lemma 3.3. Suppose 0 is a rank 2 geometry with point-line collinearity graph
G(0). If DiamG(0)= f , then 2 f − 1≤ Diam C(0)≤ 2 f + 1.

Proof. Given a path {x0, x1, . . . , x`}with lines li+1 joining xi to xi+1 for 0≤ i ≤`−1
in G(0), there is a corresponding path in C(0) given by

{(x0, l1), (x1, l2), (x1, l2), . . . , (x`, l`)}.

If the path in G(0) is a geodesic then so is the corresponding path in C(0), as any
shorter path in C(0) results in a shorter path in G(0).

Hence the longest geodesic in G(0) of length f gives rise to a geodesic of length
2 f − 1 in C(0). If there is a vertex x−1 joined to x0 by l0 such that d(x0, x f ) =

d(x−1, x f ) then prepending (x0, l0) to the induced path in C(0) creates a geodesic
of length 2 f . The same situation occurring at x f can result in a geodesic of length
2 f + 1. �

Proof of Theorem 1.2. The combined efforts of Magma [Cannon and Playoust
1997], and the code used in [Carr and Rowley 2018] or [Kelsey and Rowley 2019]
yield the data on disc structure given in Theorem 2.2. �

Proof of Theorem 1.1. The diameters for the geometries associated with M12, M22,
M23, J2, J3, Co2, HS, McL and Ru follow from Theorem 2.2. For the geometries
associated with M24 and He see [Carr and Rowley 2018] and for Suz see [Kelsey
and Rowley 2019]. The bounds for the Th and HN geometries follow from [Row-
ley and Taylor 2011] and Lemma 3.3. Now let 0 be the characteristic two minimal
parabolic geometry for one of the groups J4, Co1, Fi22, Fi23, Fi ′24, B and M given
in [Ronan and Stroth 1984]. These are all string geometries. Let G(0) be the point-
line collinearity graph for 0, where we will nominate in each case which objects
play the role of points. Set f = DiamG(0) and for x a point of 0 let e denote
the diameter of C(0x). We aim to determine, or obtain bounds for, e and f , first
looking at 0 for J4. Call those objects whose stabilizer in J4 has shape 21+123M222
and 23+12+2(Sym(3)× Sym(5)) points and lines respectively. Now subgroups H
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of J4 of shape 22+122M222 have |Z(H)| = 2 and are self normalizing (H is in fact a
maximal subgroup, see [Conway et al. 1985]). Thus we may identify the points of
0 with the 2A conjugacy class of J4. Let x be a point of 0 and l a line incident with
x . Now l is incident with seven points and under this identification they correspond
to the seven involutions in the minimal normal subgroup of the stabilizer of l of
order 23. Since the stabilizer of x is transitive on the lines incident with x and the
first disc of the commuting involution graph of 2A has size 194106, we conclude
that G(0) is the same as the commuting involution graph for 2A. Therefore, by
[Bates et al. 2007, Theorem 1.1] G(0) has diameter 3. From [Rowley 2010] the
diameter of the chamber graph of the 3.M22.2 geometry is 24. Thus f = 3 and
e = 24 for J4. Now using [Segev 1988], [Rowley and Walker 1996, 2011; 2012b;
2012a; 2016; 2004a; 2004b] and [Rowley 2019] we have the values for f in the
table below. (For Co1, Fi23, Fi ′24 and M we note the given reference deals with
the point-line collinearity graph for their maximal parabolic geometries which is
the same as that for its minimal parabolic geometries.) The values given for e are
obtained from Theorem 2.2 except for M, where e ≤ 3(17+ 1)= 48 follows from
Lemma 3.1, using the data for Co1.

Group e f point-stabilizer

J4 24 3 21+12.3·M22.2
Co1 17 3 211.M24

Fi22 5 3 210.M22

Fi23 7 4 211.M23

Fi ′24 17 5 211.M24

B 15 4 21+22.Co2

M ≤48 ≤6 21+24.Co1

Applying Lemma 3.1 yields the bounds for C(0) as stated in Theorem 2.1. The
given lower bounds for Diam C(0) may be obtained using Lemma 3.2. �

We single out for special attention those chamber graphs having few B-orbits
in the last disc.

Theorem 3.4. Let γi be B-orbit representatives for the chambers in the disc γ0.
The geodesic closure of B-orbit representatives of the last disc are given below.

(i) If G ∼= M12 and 0 has induced panel residues {L2(2), L2(2)}, then C has the
following geodesic closure:

disc i of C(0) 0 1 2 3 4 5 6 7 8 9 10 11 12
|{γ0, γ1} ∩1i (γ0)| 1 4 8 12 16 16 16 16 16 12 8 4 1
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(ii) If G ∼= J2 and 0 has induced panel residues {L2(2), L2(4)}, then for i = 1, 2,
the two B-orbits have the following geodesic closure data:

disc i of C(0) 0 1 2 3 4 5 6 7 8
|{γ0, γi } ∩1i (γ0)| 1 5 8 8 8 8 8 5 1

(iii) If G ∼= J3 and 0 has induced panel residues {L2(2), L2(4)}, then C has the
following geodesic closure:

disc i of C(0) 0 1 2 3 4 5 6 7 8 9 10 11 12 13
|{γ0, γ1} ∩1i (γ0)| 1 6 16 40 52 56 56 56 52 48 40 16 6 1

(iv) If G ∼= McL and 0 has induced panel residues {L2(2), L2(2), L2(2)}, then,
for i = 1, 2, the four B-orbits have the following geodesic closure data:

disc i of C(0) 0 1 2 3 4 5 6 7 8 9 10
|{γ0, γi } ∩1i (γ0)| 1 5 14 28 32 38 44 46 52 46 48
|{γ0, γ3} ∩1i (γ0)| 1 5 15 28 34 32 30 32 36 36 32
|{γ0, γ4} ∩1i (γ0)| 1 5 15 28 32 32 36 38 36 34 32

disc i of C(0) 11 12 13 14 15 16 17 18 19 20
|{γ0, γi } ∩1i (γ0)| 46 52 46 44 38 32 28 14 5 1
|{γ0, γ3} ∩1i (γ0)| 34 36 38 36 32 32 28 15 5 1
|{γ0, γ4} ∩1i (γ0)| 36 36 32 30 32 34 28 15 5 1

(v) If G ∼= Ru and 0 has induced panel residues {L2(2), Sym(5)}, then for i =
1, 2, 3, the three B-orbits have the following geodesic closure data:

disc i of C(0) 0 1 2 3 4 5 6 7 8 9 10 11 12
|{γ0, γi } ∩1i (γ0)| 1 14 40 40 40 40 40 40 40 40 40 14 1
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Maximal cocliques in the Kneser graph
on plane-solid flags in PG(6, q)

Klaus Metsch and Daniel Werner

For q ≥ 27 we determine the independence number α(0) of the Kneser graph
0 on plane-solid flags in PG(6, q). More precisely we describe all maximal
independent sets of size at least q11 and show that every other maximal example
has cardinality at most a constant times q10.

