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INVOLVE 1:2(2008)

Multiplicity results for semipositone two-point
boundary value problems

Andrew Arndt and Stephen B. Robinson

(Communicated by John V. Baxley)

In this paper we address two-point boundary value problems of the form

u′′+ f (u)= 0, in (0, 1), u(0)= u(1)= 0,

where the function f resembles f (u) = λ(exp(au/(a + u))− c) for some con-
stants c ≥ 0, λ > 0, a > 4. We prove the existence of positive solutions for the
semipositone case where f (0) < 0, and further prove multiplicity under certain
conditions. In particular we extend theorems from Henderson and Thompson to
the semipositone case.

1. Introduction

In this paper we address two-point boundary value problems of the form

u′′+ f (u)= 0, in (0, 1), u(0)= u(1)= 0, (1)

where the function f resembles f (u)=λ(exp(au/(a+u))−c) for some constants
c ≥ 0, λ > 0, and a > 4. Boundary value problems of this sort are motivated by a
variety of applications, such as nonlinear heat generation and combustion [Brown
et al. 1981], and have been studied extensively since the early work of authors such
as Keller and Cohen [1967]. These references deal exclusively with the positone
case, the case where f is positive and monotone.

In this paper we are interested in finding multiple positive solutions for the semi-
positone case where f (0) < 0. In particular we extend theorems from [Henderson
and Thompson 2000] to the semipositone case. Our results complement those in
[Brown et al. 1981; Castro and Shivaji 1998], and many related papers that dis-
cuss S-shaped bifurcation curves for positone and semipositone problems. Related
PDE results can be found in [Drábek and Robinson 2006; Robinson and Rudd
2006]. Drábek and Robinson [2006] generalizes the main theorem in [Henderson
and Thompson 2000] to the PDE case over arbitrary smooth bounded domains.

MSC2000: 34B15.
Keywords: positone, semipositone, boundary value problem, upper and lower solution.
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124 ANDREW ARNDT AND STEPHEN B. ROBINSON

[Robinson and Rudd 2006] generalizes our ODE results to the analogous PDE
problem on the unit ball.

Our proofs characterize solutions as critical points of the functional

J (u)=
1
2

∫ 1

0

(
u′
)2
−

∫ 1

0
F(u), u ∈ H 1

0 (0, 1),

where F(u) :=
∫ u

0 f . Using step functions as a simple model for f we produce
lower solutions, {u1, u 2}, and upper solutions, {u1, u2}, with the ordering

u1 ≤ u1 ≤ u 2 ≤ u2.

Standard arguments show that J has a local minimum in each of the generalized
intervals

[
u1, u1

]
and

[
u 2, u2

]
. The third solution is characterized as a saddle

point lying between the two minima. Our theorems show that one of the minima
is positive and the other is negative, and, under certain conditions, the saddle point
solution is also positive. We provide two separate criteria that guarantee a second
positive solution.

The theorems in [Brown et al. 1981] and [Henderson and Thompson 2000] are
representative of two different approaches to very similar problems, so it is of
some interest to provide an explicit comparison of these theorems. In Section 6
we provide such a comparison for the positone PDE case. In particular, we show
that the conditions in [Drábek and Robinson 2006], where the main theorem of
[Henderson and Thompson 2000] is generalized to the PDE case, are more general
than those in [Brown et al. 1981].

2. Preliminaries

The expression u ∈ C2(0, 1)
⋂

C [0, 1] is called a lower solution of Equation (1)
if

u′′+ f (u)≥ 0, u(0)≤ 0, u(1)≤ 0.

Upper solutions are defined similarly with reversed inequalities.
Since f is a bounded continuous function it is straightforward to show the J

is a C1 functional that satisfies the Palais–Smale condition, and that the following
minimization and mountain pass lemmas are true [Struwe 1990].

Lemma 2.1. Suppose that u and u are lower and upper solutions of Equation (1),
respectively, and suppose that u ≤ u on [0, 1]. Then J achieves a local minimum
at some critical point u ∈

[
u, u

]
:= {u ∈ H 1

0 (0, 1) : u ≤ u ≤ u}.

See [Struwe 1990, Theorem 2.4] for an elegant proof.

Lemma 2.2. Suppose that u and u are lower and upper solutions of (1), respec-
tively, and suppose that u1, u2 are distinct local minima of J in

[
u, u

]
. Then there
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is a third critical point of J , u3 ∈
[
u, u

]
, which satisfies

J (u3)= c = inf
γ∈0

sup
t∈[0,1]

J (γ (t)),

where 0 := {γ ∈ C([0, 1] ,
[
u, u

]
) : γ (0)= u1, γ (1)= u2}.

Note that our solutions must be symmetric about x = 1/2, and it will often
be convenient to look at the problem over the interval [0, 1/2] with the condition
u′(1/2)= 0.

With the given construction of lower and upper solutions it is also possible to
construct proofs using degree theory. The connection between upper and lower
solutions and degree theory is developed nicely in [Amann 1976; Shivaji 1987],
and is used in [Brown et al. 1981; Castro and Shivaji 1998; Drábek and Robinson
2006; Robinson and Rudd 2006], and many related papers.

3. The ideal case

In this section we perform a detailed analysis of an important special case. We
study Equation (1) assuming that f is a step function with description

f (u) :=

{
k, u < 1,

K , u ≥ 1.
(2)

We will identify a region of the (k, K ) plane where this ideal problem has three
solutions. For points in the region where k > 0 all three solutions are positive.
For points in the region where k < 0 it will always be the case that one solution is
positive, one solution is negative, and the third solution is either sign-changing or
positive. We will characterize the subregion where two of the solutions are positive
and one is negative.

The solution of the ideal problem can be broken into two pieces corresponding
to the subintervals where u < 1 and u ≥ 1. Let u = u1 on {x : u(x) < 1}, so
u1 = − kx2/2+ ax + b, where we choose b = 0 in order to satisfy u(0) = 0. Let
u = u2 on {x : u(x) ≥ 1}, so u2 = − K x2/2+ cx + d, where c = K/2 in order to
satisfy u′(1/2)= 0.

A solution whose maximum does not exceed 1 will satisfy

u ≡ u1 = −
k
2

x2
+

k
2

x,

where we have chosen a = k/2 in order to guarantee u′1(1/2)= 0. If k > 0, then u
is positive with 1≥max u= k/8. Of course, if k ≤ 0, then u is nonpositive. Hence,
a solution with max u ≤ 1 exists if and only if k ≤ 8.

It remains to discover solutions whose maximum exceeds 1. This necessitates
K >0, else the solution would never have an interior maximum above 1. In order to
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explicitly construct these solutions we must satisfy continuity conditions by finding
an x0 ∈ (0, 1/2) such that u1(x0)= 1= u2(x0). We must also satisfy a smoothness
condition u′1(x0) = u′2(x0). The smoothness condition can be used to solve for a,
which can then be substituted into the first continuity condition to get(k

2
− K

)
x2

0 +
K
2

x0− 1= 0.

Basic curve sketching techniques from calculus show that this equation has exactly
one root x0 ∈ [0, 1/2] when (k, K ) is on the upper branch of the parabola

K 2
− 16K + 8k = 0,

the graph of K = 8+ 2
√

16− 2k. We will refer to this curve as 01. When (k, K )
lies above 01 then we get two roots. Once (k, K ) has been chosen we can easily
use the second continuity condition to solve for d . The two solutions thus obtained
are either both positive or one is positive and one is sign-changing. Distinguishing
between the latter two possibilities reduces to determining when the initial slope of
the solution is nonnegative. This can be done for a particular (k, K ) by using the
conditions above to solve for a = u′(0). To discover the condition that separates
the sign-changing case from the positive case, we set a = 0 and solve. This curve,
call it 02, is described by

K =
(8+ 2

√
−2k)k

k+ 8
, −∞< k < − 8.

It is straightforward to show that 02 lies above 01, and that the two curves are
asymptotic as k → −∞. If a pair (k, K ) lies on 01, then the ideal problem has
exactly one positive solution. If the pair lies above 01 and below 02, then the
problem has two positive solutions. If the pair lies above 02, then the problem has
one positive solution and one sign-changing solution.

4. A three solutions theorem

In this section we see that the ideal case generalizes in a straightforward way.

Theorem 4.1. Let (k, K ) be a point on the curve 01, let 0 < b, and suppose that
f : R→ R is a bounded continuous function such that

(a) f (0) < 0,

(b) kb ≤ f (u), for u < b,

(c) f (u)≥ K b, for b ≤ u ≤ Mb,

where M is the maximum of the solution to Equation (1) assuming the ideal con-
ditions (2). Then the boundary value problem (1) has at least three symmetric
solutions, one of which is positive and one of which is negative.
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Proof. We use symmetry to reduce the argument to the half interval [0, 1/2], with
the boundary conditions u(0)= 0 and u′(1/2)= 0. As a further simplification we
rescale the problem so that, without loss of generality, b = 1. Simply let v = u/b
and note that v′′ + f (bv)/b = 0, and that f (·) := f (b ·)/b satisfies f (v) ≥ k for
v ≥ 1, etc.

It is easy to check that u1 ≡ 0 and u2 = − Cx(1 − x)/2 are upper solu-
tions, where C is chosen so that f (u) < C for all u. It is also easy to check
that u1 = − kx(1− x)/2 is a lower solution. Now consider the positive function
u 2 = ψ , where ψ is the solution of

ψ ′′ =

{
−k, ψ < 1,

−K , ψ ≥ 1,
ψ(0)= 0, ψ ′(1/2)= 0,

as described in Section 3. Let M := max[0,1/2] ψ = ψ(1/2). It follows that
f (u 2)≥ K at points where ψ ≥ 1, where 1 ≤ ψ ≤ M , and that f (ψ) ≥ k where
ψ < 1, where 0≤ ψ < 1. Hence u 2 is a positive lower solution.

Theorem 4.1c implies C > K , so we have u′′2 < u′′2, u2(0) = u 2(0) = 0, and
u′2(1/2) = u′2(1/2) = 0. A simple comparison implies that u 2 ≤ u2. Other com-
parisons are easy, and lead to u1 ≤ u1 ≤ u 2 ≤ u2 in [0, 1/2].

Applying the variational methods described in Section 2 we infer the existence
of three solutions. The solution lying in the generalized interval

[
u1, u1

]
is clearly

negative, and the solution lying in the generalized interval
[
u 2, u2

]
is clearly pos-

itive. The third solution, the saddle point solution, cannot be easily described
without further conditions on f . �

5. Criteria for two positive solutions

In this section we state criteria that guarantee two positive solutions. Since our
interest is in positive solutions we assume throughout this section, without loss
of generality, that f (u) = f (0) for u ≤ 0. This introduces the convenience that
Equation (1) has a unique nonpositive solution satisfying u′′+ f (0)= 0, so every
other solution must be either sign-changing or positive.

In the ideal problem we get two positive solutions when k≥ −8. The analogous
result follows for the more general problem.

Theorem 5.1. Let (k, K ) be a point on the curve 01, let 0 < a < b, and suppose
that f : R→ R is a bounded continuous function such that

(a) f (0) < 0,

(b) kb ≤ f (u), for u ≤ b,

(c) f (u)≥ K b, for b ≤ u ≤ Mb,

(d) −8a ≤ f (u)≤ 0 for 0≤ u ≤ a,
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where M is the maximum of the solution to (1) assuming the ideal conditions (2).
Then (1) has two positive solutions.

Proof. Without loss of generality, rescale the problem so that a = 1. Apply
Theorem 4.1 to get three solutions, one of which is negative, one of which is
positive, and one of which is not yet well described. Let u be this third solution
and observe, as above, that u must have positive values somewhere on its domain.
By Theorem 5.1d, u cannot achieve a positive maximum below height a = 1. In
fact, if x1 is the first point where u(x) = 1, then u′′ ≥ 0 on [0, x1] implies that
u′(x1) > 0, so u must achieve a maximum strictly above 1.

Suppose that u′(0)≤0, and compare u to v=4x2. We know that u(0)=0=v(0),
u′(0) ≤ 0 = v′(0), and u′′ ≤ 8 = v′′ on {x : u(x) < 1}. It follows that u ≤ v at
least until the first point where u = 1, which cannot happen until after v reaches
1. But v ≤ 1 on [0, 1/2], so u cannot achieve a maximum greater than 1. This
is a contradiction, so it must be that u′(0) > 0. A similar comparison leads to a
contradiction if u(x) = 0 and u′(x) ≤ 0 at any other point x ∈ (0, 1/2). Thus u
must be positive. �

It is interesting to note that for the analogous PDE problem on the unit ball,
there is no theorem similar to Theorem 5.1. In fact, for any k < 0, it is possible
to construct a sign-changing third solution for the ideal case [Robinson and Rudd
2006].

For k < − 8 we have seen that the ideal problem has two positive solutions for
(k, K ) in the region above 01 and below 02. One might conjecture, and at one
time these authors did, that the general problem will have two positive solutions
if the K in Theorem 4.1 satisfies K ≤ (8+ 2

√
−2k)k/(k+ 8). It turns out that an

explicit counterexample can be constructed, as we shall soon demonstrate. How-
ever, the next theorem shows that an alternative upper bound on K does guarantee
the existence of two positive solutions.

