Download this article
 Download this article For screen
For printing
Recent Issues
Volume 18
Volume 16
Volume 15
Volume 14
Volume 13
Volume 12
Volume 11
Volume 10
Volume 9
Volume 8
Volume 6+7
Volume 5
Volume 4
Volume 3
Volume 2
Volume 1
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN 2640-7345 (online)
ISSN 2640-7337 (print)
Author Index
To Appear
 
Other MSP Journals
Inductive freeness of Ziegler's canonical multiderivations for restrictions of reflection arrangements

Torsten Hoge, Gerhard Röhrle and Sven Wiesner

Vol. 22 (2025), No. 1, 1–24
Abstract

Let 𝒜 be a free hyperplane arrangement. In 1989, Ziegler showed that the restriction 𝒜 of 𝒜 to any hyperplane endowed with the natural multiplicity κ is then a free multiarrangement. Recently, Hoge and Röhrle (2025) proved an analogue of Ziegler’s theorem for the stronger notion of inductive freeness: if 𝒜 is inductively free, then so is the free multiarrangement (𝒜,κ).

Hoge and Röhrle (2018) classified all reflection arrangements which admit inductively free Ziegler restrictions. The aim of this paper is to extend this classification to all arrangements which are induced by reflection arrangements utilizing the aforementioned fundamental result of Hoge and Röhrle (2025).

Keywords
free arrangement, free multiarrangement, Ziegler multiplicity, inductively free arrangement, reflection arrangement, restrictions of reflection arrangements
Mathematical Subject Classification
Primary: 14N20, 32S22, 51D20, 52C35
Milestones
Received: 1 July 2024
Revised: 28 November 2024
Accepted: 13 February 2025
Published: 7 March 2025
Authors
Torsten Hoge
Fakultät für Mathematik
Ruhr-Universität Bochum
Bochum
Germany
Gerhard Röhrle
Fakultät für Mathematik
Ruhr-Universität Bochum
Bochum
Germany
Sven Wiesner
Fakultät für Mathematik
Ruhr-Universität Bochum
Bochum
Germany