1. Introduction

For integers n ≥ 2 and prime powers q we denote by PG(n, q) the n-dimensional
projective space over the finite field Fq . A flag F of PG(n, q) is a set of nontrivial
subspaces of PG(n, q) such that U ⊆ U ′ or U ′ ⊆ U for all U,U ′ ∈ F . Here
nontrivial means different from ∅ and PG(n, q). The set {dim(U ) | U ∈ F} is
called the type of the flag F . Two flags F1 and F2 of PG(n, q) are said to be in
general position, if for all subspaces U1 ∈ F1 and U2 ∈ F2 we have U1 ∩U2 =∅
or 〈U1,U2〉 = PG(n, q).

If S is a nonempty subset of {0, 1, . . . , n− 1}, then the Kneser graph of flags
of type S is the simple graph whose vertices are the flags of type S of PG(n, q)
with two flags F and F ′ adjacent if and only if they are in general position. Note
that this graph, among other generalizations of Kneser graphs, has already been
defined in [Güven 2012].

For |S| = 1 the Kneser graph of type S is also known simply as q-Kneser graph
and the size of maximal cocliques therein was determined in [Frankl and Wilson
1986]. Furthermore, for |S|> 1 maximal cocliques in this graph were studied in
[Blokhuis and Brouwer 2017] for S = {1, 2} and n = 4, in [Blokhuis, Brouwer and
Güven 2014] for S = {0, n− 1} and n ≥ 2, and in [Blokhuis, Brouwer and Szőnyi
2014] for S = {0, 2} and n = 4. The result given in the second of these works was
already conjectured in [Mussche 2009] and is also given in [Güven 2012].
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In this paper we determine the independence number α(0) for the Kneser graph
0 of type {2, 3} in PG(6, q) for q ≥ 27. We point out that a flag of type {2, 3} of
PG(6, q) is a self-dual object, hence any independent set of 0 can also be seen as an
independent set of the Kneser graph of the same type in the dual space of PG(6, q).
To simplify notation, we also denote a flag {E, S} of type {2, 3} by (E, S) where
E is a plane and S is a solid. We first provide some examples.

Example 1.1. For a hyperplane H of PG(6, q) and a maximal set E of mutually
intersecting planes of H , we denote by 3(H, E) the set of all flags (E, S) of type
{2, 3} of PG(6, q) that satisfy S ⊆ H or E ∈ E . Dually, for a point P of PG(6, q)
and a maximal set S of 3-dimensional subspaces on P any two of which share at
least a line, denote by 3(P,S), the set of all flags (E, S) of type {2, 3} of PG(6, q)
that satisfy P ∈ E or S ∈ S.

Indeed, the following special case of this example was already covered in a more
general setting in [Blokhuis and Brouwer 2017].

Example 1.2. For an incident point-hyperplane pair (P, H) of PG(6, q), denote
by3(P, H) the set of all flags (E, S) of type {2, 3} that satisfy P ∈ E or P ∈ S⊆ H
and let 3(H, P) be the set of all flags (E, S) of type {2, 3} that satisfy S ⊆ H or
P ∈ E ⊆ H .

For an incident point-line pair (P, l) of PG(6, q), let 3(P, l) be the set of all
flags (E, S) of type {2, 3} that satisfy P ∈ E or l ⊆ S.

For an incident pair (U, H) of a 4-dimensional space U and a hyperplane H
of PG(6, q), let 3(H,U ) be the set of all flags (E, S) of type {2, 3} that satisfy
S ⊆ H or E ⊆U .

We shall show in Proposition 3.2 that the sets described in Example 1.1 are maxi-
mal independent sets in the Kneser graph of flags of type {2, 3} in PG(6, q). Notice
that the condition on E means that E is an independent set of the Kneser graph of
planes of H ' PG(5, q) and the condition on S means that S is an independent set
of the Kneser graph of planes of the quotient space P/P ' PG(5, q).

The sets constructed in Example 1.2 are special cases of the ones in Example 1.1
and hence also maximal independent sets. Here we use independent sets E and S
of maximal size. Notice that the first and second examples as well as the third and
forth examples in Example 1.2 are dual to each other.

In order to state our first theorem, we need the Gaussian coefficients
[n

k

]
q , which

are defined (for integer n and k) by[
n
k

]
q
:=

k∏
i=1

qn+1−i
− 1

q i − 1
if 0≤ k ≤ n

and
[n

k

]
q := 0 otherwise.
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Theorem 1.3. For q ≥ 27, the independence number of the Kneser graph of flags
of type {2, 3} of PG(6, q) is [

6
4

]
q
·

[
4
3

]
q
+

[
5
3

]
q
· q3

and the independent sets attaining this bound are precisely the four examples de-
scribed in Example 1.2.

Remarks. 1. The independence number is of order q11. As our proof of this theo-
rem is geometric it also provides a stability result for independence sets. Essentially
it says that, for large values of prime powers q , Example 1.1 describes all maximal
independent sets with at least 27q10 elements. A precise formulation is given in
Theorem 6.5.

2. Since we essentially show that any large independent set on the Kneser graph
of plane-solid flags in PG(6, q) is given by Example 1.1, any Hilton-Milner type
result for the Kneser graph of type {2} in PG(5, q) translates to a Hilton-Milner
type result for the Kneser graph of plane-solid flags in PG(6, q). In particular, in
the main theorem of Section 6 of [Blokhuis, Brouwer and Szőnyi 2012], a Hilton-
Milner type result for the Kneser graph of planes in PG(5, q) is given (the three
largest examples are determined) and thus the second largest maximal EKR-set of
plane-solid flags in PG(6, q) has size[

6
4

]
q
·

[
4
3

]
q
+

([
5
3

]
q
− (q6

− q3)

)
q3.

and its structure can be derived from Example 1.1 and said Hilton-Milner result.
However, note hat the flags provided by the sets E and S in Example 1.1 contribute
only a small amount of flags (order q9) to the total size (order q11) of the maximal
examples.

3. Every upper bound b for the independence number of a graph with n vertices
leads to the lower bound χ ≥ n/b for its chromatic number χ . In our situation
this shows that the chromatic number of the Kneser graph of plane-solid flags of
PG(6, q), q ≥ 27, has chromatic number at least q4

−q2
+2q+1. On the other hand,

if U is a 4-space, then the sets 3(P,∅) with P ∈U are independent sets whose
union covers every vertex, so the chromatic number is at most q4

+q3
+q2
+q+1.