Theorem 5.2. Let (k, K ) be a point on the curve 01 with k < − 8, let 0 < a < b,
and suppose that f : R→ R is a bounded continuous function such that

(a) ka ≤ f (u) < 0 for 0≤ u ≤ a,

(b) kb ≤ f (u), for u ≤ b,

(c) f (u)≥ K b, for b ≤ u ≤ Mb,

(d) f (u) < 16ka/(k+ 8) for all u,

where M is the maximum of the solution to Equation (1) assuming the ideal condi-
tions of (2). Then (1) has two positive solutions.

Proof. Rescale the problem so that, without loss of generality, a = 1. Let u repre-
sent the third solution as in the previous proof. Once again we use a comparison
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argument to show that assuming u′(0)≤ 0 leads to a contradiction. The case where
we assume u(x)= 0 and u′(x)≤ 0 leads to a similar contradiction.

Let k < − 8 be fixed, and consider a family of comparison functions indexed
by t ∈

[
t0,
√
−2/k

]
,

vt :=


−

k
2

x2, x ∈ [0, t] ,

−kt (x − t)−
k
2

t2, x ∈ [t, xt ] ,

−
Kt

2
x2, x ∈

[
xt ,

1
2

]
,

where

t0 :=
1
2
+

1
2k

√
k2+ 8k, xt :=

kt2
− 2

2kt
, Kt =

2k2t2

kt2− kt − 2
.

This function can be visualized in three pieces: the first is a parabola emerging
from the origin with 0 slope, the second is a tangent line to the parabola at the point
(t,−kt2/2), and the third is a parabolic cap that meets the tangent line smoothly at
(xt , 1) and then reaches a critical point at x = 1/2. t0 describes the t value such that
xt = 1/2, and thus describes the infimum of the t values such that this comparison
function makes sense, and, not coincidentally, identifies a vertical asymptote for
Kt . Computing two derivatives with respect to x , except at x = t and x = xt , we
see that

v′′t :=


−k, x ∈ [0, t) ,

0, x ∈ (t, xt),

−Kt , x ∈ (xt ,
1
2 ].

Recall, as in the previous proof, that u must reach a positive maximum above
1 at some point. How do u and vt compare? If u′(0) ≤ 0, then u ≤ − kx2/2
on
[
0,
√
−2/k

]
, because u′′ ≤ − k while u < 1, and −kx2/2 reaches height 1 at

√
−2/k. It is clearly possible to adjust the choice of t so that xt represents the first

point where u(x) = 1. Since u′′ ≥ 0 on [0, xt ], u(t) ≤ vt(t), and u(xt) = vt(xt)

it follows that u ≤ vt on [0, xt ] and that u′(xt) ≥ v
′
t(xt) > 0. By the mean value

theorem, there is an x ∈ (xt , 1/2) such that

−u′′(x)= −
u′
( 1

2

)
− u′(xt)

1
2 − xt

=
u′(xt)
1
2 − xt

≥
v′(xt)
1
2 − xt

= Kt .

Elementary calculus reveals that Kt achieves a minimum of

Kt =
16k

k+ 8
, at t = −

4
k
.
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Thus
−u′′(x)≥ 16k/(k+ 8) > f (u(x)),

and so a contradiction has been reached. �

It is important to note that 16k/(k+ 8)<(8+ 2
√
−2k)k/(k+ 8) for k<−8, and

so the comparison functions, vt , satisfy the conditions of Theorem 4.1 and the ad-
ditional restriction −v′′t < (8+ 2

√
−2k)k/(k+ 8). Since the inequality is strict we

can slightly modify vt so that it has negative slope at 0, and is thus sign-changing,
but still satisfies conditions Theorem 5.2a–c, as well as the given estimate on its
second derivative. This provides the counterexample to the conjecture, expressed
above, that 02 provides a boundary guaranteeing two positive solutions for the
general case.

Finally, if f is to satisfy the conditions of Theorem 5.2, and if C represents
the upper bound for f , then we must have 8+ 2

√
16− 2k ≤ C < 16k/(k+ 8).

A careful comparison of expressions on the left and right of this inequality shows
that their graphs cross in the (k, K ) plane at the point (−24, 24). Thus Theorem
5.2 is only applicable for −24 < k < − 8. It seems reasonable to conjecture that
finer estimates and comparison arguments will discover criteria for two positive
solutions when k < − 24.

6. A comparison of solvability conditions

The methods and results in [Brown et al. 1981] and [Henderson and Thompson
2000] represent two different, and complimentary, approaches to similar problems.
The more obvious differences are that [Henderson and Thompson 2000] does not
impose the same monotonicity and smoothness conditions used in [Brown et al.
1981], and is, in that sense, more general. On the other hand the results in [Brown
et al. 1981] deal with both the ODE and PDE cases, and take good advantage of
the more restrictive conditions to prove more precise results, especially in the ODE
case.

The relationship between the solvability conditions in the two papers is not as
obvious. In this section we explore that relationship. In particular we prove that
if the conditions in [Brown et al. 1981] are satisfied, then so are the conditions in
[Henderson and Thompson 2000]. In order to demonstrate this in some generality
we consider the PDE case,

1u+ λ f (u)= 0 in D, u|∂D = 0, (3)

where D⊂Rn is a smooth bounded domain and f : [0,∞)→ [0,∞) is continuous.
[Henderson and Thompson 2000] presented purely ODE results, but their work
is generalized in [Drábek and Robinson 2006], so we will actually compare the
conditions in [Brown et al. 1981] and [Drábek and Robinson 2006].
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It is helpful to begin by defining several constants. First, let m :=maxD φ, where
φ is the unique positive solution of

1φ+ 1= 0 in D, φ|∂D = 0.

Second, consider the problem

1ψ + K h(ψ)= 0 in D, φ|∂D = 0, (4)

where h(u) ≡ 0 when u < 1 and h(u) ≡ 1 when u ≥ 1. It is proved in [Drábek
and Robinson 2006] that there is a minimal positive K such that Equation (4) has
a positive solution, and we assume throughout the arguments below that K is this
minimal constant. Let M :=maxD ψ .

Drábek and Robinson [2006] proved that (3) has three nonnegative solutions if

(a) λ f (u) < ka on [0, a],

(b) λ f (u)≥ K b on [b,Mb],

(c) λ f (u)≤ kc on [0, c],

where 0< a < b < Mb < c and k := 1/m.
Before stating the solvability conditions in [Brown et al. 1981] we describe yet

another constant. Consider a subdomain �⊂⊂ D and consider

1η+χ� = 0 in D, η|∂D = 0.

Define M2 := [inf� η]−1. Observe that v = M2η satisfies

1v+M2χ� = 0 in D, η|∂D = 0,

with v ≥ 1 on �. In particular we have 1v + M2h(v) ≥ 0, so v is a positive
lower solution for (4). Combining this with a simple constant upper solution we
can show that (4) has a positive solution when M2 is substituted for K . Since K is
the minimal constant with this property we see that K ≤ M2. For a more detailed
discussion of K and its properties see [Drábek and Robinson 2006].

Brown et al. [1981] proved that (3) has three nonnegative solutions if f is a
smooth and bounded function, which is increasing on

[
0, c′

]
, and which satisfies

M2

(
l2

f (l2)

)
≤ λ≤min

{
M1

(
l1

f (l1)

)
,M3

(
c′

f (l1)

)}
, (5)

where 0< l1 < l2 < c′.
In order to compare solvability conditions it remains to do a careful reading

of the proof in [Brown et al. 1981] to see how the constants are chosen and how
they compare to those in [Drábek and Robinson 2006]. First, it turns out that
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M1 = M3 = 1/m. Hence, the inequality

λ≤ M1

(
l1

f (l1)

)
,

implies that λ f (a) ≤ ka if we substitute l1 = a and k = 1/m. Moreover, the
monotonicity assumption on f leads to λ f (u)≤ ka for u in [0, a]. The inequality

M2

(
l2

f (l2)

)
≤ λ,

leads us to K b≤λ f (b),where we have substituted l2= b and M2≥ K . Once again
monotonicity implies that K b ≤ λ f (u), for u ∈

[
b, c′

]
. Substituting M3 = 1/m,

b = l2, and c = c′ into the inequality

M2

(
l2

f (l2)

)
≤ M3

(
c′

f (l2)

)
,

gives mM2b ≤ c, and thus c ≥ mK b. By the definition of m we know that
Kφ(x)≤ mK for all x ∈ D. Also, 1(Kφ) = − K ≤ −K h(ψ) = 1ψ in D ,
with strict inequality over the set D \�, so the maximum principle implies that
Kφ(x) > ψ(x) in D. Hence K m > M , and so c > Mb.

So far we have used Equation (5) to verify conditions (a) and (b) on page 131 for
Equation (3) having nonnegative solutions, with the modest exception of obtaining
a strict inequality for condition (a). The purpose of the strict inequality in [Drábek
and Robinson 2006] is to guarantee that the intermediate lower solution is strict,
which helps in distinguishing the three different solutions. This hair can easily
be split by allowing equality and then using the monotonicity condition on f to
recover. Finally, condition (c) follows easily from the fact that f is bounded.
Hence the solvability conditions in [Brown et al. 1981] imply those in [Drábek
and Robinson 2006].
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Paths and circuits in G-graphs
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Bobby Dean Temple and Jennifer Renee Daniel

(Communicated by Scott Chapman)

For a group G with generating set S= {s1, s2, . . . , sk}, the G-graph of G, denoted
0(G, S), is the graph whose vertices are distinct cosets of 〈si 〉 in G. Two distinct
vertices are joined by an edge when the set intersection of the cosets is nonempty.
In this paper, we study the existence of Hamiltonian and Eulerian paths and
circuits in 0(G, S).

1. Introduction

Let G be a group with a generating set S = {s1, . . . , sk}. For the subgroup 〈si 〉 of
G, define the subset T〈si 〉 of G to be a left transversal for 〈si 〉 if {x〈si 〉 | x ∈ T〈si 〉} is
precisely the set of all left cosets of 〈si 〉 in G. Associate a simple graph 0(G, S)

to (G, S) with vertex set V (0(G, S))= {x j 〈si 〉 | x j ∈ T〈si 〉}. Two distinct vertices
x j 〈si 〉 and xl〈sk〉 in V (0(G, S)) are joined by an edge if x j 〈si 〉∩ xl〈sk〉 is nonempty.
The edge set, E(0(G, S)), consists of pairs (x j 〈si 〉, xl〈sk〉). 0(G, S) defined this
way has no multiedge or loop. Bretto and Gillibert [2004] introduced 0(G, S) and
a similar graph, 0(G, S). 0(G, S) differs from 0(G, S) in that it is a multigraph
with a n-edge between two vertices x j 〈si 〉 and xl〈sk〉 when |x j 〈si 〉 ∩ xl〈sk〉| = n.
The G-graph, 0(G, S), is necessarily a subgraph of 0(G, S).

In this paper we concentrate on results for 0(G, S). Many of the results from
[Bretto and Gillibert 2004; 2005; Bretto et al. 2005; 2007] about 0(G, S) translate
easily to the simple graph 0(G, S).

Let Vi = {x j 〈si 〉 | x j ∈ T〈si 〉}. Then V (0(G, S))= ∪k
i=1Vi . The main object of

this paper is to study the existence of Hamiltonian and Eulerian paths and circuits
in 0(G, S). To this end we recall a few results from Euler. Notice that Eulerian
circuits are not considered Eulerian paths in this paper.

MSC2000: 05C25, 20F05.
Keywords: Groups, graphs, generators.
All authors are partially supported by the MAA under its National Research Experience for Under-
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and the Moody Foundation.
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Theorem 1.1 (Euler). Let 0 be a nontrivial connected graph. Then 0 has an
Eulerian circuit if and only if every vertex is of even degree.

Theorem 1.2 (Euler). Let 0 be a nontrivial connected graph. Then 0 has an
Eulerian path if and only if 0 has exactly two vertices of odd degree. Furthermore,
the path begins at one of the vertices of odd degree and terminates at the other.

2. Preliminaries

In this section, results are proved that pertain to the degrees of vertices in 0(G, S).
Recall that if S = {s1, s2, . . . , sk}, then 0(G, S) is necessarily k-partite.

Lemma 2.1. If g ∈ 〈si 〉 ∩ 〈s j 〉, then g−1
∈ 〈si 〉 ∩ 〈s j 〉.

Proof. Let g ∈ 〈si 〉∩ 〈s j 〉, then there exists m, n ∈N such that g = sm
i = sn

j . Taking
the inverse, we have g−1

= s−m
i = s−n

j . Therefore g−1
∈ 〈si 〉 ∩ 〈s j 〉. �

Theorem 2.1. Let G be a group with generating set S. Let 〈si 〉∪x2〈si 〉∪· · ·∪xki 〈si 〉

be a partition of G into cosets of 〈si 〉 and 〈s j 〉∪ y2〈s j 〉∪ · · ·∪ yk j 〈s j 〉 be a partition
of G into cosets of 〈s j 〉. Let

Vi = {〈si 〉, x2〈si 〉, . . . , xki 〈si 〉} and V j = {〈s j 〉, y2〈s j 〉, . . . , yk j 〈s j 〉}

be the appropriate subsets of the vertex set of 0(G, S). If

|〈si 〉 ∩ 〈s j 〉| = Si, j and (x〈si 〉,y〈s j 〉) ∈E(0(G, S)),

then |x〈si 〉 ∩ y〈s j 〉| = Si, j .

