Download this article
 Download this article For screen
For printing
Recent Issues
Volume 18
Volume 16
Volume 15
Volume 14
Volume 13
Volume 12
Volume 11
Volume 10
Volume 9
Volume 8
Volume 6+7
Volume 5
Volume 4
Volume 3
Volume 2
Volume 1
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN 2640-7345 (online)
ISSN 2640-7337 (print)
Author Index
To Appear
 
Other MSP Journals
The exceptional simple Lie group $F_{4(-20)}$, after J. Tits

Alain J. Valette

Vol. 20 (2023), No. 2-3, 599–610
Abstract

This is a semisurvey paper, where we start by advertising Tits’ synthetic construction (1953) of the hyperbolic plane H2(Cay ) over the Cayley numbers Cay and of its automorphism group which is the exceptional simple Lie group G = F4(20). Let G = KAN be the Iwasawa decomposition. Our contributions are:

  • Writing down explicitly the action of N on H2(Cay ) in Tits’ model, facing the lack of associativity of Cay .

  • If MAN denotes the minimal parabolic subgroup of G, characterizing M geometrically.

Keywords
exceptional simple Lie groups, octonions, hyperbolic plane
Mathematical Subject Classification
Primary: 22E15
Secondary: 17A35, 51A10, 51A45
Milestones
Received: 17 November 2022
Revised: 27 March 2023
Accepted: 19 April 2023
Published: 13 September 2023
Authors
Alain J. Valette
Institut de mathématiques, Faculté des Sciences
Université de Neuchâtel
Neuchâtel
Switzerland