Using independent sets of the form3(P, l) a simple construction given in Section 7
shows that this trivial upper bound can be slightly improved.

4. We keep all estimations in this paper as easy as possible and as such prove
Theorem 1.3 only for q > 27. Only a more detailed approach, especially in
Lemma 4.2, shows that Theorem 1.3 holds for q = 27. This will appear in the
Ph.D. thesis of the second author.
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2. Preliminaries

Let q be a prime power and Fq the finite field of order q. For integer n, d ≥ 0,
the number of d-dimensional subspaces of an Fq-vector space of dimension n is
given by the Gaussian coefficient

[n
d

]
q (see bottom of page 40 for the definition).

If 0≤ d ≤ n, and if D is a d-dimensional subspace of an n-dimensional Fq vector
space V then D has exactly qd(n−d) complements in V . These two facts can be
found in Section 3.1 of [Hirschfeld 1998]. We define

sq(l, k, d, n) := q(l+1)(d−k)
·

[
n−k−l−1

d−k

]
q
.

We also set sq(k, d, n) := sq(−1, k, d, n), sq(d, n) := sq(−1, d, n) and sq(n) :=
sq(0, n) and omit the subscript q in the following.

Lemma 2.1. Given two skew subspaces in PG(n, q) of dimensions k and l respec-
tively and any integer d the number of d-subspaces of PG(n, q) that contain the
k-subspace and are skew to the l-subspace is s(l, k, d, n).

Proof. We prove this for the underlying Fq -vector space V of dimension n+ 1 and
two skew subspaces K and L of dimension k+ 1 and l + 1 respectively, where we
have to count the number of subspaces D of dimension d + 1 that contain K and
are skew to L . Every such subspace D gives rise to a subspace D+ L of dimension
d+ l+2 of V . Going to the factor space V/(K + L), we see that V has

[n−k−l−1
d−k

]
q

subspaces U of dimension d+ l+2 that contain K + L . For such a subspace U we
see in the quotient space U/K that U has q(d−k)(l+1) subspaces D of dimension
d + 1 with U = L + D. �

Lemma 2.2. If n ≥ 5 and if E is a set of planes of PG(n, q) such that any two
distinct planes of E meet in a line, then |E| ≤ s(n− 2).

Proof. If there exists a line contained in all planes of E , then |E| ≤ s(1, 2, n) =
s(n−2). Otherwise there exist planes E1, E2, E3 ∈ E such that E1∩E3 and E2∩E3

are distinct lines, which implies that E3 is contained in the 3-space U := 〈E1, E2〉.
In this case, for every further plane E of E at least two of the lines E ∩ E1, E ∩ E2

and E ∩ E3 are distinct, so E is contained in U . Thus, in this case, every plane of
E is one of the s(2, 3) planes of U . �

The following result has been proven in Theorem 1.4 of [Blokhuis et al. 2010],
where it was formulated in its dual version.

Result 2.3. For q ≥ 3 the independence number α(0) of the Kneser graph 0 of
type {3} in PG(6, q) is given by

α(0)= s(3, 5)= q8
+ q7
+ 2q6

+ 2q5
+ 3q4

+ 2q3
+ 2q2

+ q + 1.
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For each hyperplane H of PG(6, q) the set consisting of all solids of H is an
independent set of 0 with α(0) vertices. Every other maximal independent set has
cardinality at most q6

+ 2q5
+ 3q4

+ 3q3
+ 2q2

+ q + 1.

We shall conclude this section with the following result, which is one specific
case of the main Theorem of [Frankl and Wilson 1986], which solves the Erdős–
Ko–Rado problem for vector spaces in general.

Result 2.4. If E is an independent set of the Kneser graph of type {2} in PG(5, q),
then |E| ≤ s(1, 4) and equality holds if and only if E is the set of all planes on a
point or the set of all planes in a hyperplane of PG(5, q).

3. Sets of flags of type {2, 3}

In this section we study sets of flags of type {2, 3} of PG(6, q). Recall that we also
denote a flag {E, S} of type {2, 3} as the ordered pair (E, S) where E is the plane
and S the solid of the flag. Note that two distinct such flags (E, S) and (E ′, S′) are
adjacent in 0 if and only if E∩S′=∅= E ′∩S. Let π2 and π3 be the maps from the
set of all flags of type {2, 3} to the set of subspaces of PG(6, q) with π2( f ) := E
and π3( f ) := S for all flags f = (E, S) of type {2, 3}. For any set C of such flags,
we define πi (C) := {πi ( f ) : f ∈ C}, i = 2, 3.

Lemma 3.1. Let 0 be the Kneser graph of flags of type {2, 3} of PG(6, q), let C be
an independent set of 0, let H be a hyperplane and let P be a point of PG(6, q).

(i) Let E be the set whose elements are the planes E of H for which there exists
a solid S with (E, S) ∈ C and E = H ∩ S. Then E ∩ E ′ 6=∅ for all E, E ′ ∈ E ,
that is, E is an independent set of the Kneser graph of planes of H. Hence
|E| ≤ s(1, 4).

(ii) Let S be the set whose elements are the solids S for which there exists a flag
(E, S) ∈ C with P ∈ S \ E. Then |S| ≤ s(1, 4).

Proof. (i) For E, E ′ ∈ E let (E, S) and (E ′, S′) be flags of C with S ∩ H = E and
S′ ∩ H = E ′. Then S′ ∩ E = E ′ ∩ E and S ∩ E ′ = E ′ ∩ E . Since C is independent,
it follows that E ∩ E ′ 6= ∅. Thus E is an independent set of the Kneser graph of
planes of H and Result 2.4 shows |E| ≤ s(1, 4).

(ii) This is a special case of the dual statement of part (i). �

In the following proposition we investigate the sets constructed in Example 1.1
up to duality.

Proposition 3.2. Let H be a hyperplane of PG(6, q) and let 0 be the Kneser graph
of flags of type {2, 3} of PG(6, q).

(i) 3(H,∅) is an independent set of 0.
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(ii) The maximal independent sets of 0 that contain3(H,∅) are the sets3(H, E)
for maximal independent sets E of planes of H.

(iii) For every maximal independent set E of the Kneser graph of planes of H we
have

|3(H, E)| = s(3, 5) · s(3)+ |E| · q3

≤ q11
+2q10

+5q9
+7q8

+10q7
+11q6

+11q5
+9q4

+7q3
+4q2

+2q+1.

If equality holds, that is, if |E| = s(1, 4), then either there exists a point P
in H such that E consists of all planes of H that contain P , or there exists
a 4-dimensional subspace of H such that E consists of all planes of this 4-
dimensional subspace.