Proof. Let 〈si 〉 ∩ 〈s j 〉 = {e, g1, . . . , gSi, j−1}. Since g1 ∈ 〈si 〉 and g1 ∈ 〈s j 〉, there
exists m, n ∈ N such that g1 = sm

i = sn
j . Let x〈si 〉 ∈ Vi and y〈s j 〉 ∈ V j such that

(x〈si 〉, y〈s j 〉) ∈ E(0(G, S)). Then x〈si 〉 ∩ y〈s j 〉 6=∅ and there exists h such that
h = xsm′

i = ysn′
j . So

h = xsm′
i = xsm′−m

i sm
i = xsm′−m

i g1.

Therefore hg−1
1 ∈ x〈si 〉. Likewise, hg−1

1 ∈ y〈s j 〉 and hg−1
1 ∈ x〈si 〉 ∩ y〈s j 〉. By

similar arguments, {h, hg−1
1 , hg−1

2 , . . . , hg−1
Si, j−1} ⊆ x〈si 〉 ∩ y〈s j 〉.

Assume there exists g ∈ x〈si 〉∩y〈s j 〉 such that g /∈ {h, hg−1
1 , hg−1

2 , . . . , hg−1
Si, j−1}.

Since g ∈ x〈si 〉 ∩ y〈s j 〉 there exists m′′, n′′ ∈ N such that g = xsm′′
i = ysn′′

j . So

g = xsm′′
i = xsm′

i sm′′−m′
i = hsm′′−m′

i .

Therefore h−1g ∈ 〈si 〉. Likewise h−1g ∈ 〈s j 〉 and h−1g ∈ 〈si 〉 ∩ 〈s j 〉. There
exists k ∈ {0, . . . , Si, j − 1} such that h−1g = gk . Since gk ∈ 〈si 〉 ∩ 〈s j 〉, g−1

k ∈
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〈si 〉 ∩ 〈s j 〉 by Lemma 2.1. Denote g−1
k by g′k . Then g = hgk = h(g′k)

−1 and
g ∈ {h, hg−1

1 , hg−1
2 , . . . , hg−1

Si, j−1}. Therefore

{h, hg−1
1 , hg−1

2 , . . . , hg−1
Si, j−1} = x〈si 〉 ∩ y〈s j 〉,

|x〈si 〉 ∩ y〈s j 〉| = Si, j . �

Corollary 2.1. The number of edges between 〈si 〉 and V j is given by |si |/Si, j .

Proof. Let

V j = {〈s j 〉, y2〈s j 〉, . . . , yk〈s j 〉} and V ′j = {〈s j 〉, y′2〈s j 〉, . . . , y′l 〈s j 〉}

be the set that contains all vertices in V j that are adjacent to 〈si 〉. Since

(〈si 〉, y′〈s j 〉) ∈ E(0(G, S)) for all y′〈s j 〉 ∈ V ′j , |〈si 〉 ∩ y′〈s j 〉| = Si, j

by Theorem 2.1. So the number of elements in 〈si 〉 is given by |si | = Si, j · l or the
number of edges between 〈si 〉 and V j is |si |/Si, j . �

Lemma 2.2. If G is a group with generating set S = {s1, . . . , sn} and Si, j =

|〈si 〉 ∩ 〈s j 〉|, then the degree of the vertex 〈si 〉, denoted deg〈si 〉, is

deg〈si 〉 =

( n∑
j=1

|si |/Si, j

)
− |si |/Si,i .

Proof. We proceed with induction on n. Partition the vertex set of 0(G, S) into
n subsets V1, V2, . . . , Vn such that Vi = {〈si 〉, x2〈si 〉, . . . , xki 〈si 〉}. Consider the
subgraph, 01,2, of 0(G, S) induced by the vertex set V1 ∪ V2. Let deg01,2

(〈si 〉)

denote the degree of the vertex 〈si 〉 in 01,2. Then, by Corollary 2.1,

deg01,2
(〈s2〉)= |s2|/S2,1 =

( 2∑
j=1

|s2|/S2, j

)
− |s2|/S2,2.

Likewise

deg01,2
(〈s1〉)= |s1|/S1,2 =

( 2∑
j=1

|s1|/S1, j

)
− |s1|/S1,1,

and the formula holds for n = 2.
Consider the subgraph, 01,2,...,n−1, of 0(G, S) induced by the vertex set V1∪V2∪

· · · ∪ Vn−1. Let deg01,2,...,n−1
(〈si 〉) denote the degree of the vertex 〈si 〉 in 01,2,...,n−1.

Assume that the theorem holds for n− 1, that is,

deg01,2,...,n−1
(〈si 〉)=

(n−1∑
j=1

|si |/Si, j

)
− |si |/Si,i .
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Now consider the entire graph, 0(G, S). The number of edges between 〈si 〉 and
Vn is |si |/Si,n . So

deg〈si 〉 = |si |/Si,n +

(n−1∑
j=1

|si |/Si, j

)
− |si |/Si,i =

( n∑
j=1

|si |/Si, j

)
− |si |/Si,i . �

Remark 1. Notice that |si |/Si,i = 1, since Si,i = |〈si 〉 ∩ 〈si 〉| = |si |.

Corollary 2.2. If G is a group with generating set S={s1, s2, . . . , sn}, then deg〈si 〉

equals deg g〈si 〉 for all g〈si 〉 in Vi , that is, every vertex in the same vertex set has
the same degree.

Proof. Let G be a group with generating set S = {s1, s2, . . . , sn} and Si, j = |〈si 〉 ∩

〈s j 〉|. From Theorem 2.1, if g, h ∈ G such that (g〈si 〉, h〈s j 〉) ∈ E(0(G, S)), then
|g〈si 〉 ∩ h〈s j 〉| = Si, j . From Lemma 2.2,

deg g〈si 〉 =

( n∑
j=1

|g〈si 〉|

Si, j

)
− 1=

( n∑
j=1

|〈si 〉|

Si, j

)
− 1= deg〈si 〉. �

Theorem 2.2. If G is a group with generating set S = {s1, s2, . . . , sn} and Si, j =

|〈si 〉 ∩ 〈s j 〉|, then 0(G, S) is complete n-partite if and only if( n∑
j=1

|〈si 〉|

Si, j

)
− 1=

( n∑
k=1

|Vk |

)
− |Vi |.

3. Abelian groups of rank ≤ 2

In this section, we let G be an abelian group of rank ≤ 2 and let |S| = 2. G is
isomorphic to Zn × Zm for some m and n. Notice that if G is infinite then it is
isomorphic to Z≈ Z×Z1 and the theorems of this section apply.

Theorem 3.1. Let G = Zn × Zm and S = {(1, 0), (0, 1)}, then 0(G, S) has a
Hamiltonian path if and only if |m− n| ≤ 1.

Proof. (⇒) Let 0(G, S) contain a Hamiltonian path. 0(G, S) is Km,n [Daniel
≥ 2008]. Assume that n ≥m. |(1, 0)| = n and |(0, 1)| =m and V = V1∪V2 where

V1 ={a1+〈(1, 0)〉, a2+〈(1, 0)〉, . . . , am +〈(1, 0)〉} and

V2 ={b1+〈(0, 1)〉, b2+〈(1, 0)〉, . . . , bn +〈(1, 0)〉}.

Let H1 = 〈(1, 0)〉 and H2 = 〈(0, 1)〉. Since n ≥ m, any Hamiltonian path must
start with a vertex in V2, that is, bi1 + H2.

(bi1 + H2, a j1 + H1), (a j1 + H1, bi2 + H2), (bi2 + H2, a j2 + H1), . . . ,

(a jm−1 + H1, bim + H2), (bim + H2, a jm + H1), . . .
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Notice that all the vertices in V1 have been exhausted. So either the path ends
here and n = m or it ends with the edge (a jm + H1, bim+1 + H2) and n = m + 1.
Therefore |m− n| ≤ 1. The proof for m ≥ n is similar.

(⇐) Let |m− n| ≤ 1, |(1, 0)| = n, and |(0, 1)| = m. Let

a1+ H1 ∪ a2+ H1 ∪ · · · ∪ am + H1

be a partition of G into cosets of 〈(1, 0)〉 and let

b1+ H2 ∪ b2+ H2 ∪ · · · ∪ bn + H2

be a partition of G into cosets of 〈(0, 1)〉. Since 0(G, S) is Km,n , there exists an
edge between ai + H1 and b j + H2 for all i, j .

(i) m = n+1 and (a1+H1, b1+H2), (b1+H2, a2+H1), . . . , (an+H1, bn+H2),
(bn + H2, am + H1) is a Hamiltonian path.

(ii) n=m+1 and (b1+H2, a1+H1), (a1+H1, b2+H2),. . . , (bm+H2, am+H1),

(am + H1, bn + H2) is a Hamiltonian path.

(iii) m = n and (a1+H1, b1+H2), (b1+H2, a2+H1), . . . , (bn−1+H2, an+H1),
(an + H1, bn + H2) is a Hamiltonian path. �

Theorem 3.2. Let G = Zn × Zm and S = {(1, 0), (0, 1)}, then 0(G, S) has a
Hamiltonian circuit if and only if m = n.

Proof. (⇒) Let 0(G,S) contain a Hamiltonian circuit. 0(G,S) is Km,n [Daniel
≥ 2008]. |(1,0)| = n and |(0,1)| = m and V = V1 ∪ V2 where

V1 ={a1+〈(1, 0)〉, a2+〈(1, 0)〉, . . . , am +〈(1, 0)〉},

V2 ={b1+〈(0, 1)〉, b2+〈(1, 0)〉, . . . , bn +〈(1, 0)〉}.

Let H1 = 〈(1, 0)〉 and H2 = 〈(0, 1)〉. Start with a vertex in V2, that is, bi1 + H2

and trace the Hamiltonian circuit

(bi1 + H2, a j1 + H1), (a j1 + H1, bi2 + H2), (bi2 + H2, a j2 + H1), . . . ,

(a jm−1 + H1, bim + H2), (bim + H2, a jm + H1), . . .

Notice that all the vertices in V1 have been exhausted. So the path ends here and
to complete the circuit we need the edge (a jm + H1, bi1 + H2). Therefore n = m.
The proof starting with a vertex in V1 is similar.

(⇐) Let m= n and a1+H1∪a2+H1∪· · ·∪am+H1 be partition of G into cosets
of 〈(1, 0)〉 Since 0(G, S) is Km,m , there exist an edge between ai+H1 and b j+H2

for all i, j . Then (a1+ H1, b1+ H2), (b1+ H2, a2+ H1), . . . , (am + H1, bm + H2),
(bm + H2, a1+ H1) is a Hamiltonian circuit. �
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Example 1. Let G = Z3×Z3 and S = {(1, 0), (0, 1)}, then 0(G, S) = K3,3 (see
figure) and 0(G, S) contains both a Hamiltonian path and circuit.
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Theorem 3.3. Let G = Zm × Zn and S = {(1, 0), (0, 1)}, then 0(G, S) has an
Eulerian circuit if and only if m and n are both even.

Proof. (⇒) Let 0(G, S) have an Eulerian circuit. From [Daniel ≥ 2008], S1,2 =

S2,1 = 1 so deg〈(1, 0)〉 = n and deg〈(0, 1)〉 =m. Since every vertex is even, m and
n are even.

(⇐) Let m and n be even. From [Daniel ≥ 2008], 0(G, S) is Kn,m . Therefore
deg〈(1, 0)〉=m and deg〈(0, 1)〉= n. Since m and n are both even, 0(G, S) contains
an Eulerian circuit. �

Theorem 3.4. Let G = Zm × Zn and S = {(1, 0), (0, 1)}, then 0(G, S) has an
Eulerian path if and only if m is odd and n = 2 or n is odd and m = 2.

Proof. (⇒) Let 0(G, S) contain an Eulerian path. Then 0(G, S) contains exactly
2 vertices of odd degree. Since 0(G, S) is bipartite, there exists i such that Vi

contains the two vertices of odd degree.
Let V1 contains the two vertices of odd degree. S1,2= S2,1= 1 so deg〈(1, 0)〉= n,

for n odd, and deg〈(0, 1)〉 = 2. Likewise if V2 contains the two vertices of odd
degree, deg〈(1, 0)〉 = 2 and deg〈(0, 1)〉 = m, for m odd.

(⇐) First, assume m = 2 and n is odd. 0(G, S) is K2,n and deg〈(1, 0)〉 = n and
deg〈(0, 1)〉 = 2. Since |(1, 0)| = 2, then there are exactly 2 vertices of odd degree.

Now, assume instead that m is odd and n = 2. Then 0(G, S) is Km,2 and
deg〈(1, 0)〉 = 2 and deg〈(0, 1)〉 = m. Since |(0, 1)| = 2, then there are exactly 2
vertices of odd degree. Therefore 0(G, S) contains an Eulerian path. �

4. Dihedral groups

For the dihedral group, Dn , let r be a rotation of 360◦/n and let f and r f be two
different reflections. In [Daniel ≥ 2008], it was shown that 0(G, S) = K2,n for
G = Dn and S= {r, f } and that 0(G, S) is the cycle of length 2n, C2n , for G = Dn

and S = { f, r f }.