Proof. (i) This follows from the fact that every solid of H meets every plane of H .

(ii) If E is an independent set of planes in the Kneser graph of planes of H , then
every solid of H meets every plane of E nontrivially and every two planes of E
meet nontrivially. Therefore 3(H, E) is an independent set of 0. In order to
prove the assertion, it therefore suffices to consider an independent set C of 0 with
3(H,∅)⊆ C and to show that C is contained in 3(H, E) for a set E of mutually
intersecting planes of H .

Let C be an independent set with 3(H,∅)⊆ C . Let E be the set of all planes
E of H such that C contains a flag (E, S) with E = S∩ H . Lemma 3.1 shows that
the planes of E are mutually intersecting. It remains to show that C ⊆ 3(H, E).
Suppose on the contrary that there exists a flag (E, S)∈C with S 6⊆ H and H ∩S 6=
E . Then S ∩ H is a plane and E ∩ H is a line of this plane and H contains
a solid S′ that is skew to the line E ∩ H . This implies that S′ meets the plane
S ∩ H in a point and therefore S′ contains a plane E ′ with E ′ ∩ S ∩ H =∅. Then
(E ′, S′) ∈3(H,∅)⊆ C with S′∩ E =∅= S∩ E ′ and since C is independent this
is a contradiction.

(iii) Since H contains s(3, 5) solids all of which contain s(2, 3)= s(3) planes, we
have |3(H,∅)| = s(3, 5) ·s(3). Every plane E of H lies on s(2, 3, 6)−s(2, 3, 5)=
q3 solids S with S ∩ H = E . Hence |3(H, E)| = |3(H,∅)| + |E| · q3. Result 2.4
shows |E| ≤ s(1, 4) with equality if and only if all planes of E contain a common
point of H or lie in a common 4-subspace of H . �

Lemma 3.3. Let C be an independent set of the Kneser graph of type {2, 3} in
PG(6, q) and let ξ ∈ N be such that every solid of PG(6, q) occurs in at most ξ
flags of C. Let (E, S) be an element of C. Then there are at most

s(2) · s(1, 4) · ξ = (q8
+ 2q7

+ 4q6
+ 5q5

+ 6q4
+ 5q3

+ 4q2
+ 2q + 1) · ξ

flags (E ′, S′) ∈ C with E ′ ∩ E =∅ and S′ ∩ E 6=∅.
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Proof. Since C is independent, every flag (E ′, S′) ∈ C with E ′ ∩ E = ∅ and
S′ ∩ E 6= ∅ has the property that S′ ∩ E is a point P with P /∈ E ′. Hence for
every such flag there exists a point P in E with P ∈ S′ \ E ′. Since E has s(2)
points and since every solid occurs in at most ξ flags of C Lemma 3.1(ii) proves
the statement. �

We now proceed to prove our theorem in three steps, where we consider two
special cases in the first two steps: In the first step we only consider independent
sets C in which no plane or solid occurs in more than s(1) flags of C and in the
second step we consider independent sets C in which no plane or solid occurs in
more than s(2) flags of C .

4. The first special case

In this section we consider an independent set C of the Kneser graph of type {2, 3}
in PG(6, q) that has the property that every plane and every solid of PG(6, q)
occurs in at most q+ 1 flags of C . Our aim is to prove an upper bound for |C |. For
every point P we denote the set of all flags (E, S) ∈ C with P ∈ E by 1P(C).

Lemma 4.1. Let P1, P2 and P3 be noncollinear points of PG(6, q).

(i) If

|1P1(C)|> (q + 1)(6q6
+ 10q5

+ 17q4
+ 15q3

+ 15q2
+ 9q + 5), (1)

then there are flags fi = (Ei , Si )∈C for i ∈ {1, 2, 3} with dim(〈E1, E2, E3〉)≥

5, P2, P3 /∈ S1, S2, S3 as well as Ei ∩ E j = P1 and P2, P3 /∈ 〈Ei , E j 〉 for all
distinct i, j ∈ {1, 2, 3}.

(ii) If there are flags f1, f2 and f3 with the properties stated in (i) and if

|1P2(C)|> (q + 1)(6q6
+ 10q5

+ 17q4
+ 18q3

+ 15q2
+ 9q + 5),

then there are flags f ′i = (E
′

i , S′i )∈C for i ∈{1, 2, 3} with dim(〈E ′1, E ′2, E ′3〉)≥
5, P1, P3 /∈ S′1, S′2, S′3, dim(Si ∩ S′j ) ≤ 1 for all i, j ∈ {1, 2, 3} as well as
E ′i ∩ E ′j = P2 and P1, P3 /∈ 〈E ′i , E ′j 〉 for all distinct i, j ∈ {1, 2, 3}.

Proof. (i) We frequently make use of the fact that every plane and every solid
occurs in at most q + 1 flags of C . We also make use of the following properties:

(Q1) There are 2 · s(1, 3, 6)− s(2, 3, 6)= 2 · s(1, 4)− s(3) solids that contain P1

and a point of {P2, P3}.

(Q2) If E is a plane on P1 and P is a point not contained in E , then every plane
E ′ on P1 with E ′∩E 6= P1 or P ∈ 〈E, E ′〉 meets the solid 〈P, E〉 in at least a
line and hence there are at most s(0, 1, 3) · s(1, 2, 6)= s(2) · s(4) such planes
E ′.
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(Q3) If E1 and E2 are planes with E1 ∩ E2 = P1, then there exist less than
s(1, 0, 2, 4)= q4 planes in 〈E1, E2〉 with E ∩ E1 = E ∩ E2 = P1.

From (Q1) and the bound in (1) we see that there exists a flag (E1, S1) in C
with P1 ∈ E1 and P2, P3 /∈ S1. According to (Q1) and (Q2) the number of flags
(E, S)∈1P1(C) for which E1∩ E 6= P1 or for which 〈E1, E〉 or S contains a point
of {P2, P3} is at most

(q+1)(2s(1, 4)−s(3)+2s(2)s(4))= (q+1)(4q6
+6q5

+10q4
+9q3

+9q2
+5q+3)

which is smaller than the right-hand side of (1). Therefore, we find a flag (E2, S2)∈

1P1(C) such that E1 ∩ E2 = P1 and neither of the spaces 〈E1, E2〉 or S2 contains
one of the points P2 and P3. Notice that dim(〈E1, E2〉)= 4, so for the remaining
flag (E3, S3) we need that E3 is not contained in 〈E1, E2〉. Using (Q1), (Q2) and
(Q3) a similar argument shows that at most

(q + 1)(2 · s(1, 4)− s(3)+ 4 · s(2) · s(4)+ q4)

= (q + 1)(6q6
+ 10q5

+ 17q4
+ 15q3

+ 15q2
+ 9q + 5) (2)

flags of1P1(C) do not satisfy all of the properties we want for the final flag (E3, S3).
Since this is the right-hand side of (1) and thus smaller than |1P1(C)| we find a
flag (E3, S3) with the desired properties.