Theorem 4.1. Let G = Dn and S = { f, r f }, then 0(G, S) contains an Eulerian
circuit.
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Proof. Let V = V1 ∪ V2 such that V1 = {〈 f 〉, r〈 f 〉, r2
〈 f 〉, . . . , rn−1

〈 f 〉} and

V2 = {〈r f 〉, r〈r f 〉, r2
〈r f 〉, . . . , rn−1

〈r f 〉}.

We have 〈r f 〉 = {r f, e} so 〈r f 〉 shares an edge with 〈 f 〉 and r〈 f 〉 and deg〈r f 〉 = 2.
By Corollary 2.2, every vertex in V2 has degree 2. Likewise 〈 f 〉= { f, e}, 〈 f 〉 shares
an edge with 〈r f 〉 and rn−1

〈r f 〉 and every vertex in V1 has degree 2. Since every
vertex has degree 2, Theorem 1.1 says that 0(G, S) contains an Eulerian circuit. �

Corollary 4.1. Let G = Dn and S = { f, r f }, then 0(G, S) does not contains an
Eulerian path.

Proof. Because the degree of every vertex is 2, 0(G, S) does not contain two
vertices of odd degree. �

Theorem 4.2. Let G = Dn and S = { f, r f }, then 0(G, S) contains a Hamiltonian
circuit.

Proof. Let V = V1 ∪ V2 such that V1 = {〈 f 〉, r〈 f 〉, r2
〈 f 〉, . . . , rn−1

〈 f 〉} and

V2 = {〈r f 〉, r〈r f 〉, r2
〈r f 〉, . . . , rn−1

〈r f 〉}.

A Hamiltonian circuit is then given by
(
〈 f 〉, 〈r f 〉

)
,
(
〈r f 〉, r〈 f 〉

)
,
(
r〈 f 〉, r〈r f 〉

)
,(

r〈r f 〉, r2
〈 f 〉

)
, . . . ,

(
rn−1
〈 f 〉, rn−1

〈r f 〉
)
,
(
rn−1
〈r f 〉, 〈 f 〉

)
. �

Corollary 4.2. Let G = Dn and S = { f, r f }, then 0(G, S) contains a Hamiltonian
path.

Theorem 4.3. Let G = Dn and S = {r, f }, then 0(G, S) contains an Eulerian
circuit if and only if n is even.

Proof. (⇒) Let 0(G, S) contain an Eulerian circuit. Then every vertex must be of
even degree. Let V = V1 ∪ V2 such that

V1 = {〈r〉, f 〈r〉} and V2 = {〈 f 〉, r〈 f 〉, r2
〈 f 〉, . . . , rn−1

〈 f 〉}.

We have
〈r〉 ∩ rm

〈 f 〉 = {rm
} for all m = 0, . . . , n− 1,

so the edge (〈r〉, rm
〈 f 〉) is in 0(G, S) for m = 0, . . . , n− 1 and deg〈r〉 = n. Like-

wise
f 〈r〉 ∩ rm

〈 f 〉 = {rm f } for all m = 0, . . . , n− 1,

so the edge ( f 〈r〉, rm
〈 f 〉) is in 0(G, S) for m = 0, . . . , n − 1 and deg f 〈r〉 = n.

Therefore, n must be even.
(⇐) Assume that n is even. Then the vertices in V1 are of even degree from

above. Choose a vertex in V2, rm
〈 f 〉. rm

〈 f 〉 shares an edge with 〈r〉 and f 〈r〉.
Therefore deg rm

〈 f 〉 = 2 and every vertex in V2 is of degree 2. Since all the vertices
of 0(G, S) are of even degree, 0(G, S) contains an Eulerian circuit. �
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Theorem 4.4. Let G = Dn and S = {r, f }, then 0(G, S) contains an Eulerian path
if and only if n is odd.

Proof. (⇒) Let 0(G, S) contain an Eulerian path. Then 0(G, S) contains exactly
two vertices of odd degree. Let V = V1 ∪ V2. There are n vertices in V2 and they
are of degree 2. There are two vertices in V1 and they are of degree n. Therefore, n
must be odd.

(⇐) Assume that n is odd. Then the two vertices in V1 are of odd degree and the
n vertices in V2 are of degree 2. Therefore 0(G, S) contains an Eulerian path. �

Theorem 4.5. Let G = Dn and S = {r, f }, then 0(G, S) contains a Hamiltonian
path if and only if n = 2 or 3.

Proof. (⇒) Let 0(G, S) contain a Hamiltonian path. 0(G, S) is K2,n [Daniel
≥ 2008]. Then V = V1 ∪ V2 where

V1 = {〈r〉, f 〈r〉} and V2 = {〈 f 〉, r〈 f 〉, r2
〈 f 〉, . . . , rn−1

〈 f 〉}.

Since n ≥ 2, any Hamiltonian path must start with a vertex in V2.(
r i1〈 f 〉, f j1〈r〉

)
,
(

f j1〈r〉, r i2〈 f 〉
)
,
(
r i2〈 f 〉, f j2〈r〉

)
, . . .

Notice that all the vertices in V1 have been exhausted. So either the path ends here
and n = 2 or it ends with the edge ( f j2〈r〉, r i3〈 f 〉) and n = 3. Therefore n = 2 or 3.

(⇐) Assume that n is 2 or 3. If n = 2 then V2 = {〈 f 〉,r〈 f 〉} and(
〈r〉, 〈 f 〉

)
,
(
〈 f 〉, f 〈r〉

)
,
(

f 〈r〉, r〈 f 〉
)

is a Hamiltonian path. If n = 3 then V2 = {〈 f 〉, r〈 f 〉, r2
〈 f 〉} and(

〈 f 〉, 〈r〉
)
,
(
〈r〉, r〈 f 〉

)
,
(
r〈 f 〉, f 〈r〉

)
,
(

f 〈r〉, r2
〈 f 〉

)
is a Hamiltonian path. �

Theorem 4.6. Let G = Dn and S = {r, f }, then 0(G, S) contains a Hamiltonian
circuit if and only if n = 2.

Proof. (⇒) Let 0(G, S) contain a Hamiltonian circuit. Start with a vertex in V2

and trace the Hamiltonian circuit

(r i1〈 f 〉, f j1〈r〉), ( f j1〈r〉, r i2〈 f 〉), (r i2〈 f 〉, f j2〈r〉), . . .

Notice that all the vertices in V1 have been exhausted so the circuit must end with
the edge ( f j2〈r〉, r i1〈 f 〉) and n must be 2. The proof starting with a vertex in V1 is
similar.

(⇐) Assume that n is 2. Then V2 = {〈 f 〉, r〈 f 〉} and
(
〈r〉, 〈 f 〉

)
,
(
〈 f 〉, f 〈r〉

)
,(

f 〈r〉, r〈 f 〉
)
,
(
r〈 f 〉, 〈r〉

)
is a Hamiltonian circuit. �
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5. Eulerian circuits and paths

Now we investigate the existence of Eulerian circuits and paths in 0(G, S) for a
generic group G.

Theorem 5.1. Let G be a group with generating set S = {s1, s2, . . . , sn} such that
|〈si 〉 ∩ 〈s j 〉| = 1 for all i 6= j ; then 0(G, S) contains an Eulerian circuit if and only
if |si | is even for all i , or n is odd.

Proof. From Lemma 2.2,

deg〈si 〉 =

( n∑
j=1

|si |/Si, j

)
− |si |/Si,i .

Also deg〈si 〉 = (n − 1)|si |, since Si, j = 1 for i 6= j . Then 0(G, S) contains an
Eulerian circuit if and only if |si | is even for all i or the number of generators, n, is
odd. �

Theorem 5.2. Let G be a group with generating set S = {s1, s2, . . . , sn} such that
|〈si 〉∩ 〈s j 〉| =m for all i 6= j , then 0(G, S) contains an Eulerian circuit if and only
if 2m|(n− 1)(|si |) for all i .

Proof. From Lemma 2.2,

deg〈si 〉 =

( n∑
j=1

|si |

Si, j

)
− |si |/Si,i .

Also, deg〈si 〉 = (n−1)|si |/m, since Si, j =m for i 6= j . Since 0(G, S) contains an
Eulerian circuit if and only if deg〈si 〉 is even for all i , then 0(G, S) contains an
Eulerian circuit if and only if 2m|(n− 1)(|si |) for all i . �

Theorem 5.3. Let G be a group with generating set S = {s1, s2, . . . , sn}, then
0(G, S) contains an Eulerian circuit if and only if

2|(n− 1)(|si |)
( n∑

j=1

1
Si, j

)
, for all i.

Proof. From Lemma 2.2,

deg〈si 〉 =

( n∑
j=1

|si |

Si, j

)
− |si |/Si,i . Si,i = |si |, deg〈si 〉 = (n− 1)(|si |)

( n∑
j=1

1
Si, j

)
.

Also, 0(G, S) contains an Eulerian circuit if and only if

2|(n− 1)(|si |)
( n∑

j=1

1
Si, j

)
, for all i. �
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Theorem 5.4. Let G be a group with generating set S= {s1, s2, . . . , sn}, if 0(G, S)

contains an Eulerian path then one of these cases apply

(i) there exists i such that |Vi | = 2 with deg〈si 〉 odd and deg〈s j 〉 even for all j 6= i ,
or

(ii) there exists i, j such that |Vi | = |V j | = 1 with deg〈si 〉 and deg〈s j 〉 odd and
deg〈sk〉 even for all k 6= i, j .

Corollary 5.1. Let G be a group with generating set S={s1, s2, . . . , sn}, if 0(G, S)

contains an Eulerian path then G is of even order or G is cyclic.
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On graphs for which every planar immersion lifts to
a knotted spatial embedding

Amy DeCelles, Joel Foisy, Chad Versace and Alice Wilson

(Communicated by Ann Trenk)

We call a graph G intrinsically linkable if there is a way to assign over/under
information to any planar immersion of G such that the associated spatial em-
bedding contains a pair of nonsplittably linked cycles. We define intrinsically
knottable graphs analogously. We show there exist intrinsically linkable graphs
that are not intrinsically linked. (Recall a graph is intrinsically linked if it con-
tains a pair of nonsplittably linked cycles in every spatial embedding.) We also
show there are intrinsically knottable graphs that are not intrinsically knotted. In
addition, we demonstrate that the property of being intrinsically linkable (knot-
table) is not preserved by vertex expansion.

1. Introduction

We start with a quick review of some definitions. A graph G consists of a finite
nonempty set V (G) of vertices together with a set E(G) of unordered pairs of
(usually distinct) vertices, called edges. If x = (u, v) ∈ E(G), for u, v ∈ V (G), we
say that u and v are adjacent vertices, and that vertex u and edge x are incident
with each other, as are v and x .

A walk in a graph G is an alternating sequence of vertices and edges

v0, x1, v1, . . . , vn−1, xn, vn

beginning and ending with vertices, in which each edge is incident with the two
vertices immediately preceding and following it. A cycle is a walk with n ≥ 2
vertices and with all vertices distinct except v0 = vn . We say such a cycle has
length n.

MSC2000: 57M25, 57M15.
Keywords: spatially embedded graph, intrinsically linked, intrinsically knotted, regular projection.
These results were obtained during an NSF (DMS 0353050) and NSA-sponsored Summer Research
Experience for Undergraduates. The second author was faculty advisor, and the other authors were
student participants.
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Let G be a graph with

V (G)= {v1, v2, . . . , vn} and E(G)= {x1, x2, . . . , xm}.

A spatial embedding of G is a map f of G to a subspace G(M) of R3 such that

G(M)=
( n⋃

i=1

vi (M)
)
∪

( m⋃
j=1

x j (M)
)
,

where

(i) v1(M), v2(M), . . . , vn(M) are n distinct points of R3 with f (vi )= vi (M);

(ii) x1(M), . . . , xm(M) are m mutually disjoint open arcs in R3 with

f (xi )= xi (M);

(iii) x j (M)∩ vi (M)=∅, i = 1, . . . , n, j = 1, . . . ,m;

(iv) if x j = (v j1, v j2), then the open arc x j (M) has v j1(M) and v j2(M) as end
points for j = 1, . . . ,m.

In the above definition, an arc in R3 is a homeomorphic image of [0, 1]; an
open arc is an arc less its two end points, the images of 0 and 1. More informally,
a spatial embedding is a way to place a given graph in space.

We define a planar immersion of a graph G similar to a spatial embedding of G,
except the codomain is R2 instead of R3, and we allow the image of edges of G to
intersect, though we require that no three edges can intersect at the same point and
we require the image of our edges to intersect transversely (they intersect locally
in only one point, and they are not tangent to each other). We will assume that
all embeddings and immersions are tame, that is, can be approximated by a finite
collection of line segments. We will often simply use the term immersion instead
of planar immersion. We use Ĝ to denote the image of an immersion of G under
the map f̂ . If H is a subgraph of G, we similarly denote by Ĥ the image of H
under f̂ .

Given an immersion f̂ of a graph G with image Ĝ, one can, by assigning
over/under information to its double points, lift the immersion into 3-space, thereby
creating a well-defined spatial embedding f̃ with image G̃. If π is the standard
projection π(x, y, z)= (x, y), and f̂ = π ◦ f̃ , we have the commutative diagram

G̃

G
f̂ -

f̃

-

Ĝ

π

?
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If there exists a lift of the immersion f̂ whose image contains a pair of nonsplit-
tably linked cycles (in other words, cannot be deformed to have a planar projection
with no crossings between strands from two different components), then we say
the immersion is linkable. We define the graph G to be intrinsically linkable if
every immersion of G is linkable. We define knottable and intrinsically knottable
analogously.

The study of intrinsically linkable graphs was inspired by two different ideas:
intrinsically linked graphs, and graphs with a knot inevitable projection. The prop-
erty of having a knot inevitable projection was introduced by Taniyama [1995] and
studied by others (for example, Sugiura and Suzuki [2000], and Tamura [2004]).
A (planar) graph has a knot inevitable projection if there exists a regular projection
(that is, a planar immersion) of the graph such that every choice of over/under-
crossings induces a spatial embedding that is knotted (in other words, cannot be
deformed to a spatial embedding that has a planar projection without crossings).

The first results concerning intrinsically linked graphs were written up by Con-
way and Gordon [1983], and by Sachs [1983], who independently showed that
every spatial embedding of K6 (the graph on 6 vertices that contains all 15 possible
edges between vertices) contains a pair of disjoint cycles that form a nonsplittable
link, that is, K6 is intrinsically linked. (See [Adams 2004] for a good background
on knot theory in general, and on intrinsically linked and knotted graphs in partic-
ular.)

Conway and Gordon [1983] also showed that every spatial embedding of K7

contains a cycle that forms a nontrivial knot, that is, K7 is intrinsically knot-
ted. Robertson et al. [1995] later showed that the collection of minor-minimal
intrinsically linked graphs is exactly the Petersen family, that is, the seven graphs
obtainable from the classic Petersen graph by repeated 1-Y and Y -1 exchanges.
No one has yet classified the minor-minimal intrinsically knotted graphs, though
they are known to be finite in number [Robertson and Seymour 2004].

Recall that a graph H is a minor of a graph G if H can be obtained from G by a
sequence of deletions and/or contractions of edges and/or deletions of vertices. A
graph G is minor minimal with respect to a given property if it has the property, but
no minor of G has the property. Let a, b, and c be vertices of a graph G such that
edges (a, b), (a, c), and (b, c) exist. Then a 1-Y exchange on a triangle (a, b, c)
of graph G is as follows. Vertex v is added to G, edges (a, b), (a, c), and (b, c)
are deleted, and edges (a, v), (b, v), and (c, v) are added. A Y -1 exchange is the
reverse operation.

Clearly, an intrinsically linked (knotted) graph is also intrinsically linkable (knot-
table), but the converse is not true. In this paper, we present several intrinsically
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linkable graphs, each of which is a proper minor of some graph in the Petersen fam-
ily (and hence not intrinsically linked), and several intrinsically knottable graphs,
which are all in the Petersen family (and not intrinsically knotted).

Recall that a vertex expansion of a vertex v in a graph G is achieved by replacing
v with two vertices v′ and v′′, adding the edge (v′, v′′) and connecting a subset of
the edges that were incident to v to v′ and the rest of the edges that were incident to
v to v′′. A graph G is considered to be an expansion of a graph H if G can be ob-
tained by vertex expansions of H . It is well known that vertex expansions preserve
intrinsic linking and intrinsic knotting; see [Nešetřil and Thomas 1985; Fellows and
Langston 1988]. We demonstrate several intrinsically linkable (knottable) graphs
for which vertex expansion destroys intrinsic linkability (knottability). We thus
conjecture that vertex expansion preserves intrinsic linkability (knottability) only
for those graphs that are intrinsically linked (knotted).

2. Intrinsically linkable graphs

We start this section with a quick introduction to the linking number. Recall that
given a link of two components, L1 and L2 (two disjoint circles embedded in
space), one computes the linking number of the link by examining a projection
(with over and under-crossing information) of the link. Choose an orientation for
each component of the link. At each crossing between two components, one of
the pictures in Figure 1 will hold. We count +1 for each crossing of the first
type (where you can rotate the over-strand counterclockwise to line up with the
under-strand) and −1 for each crossing of the second type. To get the linking
number, lk(L1, L2), take the sum of +1’s and −1’s and divide by 2. One can
show that the absolute value of the linking number is independent of projection,
and of chosen orientations (see [Adams 2004] for further explanation). Note that
if lk(L1, L2) 6= 0, then the associated link is nonsplit. The converse does not hold.
That is, there are nonsplit links with linking number 0 (the Whitehead link is a
famous example, see again [Adams 2004]).

Lemma 2.1. Let a graph G consist of two disjoint cycles A and B. A planar
immersion f̂ of G is linkable if and only if Â and B̂ intersect.

Proof. Suppose there is a planar immersion f̂ with disjoint cycles Â and B̂ that
intersect. We will construct from f̂ a spatial embedding f̃ in which the linking
number lk( Ã, B̃) is nonzero. Arbitrarily choose orientations for Â and B̂, and then
choose each crossing in Ĝ to be positive. It is assumed that Â and B̂ intersect, so
there exists at least one crossing between them. We now have an induced spatial
embedding f̃ in which lk( Ã, B̃) > 0.

The other implication is trivial to prove. �

Here, we provide a sufficient condition for a graph to be intrinsically linkable:
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Figure 1. Computing the linking number.

Lemma 2.2. A graph G is intrinsically linkable if it contains a nonplanar sub-
graph H such that for any pair {e1, e2} of nonadjacent edges in H , e1 and e2

belong to disjoint cycles in G.

Proof. Let G be any graph that satisfies the above condition and let f̂ be any
immersion of G. Since H is nonplanar, there exists in Ĥ at least one pair {e1, e2}

of nonadjacent edges that intersect. By hypothesis there are disjoint cycles, C1 and
C2, that contain e1 and e2 respectively. Since Ĉ1 and Ĉ2 intersect, by Lemma 2.1
f̂ is linkable. �

Remark (A remark on notation). We use the notation G − em,n to denote the
subgraph of G obtained by removing an edge connecting a vertex of degree m
to a vertex of degree n. This notation is used only when the edge classes of G
are uniquely determined by the degree of the incident vertices. If no subscript is
present on e, then all edges of G belong to the same class. (Recall that the degree
of a vertex is the number of edges incident to that vertex.)

We denote the graph in the Petersen family obtained from K6 by a single 1-
Y exchange by P7, and we denote the graph in the Petersen family obtained from
K3,3,1 by a single1-Y exchange by P8. Finally, we denote the graph in the Petersen
family obtained from P8 by a single 1-Y exchange by P9. (Recall that K3,3,1 is
the graph of 7 vertices with vertices in three classes: {v1, v2, v3}, {v4, v5, v6} and
{v7} and edges between two vertices if and only if they lie in different classes. The
graph K4,4 is defined similarly on 8 vertices with two vertex classes of size 4.)

Theorem 2.3. The following graphs are intrinsically linkable: K6−e, K3,3,1−e4,6,
P7− e4,5, P7− e5,5, (K4,4− e)− e4,4, and P8− e4,5.

Proof. We will show that G = K3,3,1− e4,6 is intrinsically linkable. Proofs for the
remaining graphs are similar.

Label the vertices as in Figure 2. Notice that in this labeling scheme the vertex
classes are S = {s1}, U = {u1}, V = {v1, v2, v3}, and W = {w1, w2}. We say that
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Figure 2. Vertex classes of K3,3,1− e4,6 and the subgraph H .

an edge is in the class SV if it connects a vertex in S with a vertex in V . Naming
the other edge classes similarly, we have four edge classes in total: SV , SW , U V ,
and V W .

Take any immersion f̂ of G. Let H be the subgraph induced by

{u1, v1, v2, v3, w1, w2}.

Since H is isomorphic to K3,3, H is nonplanar and thus Ĥ has a pair of nonadjacent
intersecting edges. There are two cases.

Case 1: Suppose one edge belongs to U V and the other to V W . We may assume
the two edges to be (u1, v2) and (v1, w1). Then the disjoint cycles

(s1, v1, w1) and (u1, v2, w2, v3)

intersect in Ĝ.

Case 2: Suppose both edges belong to V W . We may assume the two edges to be
(v1, w1) and (v2, w2). Then the disjoint cycles

(s1, v1, w1) and (u1, v2, w2, v3)

intersect in Ĝ.

Thus in either case we have a pair of disjoint cycles that intersect in Ĝ. By Lemma
2.2, G is intrinsically linkable. �

Figure 3. An immersion of P8− e3,3 with only one crossing.
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Since vertex expansion, 1-Y exchange, and Y -1 exchange preserve intrinsic
linking [Nešetřil and Thomas 1985; Fellows and Langston 1988; Motwani et al.
1988; Robertson et al. 1995], it is natural to ask if these same graph operations
preserve intrinsic linkability. In general, this is not the case. For example, P8−e4,4

can be obtained from P7− e4,5 by 1-Y exchange, but P8− e4,4 is not intrinsically
linkable (See Figure 3).

In addition, certain expansions of K6−e and K3,3,1−e4,6, which are exhibited in
Figure 4 (notice that the expanded immersions contain only one crossing), are not
intrinsically linkable. Any intrinsically linkable graph for which vertex expansion
does preserve linkability, we call strongly linkable. Having found many examples
in which expansion kills intrinsic linkability, we conjecture the following:

Conjecture 2.4. A graph is strongly linkable if and only if it is intrinsically linked.

Figure 4. Two graphs for which vertex expansion destroys intrin-
sic linkability.
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Figure 5. The neighborhoods involved in Lemma 3.1.

3. Intrinsically knottable graphs

3A. Introduction. The following lemma about knots is from [Kauffman 1983].
Note that we use lk2(L1, L2) to denote the mod 2 linking number for link compo-
nents L1 and L2. Recall that a knot is a tame embedding of S1 into R3.

Lemma 3.1. For a knot K , the Arf invariant α(K) is the second coefficient of the
Conway polynomial (mod 2). It satisfies the following Skein relation (see Figure 5):

α(K+)= α(K−)+ lk2(L1, L2).

Note that if α(K ) 6= 0, then K is nontrivial. (There are, however, many nontrivial
knots with vanishing Arf invariant).

We use the following lemma from [Taniyama and Yasuhara 2001] (see also
[Foisy 2002]). This lemma uses the second coefficient of the Conway polynomial
of a knot, which is denoted by a2(K ), for a knot K (again, if a2(K ) 6= 0, then K
is nontrivial). Recall that a Hamiltonian cycle in a graph is a cycle that uses every
vertex of the graph.

Figure 6. A planar embedding of D4.
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Lemma 3.2. Consider the graph D4, labeled as in Figure 6. Let f be a function
embedding D4 in space. Let S0 and S1 be sets of Hamiltonian cycles where

S0 = { (ai b j ckdl) | i + j + k+ l is even },

S1 = { (ai b j ckdl) | i + j + k+ l is odd }.

Let
λ( f )=

∑
C∈S0

a2( f (C))−
∑
C∈S1

a2( f (C)).

Then
λ( f )=

∣∣ lk(C1,C3) · lk(C2,C4)
∣∣.

In particular, if λ( f ) is nonzero, one of the Hamiltonian cycles must be knotted.

The following corollary is an immediate consequence; see [Taniyama and Ya-
suhara 2001; Foisy 2002].

Corollary 3.3. If for a given embedding of G, there is an expansion of D4 con-
tained as an embedded subgraph with

lk(C1,C3) · lk(C2,C4) > 0,

then the embedded G contains a knotted cycle.

3B. Nontrivial examples of intrinsically knottable graphs. We explore the con-
nection between intrinsic linking and intrinsic knottability by looking at the Pe-
tersen graphs. We originally conjectured that an intrinsically linked graph would
necessarily be intrinsically knottable, but we quickly found counterexamples. It
is easy to see that an immersion must have at least three crossings in order to be
knottable. There are immersions of P9, PG, and P8 that have only two crossings
(see, for example Figure 7), so clearly these graphs are not intrinsically knottable.

Theorem 3.4. The graph K6 is intrinsically knottable.

Our proof of this theorem relies heavily on the following lemma which is similar
to Lemma 3.2.

Lemma 3.5. Let D′4 be a graph with four vertices, two nonadjacent 2-cycles C1

and C2, and two nonadjacent edges A1 and A2 that connect C1 and C2 (see Figure
8). Given any immersion of D′4, if C1 and C2 cross and A1 and A2 cross, then the
immersion is knottable.

Proof. Take any immersion of D′4 such that C1 and C2 cross and A1 and A2 are
crossed. Assign over/under information to the crossings of C1 and C2 such that
lk2(C1,C2)= 1. We will show that there is a way to assign over/under information
to the crossings on A1 and A2 such that the resulting embedding contains a knot.
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Figure 7. An immersion of the classic Petersen graph with only
two crossings.

Let S be the set of all Hamiltonian cycles of D′4. Given any embedding of D′4,
we can define σ as follows:

σ =
∑
C∈S

α(C).