(ii) We can argue analogously to the proof of (i). However, when choosing the flags
(E ′i , S′i ) for i ∈ {1, 2, 3} we additionally have to avoid all flags (E, S) ∈ 1P2(C)
for which S meets one of the solids S1, S2 and S3 in a plane π with P1 /∈ π . For
j ∈ {1, 2, 3} each S j has q3 planes that do not contain P1, so in total there are
at most 3q3 solids S that must not appear in any of our desired flags (E ′i , S′i ) for
i ∈ {1, 2, 3} and were not considered before. Therefore, it is sufficient to check
that the sum of the number in (2) and the number 3q3(q + 1) is the right-hand side
of (1) and thus smaller than |1P2(C)|, which is obviously true. �

Lemma 4.2. Let P1 and P2 be two distinct points of PG(6, q) and let E1, E2 and
E3 be planes such that Ei∩E j = P1 and P2 /∈ 〈Ei , E j 〉 for all distinct i, j ∈ {1, 2, 3}.
Furthermore, let S be the set of all solids of PG(6, q) with P2 ∈ S and S ∩ Ei 6=∅
for all i ∈ {1, 2, 3}. Then we have |S| ≤ 3q6

+ 6q5
+ 7q4

+ 4q3
+ 2q2

+ q + 1.

Proof. Let E be the set of all planes that contain P2 but not P1 and that meet all
the planes E1, E2 and E3. There are s(1, 3, 6) solids on P2 that contain P1. If a
solid on P2 does not contain P1 nor any plane of E , then it meets all the planes E1,
E2 and E3 in unique points (different from P1) and these three intersection points
together with P2 span the solid. Hence, there are at most (q2

+ q)3 such solids.
Finally, each plane of E lies in at most s(0, 2, 3, 6) solids that do not contain P1,
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which shows that the number of solids on P2 that meet E1, E2 and E3 is at most

s(1, 3, 6)+ (q2
+ q)3+ |E| · s(0, 2, 3, 6). (3)

It remains to determine an upper bound on |E|. We put U := 〈E1, E2〉 with P2 /∈U
and if E ∈ E we know from P2 ∈ E and P1 /∈ E that E ∩U is a line. We show that
every point of E3 \ {P1} lies on at most q planes of E . To see this, let Q be a point
of E3 \ {P1} and suppose that Q lies on at least one plane E of E . Since the lines
〈P2, Q〉 and E ∩U of E are distinct, they meet in a unique point R, and E ∩U is
a line on R. Since P2 is not contained in 〈E1, E3〉 nor in 〈E2, E3〉 we have R /∈ E1

and R /∈ E2. This implies that R lies on exactly q lines of U that meet E1 and E2

but do not contain P1. Since every plane of E on Q is generated by P2 and such a
line, we see that Q lies on at most q planes of E . As there are q2

+ q choices for
Q, we find |E| ≤ (q2

+ q)q . Using this upper bound for |E|, the statement follows
from (3). �

Lemma 4.3. Let P be a point and suppose that there are flags (Ei , Si ) ∈1P(C),
for i ∈ {1, 2, 3}, such that Ei ∩ E j = P for distinct i, j ∈ {1, 2, 3}. Then every point
Q with Q /∈ 〈Ei , E j 〉 and Q /∈ Si for all i, j ∈ {1, 2, 3} satisfies

|1Q(C)| ≤ 3q8
+ 12q7

+ 21q6
+ 28q5

+ 26q4
+ 18q3

+ 12q2
+ 8q + 4.

Proof. For i ∈ {1, 2, 3} exactly n := s(0, 2, 6)− s(3, 0, 2, 6) planes on Q meet Si .
Since every plane lies in at most q + 1 flags of C , it follows that there exists at
most 3n(q + 1) flags (E, S) ∈1Q(C) such that E has nonempty intersection with
at least one of the solids S1, S2 or S3.

Every other flag f = (E, S) ∈1Q(C) has the property that its solid S meets E1,
E2 and E3. Lemma 4.2 shows that there at most n′ := 3q6

+ 6q5
+ 7q4

+ 4q3
+

2q2
+ q + 1 such solids. Since each solid lies in at most q + 1 flags of C , there are

at most n′(q + 1) such flags. Therefore |1Q(C)| ≤ (3n+ n′)(q + 1) proving the
desired bound. �

Lemma 4.4. Let S1 and S2 be solids of PG(6, q) with dim(S1 ∩ S2)≤ 1 and let P
be a point that is not contained in S1 ∪ S2. Then the number of planes that contain
P and meet S1 and S2 nontrivially is at most 2q6

+ 2q5
+ 3q4

+ 2q3
+ 2q2

+ q + 1.

Proof. We have d := dim(S1 ∩ S2) ∈ {0, 1}. A line through P meets S1 and S2 if
and only if it meets one and hence both of the subspaces U1 := 〈P, S2〉 ∩ S1 and
U2 := 〈P, S1〉 ∩ S2, that is, if the line is contained in the subspace V := 〈U1, P〉.
The subspaces U1 and U2 have the same dimension u where u = 1 if d = 0 and
u ∈ {1, 2} when d = 1. We have dim(V )= u+ 1.

A plane on P that meets V only in P is spanned by P , a point of S1 \U1 and
a point of S2 \U2, so there are (s(3)− s(u))2 such planes. The number of planes
on P that meet V in a line is equal to the number s(0, 1, u+ 1) of lines of V on



48 KLAUS METSCH AND DANIEL WERNER

P multiplied with the number s(1, 2, 6)− s(1, 2, u+ 1) of planes that meet V in
a given line. Finally there are s(0, 2, u+ 1) planes on P that are contained in V .
Hence, the total number of planes on P that meet S1 and S2 nontrivially is

(s(3)− s(u))2+ s(0, 1, u+ 1)(s(1, 2, 6)− s(1, 2, u+ 1))+ s(0, 2, u+ 1)

The larger value occurs for u = 2 and gives the bound in the lemma. �

Lemma 4.5. Let P1, P2 and P3 be noncollinear points of PG(6, q). Suppose that
for i ∈ {1, 2} and r ∈ {1, 2, 3} there exist flags fi,r = (Ei,r , Si,r ) ∈1Pi (C) such that

• ∀r, s ∈ {1, 2, 3} : dim(S1,r ∩ S2,s)≤ 1 and

• ∀i ∈ {1, 2},∀{r, s, t}= {1, 2, 3} : P3−i , P3 /∈ 〈Ei,r , Ei,s〉∪Si,r and Ei,r∩Ei,s = Pi .