For disjoint arcs a1 and a2 in an embedding of D′4, define ω(a1, a2) ∈ Z2 to be
the number of times mod 2 that a1 crosses over a2. Note that by definition, for any
embedding of D′4,

ω(e1, e3)+ω(e1, e4)+ω(e2, e3)+ω(e2, e4)= lk2(C1,C2).

Assign arbitrarily all crossings of A1 with A2 but one. Consider the crossing that
has not been assigned. Let D+ denote the embedding of D′4 in which A1 crosses
over A2 at that crossing and D− denote the embedding of D′4 in which A2 crosses
over A1. Consider the change 1σ in σ that will result from changing the crossing
on A1 and A2.

Figure 8. The graph D′4.
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Let C be a Hamiltonian cycle containing A1 and A2 and ε(C) be the change in
α(C) induced by the crossing change. Now by Lemma 3.1 above,

ε(C)= α(C+)+α(C−)= lk2(L1, L2)=
∑

E1∈L1,E2∈L2

ω(E1, E2).

Now, summing up ε(C) over all Hamiltonian cycles C gives the change in σ .
Fortunately most of the terms cancel out and we are left with

1σ =
∑
C∈S

ε(C)

= ω(e1, e3)+ω(e1, e4)+ω(e2, e3)+ω(e2, e4)

= lk2(C1,C2)= 1.

This means that either D+ or D− contains a knot. �

Proof of Theorem 3.4. Take any lift of any immersion of K6. Since K6 is in-
trinsically linked, there is a pair of linked triangles, C1 and C2, in the resulting
embedding.

Suppose that we temporarily ignore the edges of C1 and C2. We are left with
K3,3, which has a crossing in nonadjacent edges, say A1 and A2. Notice that A1 and
A2 connect the cycles C1 and C2. The cycles C1 and C2, along with the edges A1

and A2, make up a subgraph of K6 that is D′4 (with some extra degree 2 vertices).
Since C1 and C2 are linkable and A1 and A2 cross, this subgraph immersion is
knottable, by Lemma 3.5. Thus K6 is knottable. �

Now we show that K4,4− e is intrinsically knottable. First we need the following
lemma.

Lemma 3.6. Suppose G is a graph that contains in every immersion two pairs
of linkable cycles, C1 and C2, C3 and C4. Suppose the union of the cycles is an
expansion of D4 with C1 and C2 opposite each other and C3 and C4 opposite each
other (so C1 and C2 are disjoint, C3 and C4 are disjoint, and all other pairs of Ci

and C j , for i 6= j , intersect in either a vertex, an edge, or a simple path). If there
is a way to orient the cycles consistently, then G is intrinsically knottable.

Proof. Orient the cycles in a consistent way, and assign all crossings to be positive.
Then lk(C1,C2) and lk(C3,C4) are both positive. Since the cycles C1, C2, C3,
and C4 form a subgraph of G that is an expansion of D4 with the desired linking
properties, we can apply Corollary 3.3 and conclude that the resulting embedding
contains a knot. �

Theorem 3.7. The graph K4,4− e is intrinsically knottable.
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Figure 9. Case 1 (left): C3 shares exactly one edge with C1 and
one edge with C2. Case 2 (right): C3 shares exactly one edge with
C1 and one edge with C2.

Proof. We first label the vertices of K4,4−e as v1, . . . , v4, w1, . . . , w4, where every
vi belongs to one partition and every wi belongs to the other partition. Let (v1, w3)

be the missing edge.
Take any lift of any immersion of K4,4−e. Since K4,4−e is intrinsically linked,

there is a pair of nonsplittably linked (thus linkable) 4-cycles in the lift embedding.
We again denote these 4-cycles as C1 and C2 where C1 is (v1, w1, v2, w2) and C2

is (v3, w3, v4, w4). (Up to symmetry this is the only way to get disjoint 4-cycles.)
Now the subgraph of K4,4−e resulting from the removal of (v1, w1) is intrinsi-

cally linkable by Theorem 2.3 above. So there is a pair of linkable cycles, C3 and
C4 in the subgraph. There are two ways in which C3 and C4 can be related to C1

and C2: C3 shares exactly one edge with C1 and one edge with C2, or C3 shares
exactly one edge with C1 and one edge with C2.

In each case, there is a way to orient the cycles C1, C2, C3, and C4 consistently.
(See Figure 9.) Since the cycles C1, C2, C3, and C4 form a subgraph of K4,4− e
that is an expansion of D4 with the desired linkability properties, we can apply
Lemma 3.6 and conclude that K4,4− e is intrinsically knottable. �

The techniques of this proof can also be applied to prove that K6, P7 and K3,3,1

are intrinsically knottable.

3C. Strongly knottable graphs. We say that a graph G is strongly knottable if
every expansion of G is intrinsically knottable.

Proposition 3.8. The graphs K6, K3,3,1, K4,4, and P7 are not strongly knottable.

Proof. In Figures 10 and 11, we exhibit immersions of expansions of K6 and
K4,4, such that each immersion has only two crossings, and thus certainly is not
knottable. Similar immersions for P7 and K3,3,1 exist. �

This leads us to the following conjecture.
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Figure 10. An immersion of an expansion of K6 with only two crossings.

Figure 11. An immersion of an expansion of K4,4 with only two crossings.

Conjecture 3.9. A graph is strongly knottable if and only if it is intrinsically knot-
ted.
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(Communicated by Scott Chapman)

A connection is developed between polynomials invariant under abelian permu-
tation of their variables and minimal zero sequences in a finite abelian group.
This connection is exploited to count the number of minimal invariant polyno-
mials for various abelian groups.

1. Introduction

Invariant theory has a long and beautiful history, with early work by Hilbert [1893]
and Noether [1915]. Classically, it is concerned with polynomials over R or C that
are invariant over certain permutations of their variables. For an introduction to
this subject, see any of [Dolgachev 2003; Neusel and Smith 2002; Olver 1999].

Minimal zero sequences (also called minimal zero-sum sequences) have also
been the subject of considerable study (for example, see [Chapman et al. 2001; Gao
and Geroldinger 1999; Geroldinger and Schneider 1992; Mazur 1992; van Emde
Boas and Kruyswijk 1967]). They are multisets of elements from a fixed finite
abelian group G subject to the restriction that the sum (according to multiplicity)
must be zero in G. This forms a semigroup under the multiset sum operation. For
an introduction, see one of [Caro 1996; Gao and Geroldinger 2006; Geroldinger
and Halter-Koch 2006; Halter-Koch 1997].

Our main result, Theorem 1, connects these two areas of mathematics. Let G
be a finite abelian group, and let I be the subalgebra of the polynomial ring on the
|G| variables that is invariant under the variable permutation induced by G. We
provide a canonical representation for I under which the natural set of generators
are bijective with minimal zero sequences of G. Since the 1948 paper of Strom
[1948], which settled the case where G has rank one, only partial progress [Kraft
and Procesi 1996; Schmid 1991] has been made in this area.

MSC2000: primary 13A50, 20K01; secondary 20M14.
Keywords: invariant polynomials, minimal zero sequences, finite abelian group, block monoid,

zero-sum.
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Theorem 1. There exists a canonical set of generators of I in bijective correspon-
dence with the set of minimal zero sequences of G, where generators of degree k
correspond to sequences of cardinality k.

2. Applications

Our result permits us to count canonical generators of I more efficiently, both by
degree and in total. These results, found in Table 11, use minimal zero sequence
counting algorithms such as that found in [Finklea et al.≥ 2008] which recursively
finds zero-free sequences. We are thus able to extend the table found in [Strom
1948] substantially. The total number of canonical generators for cyclic G (the
rightmost column of Table 1) is extended in Table 2.2 We can similarly report the
total number of canonical generators for some groups of the form Zm⊕Zn in Table
3. Some of these are of rank one and also appear in Table 1; they are included for
completeness.

The relation between these two areas has great potential for mutual benefit. For
example, two conjectures of Elashvili, as stated in [Harris and Wehlau 2006], have
already been partially proved in [Ponomarenko 2004] and fully proved in [Yuan
2007], by considering Theorem 1.

3. Proof of main theorem

Fix the finite abelian group G=Zn1⊕Zn2⊕· · ·⊕Znk . We consider the polynomial
ring in the variables xg, for each g ∈ G. We let h ∈ G act on the variables via
h : xg→ xh+g. Let I denote the subring that is invariant under all |G| such actions,
and equivalently invariant under the k actions

e1 = (−1, 0, . . . , 0),

e2 = (0,−1, . . . , 0), . . . ,

ek = (0, 0, . . . ,−1).

(The actions are chosen to be the negatives of the standard basis for technical
reasons, to be evident later. These elements generate G.)

We will describe a degree-preserving change of variables that will preserve I.
After this change, the group action on the original variables will act on the new
canonical variables as scalar multiplication.

1Space considerations limit the size of these tables; larger versions are
available (together with the software used to generate them) up to Z64 at
http://www-rohan.sdsu.edu/˜vadim/research.html

2These results, through other methods, were also found by A. Elashvili and V. Tsiskaridze
[Elashvili and Tsiskaridze ≥ 2008]. Their unpublished data matches ours, and equally continues
to Z64.
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G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

Z1 1 1
Z2 1 1 2
Z3 1 1 2 4
Z4 1 2 2 2 7
Z5 1 2 4 4 4 15

Z6 1 3 6 6 2 2 20
Z7 1 3 8 12 12 6 6 48
Z8 1 4 10 18 16 8 4 4 65
Z9 1 4 14 26 32 18 12 6 6 119
Z10 1 5 16 36 48 32 12 8 4 4 166

Z11 1 5 20 50 82 70 50 30 20 10 10 348
Z12 1 6 24 64 104 84 36 20 12 8 4 4 367
Z13 1 6 28 84 168 180 132 84 60 36 24 12 12 827
Z14 1 7 32 104 216 242 162 96 42 30 18 12 6 6 974
Z15 1 7 38 130 306 388 264 120 88 56 40 24 16 8 8 1494

Table 1. Number of canonical generators of I, by degree.

For all m ∈N, we set εm = e
2π
√
−1

m , where e is the usual transcendental 2.718 . . . .
We will need two well-known properties (for example, see [Ahlfors 1978] or [Dav-
enport 2000]).

Z1 1 Z16 2135 Z31 280352 Z46 7581158
Z2 2 Z17 3913 Z32 295291 Z47 10761816
Z3 4 Z18 4038 Z33 405919 Z48 9772607
Z4 7 Z19 7936 Z34 508162 Z49 15214301
Z5 15 Z20 8247 Z35 674630 Z50 15826998
Z6 20 Z21 12967 Z36 708819 Z51 20930012
Z7 48 Z22 17476 Z37 1230259 Z52 23378075
Z8 65 Z23 29162 Z38 1325732 Z53 34502651
Z9 119 Z24 28065 Z39 1709230 Z54 32192586
Z10 166 Z25 49609 Z40 1868565 Z55 44961550
Z11 348 Z26 59358 Z41 3045109 Z56 47162627
Z12 367 Z27 83420 Z42 2804474 Z57 63662925
Z13 827 Z28 97243 Z43 4694718 Z58 74515122
Z14 974 Z29 164967 Z44 4695997 Z59 102060484
Z15 1494 Z30 152548 Z45 5902561 Z60 85954379

Table 2. Total number of canonical generators for G = Zn .
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Z2 Z3 Z4 Z5 Z6 Z7

Z2 5 20 39 166 253 974
Z3 20 69 367 1494 2642 12967
Z4 39 367 1107 8247 19463 97243
Z5 166 1494 8247 31029 152548 674630
Z6 253 2642 19463 152548 390861 2804474
Z7 974 12967 97243 674630 2804474 9540473

Table 3. Total number of canonical generators for G = Zm ⊕Zn .

Proposition 1. Let εm be as above. Then

(1) (εm)
k
= 1 if and only if m divides k.

(2) Let j ∈ Z. Then
m−1∑
k=0
(εm)

jk
=

{
m, if m divides j ;
0, otherwise.

For g ∈G, we use (g)i ∈Z to denote the projection of g onto the i-th coordinate
(for 1≤ i ≤ k). For each h ∈ G, we define new variables yh via:

yh =
∑
g∈G

( k∏
i=1

(εni )
(g)i (h)i

)
xg.

The inverse change of basis is given explicitly below; hence this basis change
is degree-preserving.

Lemma 1. For all g ∈ G we have

xg =
1
|G|

∑
h∈G

( k∏
j=1

(εn j )
(h) j (−(g) j )

)
yh .

Proof. We substitute for yh into the right hand side to get:

1
|G|

∑
h∈G

( k∏
j=1

(εn j )
(h) j (−(g) j )

)∑
g′∈G

( k∏
i=1

(εni )
(g′)i (h)i

)
xg′ =

1
|G|

∑
g′∈G

xg′
∑
h∈G

( k∏
i=1

(εni )
(h)i ((g′)i−(g)i )

)
=

1
|G|

∑
g′∈G

xg′

{
|G|, if g = g′;
0, otherwise.

}
In the last step, if g = g′, then each term in the innermost product is 1. Otherwise,
for somew, we have (g′)w−(g)w 6= 0. We now collect the summands nw at a time,
where the w-th coordinate assumes all possible values and the other coordinates
are fixed. We pull out the common factors and apply Proposition 1 to get 0. �

Under the canonical basis {yh}, the k actions permuting the variables act as
scalar multiplication.
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Lemma 2. e j : yh→ (εn j )
(h) j yh .