Then |1P3(C)| ≤ 24q7
+ 54q6

+ 71q5
+ 67q4

+ 48q3
+ 33q2

+ 22q + 11.

Proof. Because C is independent we know that for every (E, S) ∈ C and every
i ∈ {1, 2} we have S∩ Ei,r 6=∅ for all r ∈ {1, 2, 3} or E ∩ Si,r 6=∅ for at least one
r ∈ {1, 2, 3}. For i ∈ {1, 2} Lemma 4.2 shows that the number of solids of PG(6, q)
that contain P3 and meet Ei,1, Ei,2 and Ei,3 is at most

m := 3q6
+ 6q5

+ 7q4
+ 4q3

+ 2q2
+ q + 1. (4)

For every flag (E, S) ∈ 1P3(C) for which S is not such a solid we know that E
is a plane that meets S1,r and S2,s for some r, s ∈ {1, 2, 3}. For any choice of
r, s ∈ {1, 2, 3}, Lemma 4.4 shows that there exist at most

n := 2q6
+ 2q5

+ 3q4
+ 2q3

+ 2q2
+ q + 1

planes on P3 that meet S1,r and S2,s . Since every plane and every solid occurs in at
most q+ 1 flags of C , it follows that |1P3(C)| ≤ (2m+ 9n)(q+ 1), as claimed. �

Proposition 4.6. Let C be an independent set of the Kneser graph of type {2, 3}
in PG(6, q) with q ≥ 7 that has the property that every plane and every solid of
PG(6, q) is contained in at most s(1)= q + 1 flags of C. Then

|C |≤24q10
+79q9

+155q8
+210q7

+216q6
+187q5

+140q4
+93q3

+51q2
+22q+5.

Proof. Let P1 and P2 be distinct points of PG(6, q) such that |1P1(C)|, |1P2(C)| ≥
|1P(C)| for all points P 6= P1. If every flag (E, S) ∈ C satisfies 〈P1, P2〉∩ E 6=∅,
then

|C | ≤ (s(2, 6)− s(1,−1, 2, 6)) · s(1)

= q10
+ 3q9

+ 5q8
+ 7q7

+ 8q6
+ 8q5

+ 7q4
+ 5q3

+ 3q2
+ 2q + 1

since there are s(2, 6)− s(1,−1, 2, 6) planes that meet the line 〈P1, P2〉 and since
every plane lies in at most q + 1 flags of C . Therefore, we may assume that C
contains a flag f = (E, S) with 〈P1, P2〉 ∩ E =∅ and thus dim(S ∩ 〈P1, P2〉)≤ 0.
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Every flag (E ′, S′)∈C either satisfies E ′∩S 6=∅ or E ′∩S=∅ 6= S′∩E . Lemma 3.3
shows that at most

(q8
+ 2q7

+ 4q6
+ 5q5

+ 6q4
+ 5q3

+ 4q2
+ 2q + 1) · s(1) (5)

flags (E ′, S′) of C satisfy E ′ ∩ S = ∅ 6= S′ ∩ E . Before we count all flags f ′ =
(E ′, S′) with E ′ ∩ S 6=∅ we note that we either have

|1P(C)| ≤ |1P2(C)| ≤ 6q7
+ 16q6

+ 27q5
+ 35q4

+ 33q3
+ 24q2

+ 14q + 5
(6)

for all P ∈ PG(6, q) \ 〈P1, P2〉 or

|1P1(C)| ≥ |1P2(C)|> 6q7
+ 16q6

+ 27q5
+ 35q4

+ 33q3
+ 24q2

+ 14q + 5.

If the second situation occurs, then Lemma 4.1 provides flags fi, j ∈C for i ∈ {1, 2}
and j ∈ {1, 2, 3} required to apply Lemma 4.5 proving

|1P(C)| ≤ 24q7
+ 54q6

+ 71q5
+ 67q4

+ 48q3
+ 33q2

+ 22q + 11 (7)

for all P ∈ PG(6, q) \ 〈P1, P2〉. Since the bound in (7) is weaker than the bound
given in (6) we know that it also holds in the first case. In particular, (7) holds for
all P ∈ S \ (S∩〈P1, P2〉). Note that we chose f such that S∩〈P1, P2〉 is at most a
point. Now, if P̂ := S ∩ 〈P1, P2〉 6=∅, then, since P1 and P2 are distinct, there is
an index i ∈ {1, 2} such that P̂ 6= Pi and, using the flags fi,1, fi,2 and fi,3, we may
apply Lemma 4.3 to see that

|1P̂(C)| ≤ 3q8
+ 12q7

+ 21q6
+ 28q5

+ 26q4
+ 18q3

+ 12q2
+ 8q + 4,

which is weaker than the bound in (7) for q ≥ 7. Therefore, the number of all flags
(E ′, S′) of C with E ′ ∩ S 6=∅ is at most

(s(3)− 1) · (24q7
+ 54q6

+ 71q5
+ 67q4

+ 48q3
+ 33q2

+ 22q + 11)

+ 3q8
+ 12q7

+ 21q6
+ 28q5

+ 26q4
+ 18q3

+ 12q2
+ 8q + 4

=24q10
+78q9

+152q8
+204q7

+207q6
+176q5

+129q4
+84q3

+45q2
+19q+4.

Together with the upper bound in (5) for the remaining flags of C , this provides
the claimed upper bound on the cardinality of C . �

5. The second special case

In this section we generalize the results of Section 4 to Kneser graphs of type {2, 3}
in PG(6, q) with the property that every plane and every solid of PG(6, q) occurs
in at most q2

+ q + 1 flags of C . Let 0 be a Kneser graph with that property.
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Lemma 5.1. Let E be a plane and suppose that the solids S with (E, S) ∈ C span
a subspace H of dimension at least 5. Suppose also that every plane of PG(6, q)
occurs in at most s(2)= q2

+q+1 flags of C. Then the number of flags (E ′, S′)∈C
with E ′ ∩ E =∅ is at most s(1, 4) · s(2) · (s(2)+ 1).

Proof. Let M be the set consisting of all flags (E ′, S′) of C such that S′ ∩ E =∅
and let N be the set consisting of all flags (E ′, S′) of C such that S′ ∩ E 6=∅ and
E ′ ∩ E =∅. Every flag (E ′, S′) ∈ C with E ′ ∩ E =∅ lies in M ∪ N . Lemma 3.3
applied with ξ = s(2) shows that |N | ≤ s(1, 4) · s(2)2. For an upper bound on the
number of flags in M , we let E denote the set of all planes that occur in a flag of
M . The hypothesis of this lemma shows that |M | ≤ |E| · s(2). In order to prove the
statement, it remains to show that |E| ≤ s(1, 4).

Consider E ′ ∈ E . Let S′ be a solid with (E ′, S′)∈ M . Then S′∩E = E ′∩E =∅.
Since C is independent and since S′ ∩ E =∅ the plane E ′ meets every solid S for
which (E, S) ∈ C . Then every such solid S is spanned by E and a point of E ′, so
H ⊆ 〈E, E ′〉. Since H has dimension at least 5, it follows that H has dimension 5
and that H = 〈E, E ′〉 for all E ′ ∈ E . Lemma 3.1 shows that |E| ≤ s(1, 4). �

Proposition 5.2. Let C be an independent set of the Kneser graph of type {2, 3}
in PG(6, q) with q ≥ 8 that has the property that every plane and every solid of
PG(6, q) occurs in at most s(2)= q2

+ q + 1 flags of C. Then

|C |≤24q10
+79q9

+155q8
+210q7

+218q6
+189q5

+142q4
+95q3

+53q2
+22q+5.

Proof. Let E be the set consisting of all planes of PG(6, q) that lie in at least q + 2
flags of C , and let S be the set consisting of all solids of PG(6, q) that lie in at
least q + 2 flags of C . We distinguish three cases.

Case 1. We assume that |E| ≤ s(4) and |S| ≤ s(4). In this case we choose a
subset C ′ of C such that every plane and every solid of C ′ lies in at most q+1 flags
of C ′. Since every plane and solid lies in at most q2

+ q + 1 flags of C , we can
find such a subset with |C ′| ≥ |C |− (|E|+ |S|)q2 and then |C | ≤ |C ′|+2 · s(4) ·q2.
Now the statement follows by applying Proposition 4.6 to C ′.

Case 2. We assume that |E|> s(4). Lemma 2.2 proves the existence of planes
E1, E2 ∈ E satisfying dim(E1 ∩ E2)≤ 0. From Lemma 5.1 we know that at most

2 · s(1, 4) · s(2) · (s(2)+ 1) (8)

flags (E, S) ∈ C satisfy E ∩ E1 = ∅ or E ∩ E2 = ∅. It remains to find an upper
bound on the number of flags in C whose planes meet both E1 and E2. Therefore,
we count the number of planes of PG(6, q) that meet E1 and E2. First consider the
case that E1 ∩ E2 is a point Q. In this case there are s(0, 2, 6) planes on Q, there
are (s(2)− 1)2(s(1, 2, 6)− (2 · s(0, 1, 2)− 1)) planes that do not contain Q and
meet both E1 and E2 in exactly one point and there are 2 · s(0,−1, 1, 2)(s(2)− 1)
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planes that do not contain Q and meet E1 or E2 in a line and the other plane in a
point. Thus, in this case the number of planes that meet E1 and E2 is equal to

n := 2q8
+ 4q7

+ 6q6
+ 4q5

+ 4q4
+ 3q3

+ 2q2
+ q + 1.

If E1 and E2 are skew than a similar calculation shows that there are even less than
n planes that meet E1 and E2, so that n is an upper bound for the number of planes
that meet E1 and E2 in both situations. Since every plane lies in at most s(2) flags of
C , it follows that there are at most n ·s(2) flags (E, S)∈C such that E meets E1 and
E2. Together with the count in (8) we find |C | ≤ n ·s(2)+2 ·s(1, 4) ·s(2) ·(s(2)+1)
and this bound is better than the one in the statement.

Case 3. We assume that |S|> s(4). This is dual to Case 2. �

6. Proof of the theorem

In this section, 0 denotes the Kneser graph of plane-solid flags in PG(6, q) and C
denotes a maximal independent set of 0.

Lemma 6.1. (i) Every solid S of PG(6, q) has a subspace U with the following
property: For every plane E of S we have (E, S) ∈ C if and only if U ⊆ E.

(ii) For every plane E of PG(6, q) there exists a subspace U containing E with
the following property: For every solid S on E we have (E, S) ∈ C if and only
if S ⊆U.

Proof. Since the two statements are dual to each other, it suffices to prove the first
statement. Thus consider a plane E and let S be the set of solids S satisfying E ⊆ S
and (E, S) ∈ C . In the quotient space PG(6, q)/E the set {S/E | S ∈ S} is a set
of points and we have to show that this set is a subspace of PG(6, q)/E . In that
regard, it is sufficient to show for any two distinct solids S1, S2 ∈ S and every solid
S with E ⊆ S ⊆ 〈S1, S2〉 we have S ∈ S. Let S be such a solid. If (E ′, S′) is any
flag of C then either S′ ∩ E 6=∅ or E ′ meets S1 \ E and S2 \ E . In the second case
E ′ meets 〈S1, S2〉 in a line and hence E ′ meets S. Thus for every (E ′, S′) ∈ C we
have E ∩ S′ 6= ∅ or E ′ ∩ S 6=∅. This shows that C ∪ {(E, S)} is an independent
set of 0 and since C is a maximal independent set we have (E, S) ∈ C , that is,
S ∈ S. �

Definition 6.2. A plane E will be called saturated (for C) if (E, S) ∈ C for all
solids S of PG(6, q) that contain E . Dually, a solid S will be called saturated (for
C), if (E, S) ∈ C for all planes E of S.

Lemma 6.3. (i) For every saturated solid S and every flag (E ′, S′) ∈ C we have
E ′ ∩ S 6=∅.

(ii) If S is a solid with S ∩ E ′ 6=∅ for all flags (E ′,C ′) of C , then S is saturated.
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(iii) If S and S′ are saturated solids, then dim(S ∩ S′)≥ 1.

(iv) Let H be a hyperplane of PG(6, q) and suppose that E ⊆ H for all flags
(E, S) ∈ C. Then every solid of H is saturated.

Proof. (i) Suppose that there is a flag (E ′, S′)∈C with E ′∩ S=∅. Since PG(6, q)
has dimension 6, it follows S′ ∩ S is a point P with P /∈ E ′. Let E be a plane of S
with P /∈ E . Then E ∩ S′ =∅. As S is a saturated solid we have (E, S) ∈ C . But
then (E, S) and (E ′, S′) are flags of the independent set C with E ∩ S′ = ∅ and
E ′ ∩ S =∅, a contradiction.

(ii) Let E be a plane of S. We have to show that (E, S) ∈ C . Since S ∩ E ′ 6= ∅
for every flag (E ′, S) of C , the set C ∪ {(E, S)} is independent. Maximality of C
implies (E, S) ∈ C .