Proof. We have

e j (yh)=
∑
g∈G

( k∏
i=1

(εni )
(g)i (h)i

)
xg+e j

=

∑
(g+e j )∈G

( k∏
i=1

(εni )
(g+e j−e j )i (h)i

)
xg+e j =

∑
g∈G

( k∏
i=1

(εni )
(g−e j )i (h)i

)
xg

= yh(εn j )
−(e j ) j (h) j = yh(εn j )

(h) j . �

An immediate consequence of the above is that e j : ya
h → (εn j )

a(h) j ya
h . More

generally, we can calculate the effect of e j on an arbitrary monomial.

Lemma 3. For constant α, e j : α
∏

h∈G
yah

h →

(
(εn j )

∑
h∈G

ah(h) j)
α
∏

h∈G
yah

h .

Observe that under the canonical basis all invariant polynomials may be writ-
ten as the sum of invariant monomials. Further, each invariant monomial may be
written as the product of invariant monomials. Hence, there is a canonical set of
generators of I under the canonical basis, namely the set of irreducible invariant
monomials.

Consider an irreducible monomial
∏

h∈G
yah

h . We must have

∑
h∈G

ah(h) j ≡ 0 (mod n j )

for each j . Combining these j requirements, we get∑
h∈G

ahh = 0,

where 0 is the zero element in G. Therefore, we can consider the ah as multiplic-
ities for each element h ∈ G, and since the sum is zero we have a zero sequence.
Further, this must be a minimal zero sequence by the irreducibility of the generator.
Conversely, every minimal zero sequence yields an irreducible monomial.
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Boundary data smoothness for solutions of nonlocal
boundary value problems for n-th order differential

equations
Johnny Henderson, Britney Hopkins, Eugenie Kim and Jeffrey Lyons

(Communicated by Kenneth S. Berenhaut)

Under certain conditions, solutions of the boundary value problem

y(n) = f (x,y, y′, . . . , y(n−1)),

y(i−1)(x1)= yi for 1≤ i ≤n−1, and y(x2)−
∑m

i=1 ri y(ηi )= yn , are differentiated
with respect to boundary conditions, where a < x1 < η1 < · · · < ηm < x2 < b,
and r1, . . . , rm, y1, . . . , yn ∈ R.

1. Introduction

In this paper, we will be concerned with differentiating solutions of certain nonlocal
boundary value problems with respect to boundary data for the n-th order ordinary
differential equation

y(n) = f (x, y, y′, . . . , y(n−1)), a < x < b, (1)

satisfying

y(i−1)(x1)= yi , 1≤ i ≤ n− 1, y(x2)−

m∑
k=1

rk y(ηk)= yn, (2)

where a< x1 <η1 < · · ·<ηm < x2 < b, and y1, . . . , yn, r1, . . . , rm ∈R, and where
we assume

(i) f (x, u1, . . . , un) : (a, b)×Rn
→ R is continuous,

(ii) ∂ f/∂ui (x, u1, . . . , un) : (a, b)×Rn
→ R are continuous, i = 1, 2, . . . , n, and

(iii) solutions of initial value problems for (1) extend to (a, b).

MSC2000: primary 34B15, 34B10; secondary 34B08.
Keywords: nonlinear boundary value problem, ordinary differential equation, nonlocal boundary

condition, boundary data smoothness.
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We remark that condition (iii) is not necessary for the spirit of this work’s results,
however, by assuming (iii), we avoid continually making statements in terms of
solutions’ maximal intervals of existence.

Under uniqueness assumptions on solutions of (1) and (2), we will establish
analogues of a result that Hartman [1964] attributes to Peano concerning differen-
tiation of solutions of (1) with respect to initial conditions. For our differentiation
with respect to the boundary conditions results, given a solution y(x) of (1), we
will give much attention to the variational equation for (1) along y(x), which is
defined by

z(n) =
n∑

k=1

∂ f
∂uk

(x, y(x), y′(x), . . . , y(n−1)(x))z(k−1). (3)

There has long been interest in multipoint nonlocal boundary value problems
for ordinary differential equations, with much attention given to positive solutions.
To see only a few of these papers, we refer the reader to [Bai and Fang 2003; Gupta
and Trofimchuk 1998; Ma 1997; 2002; Yang 2002].

Likewise, many papers have been devoted to smoothness of solutions of bound-
ary value problems with respect to boundary data. For a view of how this work
has evolved, involving not only boundary value problems for ordinary differential
equations, but also discrete versions, functional differential equations versions and
dynamic equations on time scales versions, we suggest results from among the
many papers [Datta 1998; Ehme 1993; Ehme et al. 1993; Ehme and Henderson
1996; Ehme and Lawrence 2000; Hartman 1964; Henderson 1984; 1987; Hender-
son et al. 2005; Henderson and Lawrence 1996; Lawrence 2002; Peterson 1976;
1978; 1981; 1987; Spencer 1975]. In fact, smoothness results have been given
some consideration for (1) and (2) when n = 2 and for specific and general values
of m [Ehrke et al. 2007; Henderson and Tisdell 2004].

The theorem for which we seek an analogue and attributed to Peano by Hartman
can be stated in the context of (1) as follows

Theorem 1.1. [Peano] Assume that, with respect to (1), conditions (i)–(iii) are
satisfied. Let x0 ∈ (a, b) and y(x)≡ y(x, x0, c1, c2, . . . , cn) denote the solution of
(1) satisfying the initial conditions y(i−1)(x0)= ci , 1≤ i ≤ n. Then,

(i) For each 1 ≤ i ≤ n, ∂y/∂ci exists on (a, b) and αi ≡ ∂y/∂ci is a solution of
the variational equation (3) along y(x) and satisfies the initial condition,

α
( j−1)
i (x0)= δi j , 1≤ i, j ≤ n.

(ii) ∂y/∂x0 exists on (a, b), and β ≡ ∂y/∂x0 is the solution of the variational
equation (3) along y(x) satisfying the initial conditions,

β(i−1)(x0)=−y(i)(x0), 1≤ i ≤ n.
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(iii) ∂y/∂x0(x)=−
∑n

k=1 y(k)(x0)∂y/∂ck(x).

In addition, our analogue of Theorem 1.1 depends on uniqueness of solutions
of (1) and (2), a condition we list as an assumption.

(iv) Given a < x1 < η1 < · · · < ηm < x2 < b, if y(i−1)(x1) = z(i−1)(x1) for each
1≤ i ≤ n−1, and y(x2)−

∑m
k=1 rk y(ηk)= z(x2)−

∑m
k=1 rkz(ηk), where y(x)

and z(x) are solutions of (1), then y(x)≡ z(x).

We will also make extensive use of a similar uniqueness condition on (3) along
solutions y(x) of (1).

(v) Given a < x1 < η1 < · · · < ηm < x2 < b, and a solution y(x) of (1), if
u(i−1)(x1) = 0, 1 ≤ i ≤ n− 1, and u(x2)−

∑m
k=1 rku(ηk) = 0, where u(x) is

a solution of (3) along y(x), then u(x)≡ 0.

2. An analogue of Peano’s Theorem for Equations (1) and (2)

In this section, we derive our analogue of Theorem 1.1 for boundary value prob-
lem (1), (2). For such a differentiation result, we need continuous dependence of
solutions on boundary conditions. The arguments for this continuous dependence
follow much along the lines of those in [Henderson and Tisdell 2004], when (1) is
of second order. For that reason, we omit the details of the proof.

Theorem 2.1. Assume (i)–(iv) are satisfied with respect to (1). Let u(x) be a solu-
tion of (1) on (a, b), and let a < c < x1 < η1 < · · · < ηm < x2 < d < b be given.
Then, there exists a δ > 0 such that, for

|xi − ti |< δ, i = 1, 2,

|ηi − τi |< δ and |ri − ρi |<δ, 1≤ i ≤ m,

|u(i−1)(x1)− yi |< δ, 1≤ i ≤ n− 1∣∣u(x2)−

m∑
k=1

rku(ηk)− yn
∣∣< δ,

there exists a unique solution uδ(x) of (1) such that

u(i−1)
δ (t1)= yi , 1≤ i ≤ n− 1,

uδ(t2)−
m∑

k=1

ρkuδ(τk)= yn

and {u( j−1)
δ (x)} converges uniformly to u( j−1)(x), as δ→0, on [c, d], for 1≤ j≤n.

We now present the result of the paper.
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Theorem 2.2. Assume conditions (i)–(v) are satisfied. Let u(x) be a solution (1)
on (a, b). Let a < x1 < η1 < · · ·< ηm < x2 < b be given, so that

u(x)= u(x, x1, x2, u1, . . . , un, η1, . . . , ηm, r1, . . . , rm),

where u(i−1)(x1)= ui , 1≤ i ≤ n− 1, and u(x2)−
∑m

k=1 rku(ηk) = un . Then,

(i) For each 1 ≤ i ≤ n, ∂u/∂ui exists on (a, b). Moreover, for each 1 ≤ j ≤
n−1, y j ≡ ∂u/∂u j solves Equation (3) along u(x) and satisfies the boundary
conditions,

y(i−1)
j (x1)= δi j , 1≤ i ≤ n− 1, y j (x2)−

m∑
k=1

rk y j (ηk)= 0,

and yn ≡ ∂u/∂un solves (3) along u(x) and satisfies the boundary conditions,

y(i−1)
n (x1)= 0, 1≤ i ≤ n− 1, yn(x2)−

m∑
k=1

rk yn(ηk)= 1.

(ii) ∂u/∂x1 and ∂u/∂x2 exist on (a, b), and zi ≡ ∂u/∂xi , i = 1, 2, are solutions
of (3) along u(x) and satisfy the respective boundary conditions,

z(i−1)
1 (x1)=−u(i)(x1), 1≤ i ≤ n− 1, z1(x2)−

m∑
k=1

rkz1(ηk)= 0,

z(i−1)
2 (x1)= 0, 1≤ i ≤ n− 1, z2(x2)−

m∑
k=1

rkz2(ηk)=−u′(x2).

(iii) For 1 ≤ j ≤ m, ∂u/∂η j exists on (a, b), and w j ≡ ∂u/∂η j , j = 1, . . . ,m, is
a solution of (3) along u(x) and satisfies

w
(i−1)
j (x1)= 0, 1≤ i ≤ n− 1, w j (x2)−

m∑
k=1

rkw j (ηk)= r j u′(η j ).

(iv) For 1 ≤ j ≤ m, ∂u/∂r j exists on (a, b), and v j ≡ ∂u/∂r j , j = 1, . . . ,m, is a
solution of (3) along u(x) and satisfies,

v
(i−1)
j (x1)= 0, 1≤ i ≤ n− 1, v j (x2)−

m∑
k=1

rkv j (ηk)= u(η j ).

Proof. For part (i), let 1≤ j ≤ n−1, and consider ∂u/∂u j , since the argument for
∂u/∂un is similar. In this case we designate, for brevity, u(x, x1, x2, u1, . . . , un ,
η1, . . . , ηm, r1, . . ., rm) by u(x, u j ).

Let δ > 0 be as in Theorem 2.1. Let 0< |h|< δ be given and define

y jh(x)=
1
h

[
u(x, u j + h)− u(x, u j )

]
.
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Note that u( j−1)(x1, u j + h) = u j + h, and u( j−1)(x1, u j ) = u j , so that, for every
h 6= 0,

y( j−1)
jh (x1)=

1
h
[u j + h− u j ] = 1.

Also, for every h 6= 0, 1≤ i ≤ n− 1, i 6= j ,

y(i−1)
jh (x1)=

1
h

[
u(i−1)(x1, u j + h)− u(i−1)(x1, u j )

]
=

1
h
[ui − ui ] = 0,

and

y jh(x2)−

m∑
k=1

rk y jh(ηk)=
1
h

[
u(x2, u j + h)− u(x2, u j )

]
−

m∑
k=1

rk

h

[
u(ηk, u j + h)− u(ηk, u j )

]
=

1
h
[un − un] = 0.

Let β = u(n−1)(x1, u j ), and ε = ε(h) = u(n−1)(x1, u j + h)− β. By Theorem 2.1,
ε = ε(h)→ 0, as h→ 0. Using the notation of Theorem 1.1 for solutions of initial
value problems for Equation (1) and viewing the solutions u as solutions of initial
value problems and denoting y(x, x1, u1, . . . , u j , . . . , un−1, β) by y(x, x1, u j , β),
we have

y jh(x)=
1
h

[
y(x, x1, u j + h, β + ε)− y(x, x1, u j , β)

]
.

Then, by utilizing a telescoping sum, we have

y jh(x)=
1
h

[
{y(x, x1, u j + h, β + ε)− y(x, x1, u j , β + ε)}

+ {y(x, x1, u j , β + ε)− y(x, x1, u j , β)}
]
.