(iii) Assume to the contrary that S and S′ only meet in a point P . Choose planes
E of S and E ′ of S′ with P /∈ E, E ′. Then S∩ E ′ =∅= S′∩ E . Hence (E, S) and
(E ′, S′) are adjacent elements of the Kneser graph 0. As C is independent, this is
a contradiction.

(iv) Let S be a solid of H . The dimension formula shows that S ∩ E 6=∅ for all
planes E of H . Therefore part (ii) shows that S is saturated. �

Lemma 6.4. Let C be a maximal independent set of 0. If there are more than
c := q7

+ 2q6
+ 2q5

+ 3q4
+ 2q3

+ 2q2
+ q + 1 saturated solids for C , then

C =3(H, E) for some hyperplane H and some maximal independent set E of the
Kneser graph of planes of H (cf. Example 1.1).

Proof. Let S be the set of saturated solids in 53(C). We have c> q6
+2q5

+3q4
+

3q3
+ 2q2

+ q + 1 and according to Lemma 6.3(iii) we have dim (S1 ∩ S2) ≥ 1
for all S1, S2 ∈ S. Result 2.3 shows that there exists a hyperplane H containing
all saturated solids. If there would be a flag (E, S) ∈ C such that E 6≤ H , then
according to Lemma 6.3(i) all solids of S would have nonempty intersection with
the line E ∩ H and thus

|S| ≤ s(3, 5)− s(1,−1, 3, 5)= q7
+ 2q6

+ 2q5
+ 3q4

+ 2q3
+ 2q2

+ q + 1,

which is a contradiction. Hence E ⊆ H for all planes E ∈52(C). Lemma 6.3(iv)
shows that all solids of H are saturated. This means that3(H,∅)⊆C . Proposition
3.2 now proves the statement. �

Theorem 6.5. Suppose that q ≥ 8 and that C is a maximal independent set in 0
with

|C |>26q10
+83q9

+159q8
+216q7

+222q6
+193q5

+144q4
+97q3

+53q2
+22q+5.
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Then C =3(H, E) for a hyperplane H and a maximal set E of mutually intersecting
planes of H , or C =3(P,S) for a point P and a maximal set S of solids on P any
two of which share at least a line.

Proof. The class of examples described in Example 1.1 is closed under duality.
In view of Lemma 6.4 we may assume that there exists at most c := q7

+ 2q6
+

2q5
+ 3q4

+ 2q3
+ 2q2

+ q + 1 saturated solids, and, dually, that there are at most
c saturated planes. For every saturated plane E choose one hyperplane HE on E ,
and for every saturated solid S choose a point PS of S. Let C ′ be the subset of C
that is obtained from C by removing all flags (E, S) such that E is saturated and
S is not contained in HE and by removing all flags (E, S) such that S is saturated
and E does not contain PS . Then |C ′| ≥ |C | − 2cq3, that is

|C | ≤ 2(q7
+ 2q6

+ 2q5
+ 3q4

+ 2q3
+ 2q2

+ q + 1) · q3
+ |C ′|. (9)

Lemma 6.1 shows that every plane E which is not saturated for C has the property
that the solids S with (E, S) ∈ C span a proper subspace of PG(6, q). Therefore
the construction of C ′ implies that every plane E has the property that the solids S
with (E, S) ∈ C ′ span a proper subspace of PG(6, q). Consequently every plane of
PG(6, q) lies in at most q2

+ q + 1 flags of C ′. Dually, every solid S of PG(6, q)
lies in at most q2

+ q + 1 flags of C ′. Therefore Proposition 5.2 proves an upper
bound for |C ′|. Now (9) proves the bound for |C | that is given in the statement. �

Corollary 6.6. For q > 27 the maximal independent set in the Kneser graph of
flags of type {2, 3} in PG(6, q) with |C | ≥ q11

+ 2q10 are the independent sets
described in Example 1.1.

Theorem 1.3 follows from this corollary and Proposition 3.2(ii) for q > 27 and
for q = 27 consider Remark 4 on page 41.

7. Bounds on the chromatic number of 0

Let 0 be the Kneser graph of flags of type {2, 3} in PG(6, q). The chromatic
number of 0 is the smallest number χ such that the vertex set can be represented
as the union of χ independent sets. Using the upper bound α for the size of such
an independent set this immediately gives the bound χ ≥ n

α
. With the upper bound

from Theorem 1.3 we find

Proposition 7.1. For q ≥ 27, the chromatic number of 0 is at least q4
−q2
+2q+1.

On the other hand, if V is a subspace of dimension 4 of PG(6, q), then the
independent sets 3(P,∅) with P ∈ V comprise all vertices of 0, so we have the
trivial upper bound χ ≤ s(4)= q4

+ q3
+ q2
+ q + 1. We can slightly improve this

bound using the following construction.

Proposition 7.2. The chromatic number χ of 0 satisfies χ ≤ q4
+ q3
+ q2
+ 1.
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Proof. Consider a point P , a line l, a plane E and a 4-space V that are mutually
incident. Let Q be a point of V that is not in E . Let l1, . . . , lq be the lines of plane
〈l, Q〉 with P ∈ li and Q /∈ li , let E1, . . . , Eq be the planes of 〈E, Q〉 with l ⊆ Ei

and Q /∈ Ei , and let S1, . . . , Sq be the solids of V with E ⊆ Si and Q /∈ Si . For
i ∈ {1, . . . , q} put Mi := li ∪ (Ei \ l)∪ (Si \ E). Then |Mi | = q3

+ q2
+ q+ 1 with

Mi ∩M j = P for distinct i, j ∈ {1, . . . , q} and the union of the sets M1, . . . ,Mq is
{P} ∪ V \ 〈P, Q〉. Let {Q1, . . . , Qq} = 〈P, Q〉 \ {P} and consider the independent
set 3(X, 〈X, Qi 〉) for X ∈ Mi and i ∈ {1, . . . , q}. Then for i ∈ {1, . . . , q} all lines
of V on Qi occur in one of these sets and every solid that contains Qi contains
a line 〈X, Qi 〉 with X ∈ Mi . Therefore the union of the sets 3(X, 〈X, Qi 〉) for
i ∈ {1, . . . , q} covers all vertices of 0. �

In some situations, having a Hilton-Milner result for the size of the independent
sets used (here these are Erdős–Ko–Rado sets in PG(6, q)) is a good tool to de-
termine the chromatic number of a graph exactly and with little effort. However,
we are convinced that this is not the case in this situation. The reason is, that the
second largest independent sets are still almost as large as the largest independent
sets, as we have stated in Remark 2 on page 41.

However, one could use the fact that every independent set which is essen-
tially different from the largest examples (that is, different from those given in
Example 1.1) is much smaller. Indeed, we have given this some thought, but are
convinced that this is not quite simple and would go far beyond the scope of this
work.
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