By Theorem 1.1 and the Mean Value Theorem, we obtain

y jh(x)=
1
h
α j
(
x, y(x, x1, u j + h̄, β + ε)

)
(u j + h− u j )

+
1
h
αn
(
x, y(x, x1, u j , β + ε̄)

)
(β + ε−β),

where αk(x, y(·)), k ∈ { j, n}, is the solution of the variational Equation (3) along
y(·) and satisfies, in each case,

α
(i−1)
j (x1)= δi j α(i−1)

n (x1)= δin, 1≤ i ≤ n,

respectively. Furthermore, u j + h̄ is between u j and u j + h, and β+ ε̄ is between
β and β + ε. Now simplifying,

y jh(x)= α j
(
x, y(x, x1, u j + h̄, β + ε)

)
+
ε

h
αn
(
x, y(x, x1, u j , β + ε̄)

)
.
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Thus, to show lim
h→0

y jh(x) exists, it suffices to show lim
h→0

ε/h exists.

Now αn(x,y(·)) is a nontrivial solution of Equation (3) along y(·), and

α(i−1)
n (x1,y(·))= 0, 1≤ i ≤ n− 1.

So, by assumption (v), αn(x2, y(·))−
∑m

k=1 rkαn(ηk, y(·)) 6= 0. However, we ob-
served that y jh(x2)−

∑m
k=1 rk y jh(ηk)= 0, from which we obtain

ε

h
=

∑m
k=1 rkα j

(
ηk, y(x, x1, u j + h̄, β + ε)

)
−α j

(
x2, y(x, x1, u j + h̄, β + ε)

)
αn
(
x2, y(x, x1, u j , β + ε̄)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, u j , β + ε̄)

) .

As a consequence of continuous dependence, we can let h→ 0, so that

lim
h→0

ε

h
=−

α j
(
x2, y(x, x1, u j , β2)

)
−
∑m

k=1 rkα j
(
ηk, y(x, x1, u j , β)

)
αn
(
x2, y(x, x1, u j , β)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, u j , β)

)
=−

α j (x2, u(x))−
∑m

k=1 rkα j (ηk, u(x))
αn(x2, u(x))−

∑m
k=1 rkαn(ηk, u(x))

=: D.

Let y j (x)= lim
h→0

y jh(x), and note by construction of y jh(x) that

y j (x)=
∂u
∂u j

(x).

Furthermore,

y j (x)= lim
h→0

y jh(x)= α j (x, y(x, x1, u j , β))+ Dαn(x, (u(x)),

which is a solution of the variational Equation (3) along u(x). In addition because
of the boundary conditions satisfied by y jh(x), we also have

y(i−1)
j (x1)= δi j , 1≤ i ≤ n− 1, y j (x2)−

m∑
k=1

rk y j (ηk)= 0.

This completes the argument for ∂u/∂u j .
In part (ii) of the theorem, we will produce the details for ∂u/∂x1, with the

arguments for ∂u/∂x2 being similar. This time, we designate

u(x, x1, x2, u1, . . . , un, η1, . . . , ηm, r1, . . . , rm)

by u(x, x1).
So, let δ > 0 be as in Theorem 2.1, let 0< |h|< δ be given, and define

z1h(x)=
1
h
[u(x, x1+ h)− u(x, x1)].
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Note that, for 1≤ i ≤ n− 1,

z(i−1)
1h (x1)=

1
h
[u(i−1)(x1, x1+ h)− u(i−1)(x1, x1)]

=
1
h
[u(i−1)(x1, x1+ h)− u(i−1)(x1+ h, x1+ h)]

= −
1
h
[u(i)(cx1,h, x1+ h) · h]

= −u(i)(cx1,h, x1+ h),

where cx1,h lies between x1 and x1+ h. In addition, we note that, for every h 6= 0,

z1h(x2)−

m∑
k=1

rkz1h(ηk)=
1
h
[u(x2, x1+ h)−

m∑
k=1

rku(ηk, x1+ h)

−{u(x2, x1)−

m∑
k=1

rku(ηk, x1)}] =
1
h
[un − un] = 0.

Next, let

β = u(n−1)(x1, x1),

ε j = ε j (h)= u( j−1)(x1, x1+ h)− u j ,

εβ = εβ(h)= u(n−1)(x1, x1+ h)−β.

Let us note at this point that
ε j

h
= z( j−1)

1h (x1)=−u( j)(cx1,h, x1+ h).

By Theorem 2.1, both ε j→ 0 and εβ→ 0, as h→ 0. As in part (i), we employ the
notation of Theorem 1.1 for solutions of initial value problems for (1). Viewing
the solutions u as solutions of initial value problems, and denoting

y(x, x1, u1, . . . , u j , . . . , un − 1, β)

by y(x, x1, u j , β), we have

z1h(x)=
1
h
[y(x, x1, u j + ε j , β + εβ)− y(x, x1, u j , β)]

=
1
h
[y(x, x1, u j + ε j , β + εβ)− y(x, x1, u j , β + εβ)

+y(x, x1, u j , β + εβ)− y(x, x1, u j , β)].

By the Mean Value Theorem,

z1h(x)=
1
h

[
ε jα j

(
x, y(x, x1, u j + ε̄ j , β + εβ)

)
+ εβαn

(
x, y(x, x1, u j , β + ε̄β)

)]
,



174 JOHNNY HENDERSON, BRITNEY HOPKINS, EUGENIE KIM AND JEFFREY LYONS

where u j + ε̄ j lies between u j and u j + ε j , β+ ε̄β lies between β and β+ εβ , and
α j (x, y(·)) and αn(x, y(·)) are the solutions of Equation (3) along y(·) and satisfy,
respectively,

α
(i−1)
j (x1)= δi j , 1≤ i ≤ n,

α(i−1)
n (x1)= δin, 1≤ i ≤ n.

As before, to show that lim
h→0

z1h(x) exists, it suffices to show that

lim
h→0

ε j

h
and lim

h→0

εβ

h

exist. Now, from above,

lim
h→0

ε j

h
= lim

h→0
z( j−1)

1h (x1)= lim
h→0

u( j)(cx1,h, x1+ h)=−u( j)(x1).

Since αn(x,y(·)) is a nontrivial solution of (3) along y(·) and

α(i−1)
n (x1,y(·))= 0, 1≤ i ≤ n− 1,

it follows from assumption (v) that

αn(x2,y(·))−
m∑

k=1

rkαn(ηk,y(·)) 6=0.

Since

z1h(x2)−

m∑
k=1

rkz1h(ηk)= 0,

we have

εβ

h
=

(
−ε j

h

) A
αn
(
x2, y(x, x1, u j , β + ε̄β)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, u j , β + ε̄β)

) ,
where

A = α j
(
x2, y(x, x1, u j + ε̄ j , β + εβ)

)
−

m∑
k=1

rkα j
(
ηk, y(x, x1, u j + ε̄ j , β + εβ)

)
.

And so,

lim
h→0

εβ

h
=

u( j)(x1)
[
α j
(
x2, y(x, x1, u j , β)

)
−
∑m

i=1 riα j
(
ηi , y(x, x1, u j , β)

)]
αn
(
x2, y(x, x1, u j , β)

)
−
∑m

i=1 riαn
(
ηi , y(x, x1, u j , β)

)
=

u( j)(x1)
[
α j
(
x2, u(x)

)
−
∑m

i=1 riα j
(
ηi , u(x)

)]
αn
(
x2, u(x)

)
−
∑m

i=1 riαn
(
ηi , u(x)

) =: E .
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From the above expression,

z1h(x)=
ε j

h
α j
(
x, y(x, x1, u j + ε̄ j , β + εβ)

)
+
εβ

h
αn
(
x, y(x, x1, u j , β + ε̄β)

)
,

and we can evaluate the limit as h → 0. If we let z1(x) = limh→0 z1h(x), then
z1(x)= ∂u/∂x1, and

z1(x)= lim
h→0

z1h(x)

=−u( j)(x1)α j
(
x, y(x, x1, u j , β)

)
+ Eαn

(
x, y(x, x1, u j , β)

)
=−u( j)(x1)α j

(
x, u(x)

)
+ Eαn

(
x, u(x)

)
,

which is a solution of Equation (3) along u(x). In addition, from above observa-
tions, z1(x) satisfies the boundary conditions,

z(i−1)
1 (x1)= lim

h→0
z(i−1)

1h (x1)=−u(i)(x1), 1≤ i ≤ n− 1,

and

z1(x2)−

m∑
k=1

rkz1(ηk))= lim
h→0

(z1h(x2)−

m∑
k=1

rkz1h(ηk))= 0.

This completes the proof for ∂u/∂x1.
The proofs of (iii) and (iv) are in very much the same spirit. For (iii), we fix

1≤ j≤m, and this time we designate

u(x,x1,x2,u1,. . . ,un,η1,. . . ,ηm,r1,. . . ,rm)

by u(x, η j ). Let δ > 0 be as in Theorem 2.1 and 0< |h|< δ be given. Define

w jh(x)=
1
h
[u(x, η j + h)− u(x, η j )].

Note that for every h 6= 0,

w
(i−1)
jh (x1)= 0, 1≤ i ≤ n− 1.

Next, let β = u(n−1)(x1, η j ), and

ε = ε(h)= u(n−1)(x1, η j + h)−β.

By Theorem 2.1, ε→ 0, as h→ 0. Again, we use the notation of Theorem 1.1 for
solutions of initial value problems for (1); viewing the solutions u as solutions of
initial value problems and denoting

y(x, x1, u1, . . . , un−1, β)
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by y(x, x1, β), we have

w jh(x)=
1
h
[y(x, x1, β + ε)− y(x, x1, β)].

By the Mean Value Theorem,

w jh(x)=
ε

h
αn(x, y(x, x1, β + ε̄)),

where αn(x, y(·)) is the solution of Equation (3) along y(·) and satisfies

α(i−1)
n (x1)= δin, 1≤ i ≤ n− 1,

and β+ ε̄ lies between β and β+ ε. Once again, to show limh→0w jh(x) exists, it
suffices to show limh→0 ε/h exists.

Since αn(x,y(·)) is a nontrivial solution of (3) along y(·) and

α(i−1)
n (x1,y(·))= 0, 1≤ i ≤ n− 1,

it follows from assumption (v) that

αn(x2,y(·))−
m∑

k=1

rkαn(ηk,y(·)) 6= 0.

Hence,

ε

h
=

w jh(x2)−
∑m

k=1 rkw jh(ηi )

αn
(
x2, y(x, x1, β2+ ε̄)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, β + ε̄)

) .
We look in more detail at the numerator of this quotient. Consider

w jh(x2)−

m∑
k=1

rkw jh(ηk)

=
1
h

[
u(x2, η j + h)−

m∑
k=1

rku(ηk, η j + h)−
[
u(x2, η j )−

m∑
k=1

rku(ηk, η j )
]]

=
1
h

[
u(x2, η j + h)−

∑
k∈{1,...,m}\{ j}

rku(ηk, η j + h)

−r j u(η j + h, η j + h)+ r j u(η j + h, η j + h)

−r j u(η j , η j + h)
]
−

un

h

=
un

h
−

un

h
+

r j u(η j + h, η j + h)− r j u(η j , η j + h)
h

=
r j

h

[
u(η j + h, η j + h)− u(η j , η j + h)

]
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=
r j

h

∫ η j+h

η j

u′(s, η j + h)ds

=
r j

h
u′(c j,h, η j + h)(η j + h− η j )= r j u′(c j,h, η j + h),

where c j,h is between η j and η j + h. So, as h→ 0 we obtain

r j u′(ch, η j + h)→ r j u′(η j , η j )= r j u′(η j ).

When we return to the quotient defining ε/h, we compute the limit,

lim
h→0

ε

h
=

r j u′(η j )

αn
(
x2, y(x, x1, u1, β)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, u1, β)

)
=

r j u′(η j )

αn
(
x2, u(x)

)
−
∑m

k=1 rkαn
(
ηk, u(x)

) =: E j .

From
w jh(x)=

ε

h
αn
(
x, y(x, x1, u1, β + ε̄)

)
,

if we let w j (x)= limh→0w jh(x), then w j (x)= ∂u/∂η j , and

w j (x)= lim
h→0

w jh(x)= E jαn(x, y(x, x1, u1, β))= E jαn(x, u(x)),

which is a solution of Equation (3) along u(x). In addition, from above observa-
tions, w j (x) satisfies the boundary conditions,

w
(i−1)
j (x1)= lim

h→0
w
(i−1)
jh (x1)= 0, 1≤ i ≤ n− 1,

w j (x2)−

m∑
k=1

rkw j (ηk)= r j u′(η j ).

This concludes the proof of (iii). It remains to verify part (iv).
Fix 1≤ j ≤m as before and consider ∂u/∂r j . Again, let δ > 0 be as in Theorem

2.1 and 0< |h|< δ. Define

v jh(x)=
1
h
[u(x, r j + h)− u(x, r j )],

where, for brevity, we designate

u(x, x1, x2, u1, . . . , un, η1, . . . , ηm, r1, . . . , rm)

by u(x, r j ). Note that

v
(i−1)
jh (x1)=

1
h
(ui − ui )= 0,
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for every h 6= 0 and 1≤ i ≤ n− 1. Also, we see that

v jh(x2)−

m∑
k=1

rkv jh(ηk)

=
1
h

[
u(x2, r j + h)− u(x2, r j )−

m∑
k=1

rk
(
u(ηk, r j + h)− u(ηk, r j )

)]
=

1
h

[
u(x2, r j + h)− u(x2, r j )−

m∑
k=1

rku(ηk, r j + h)+
m∑

k=1

rku(ηk, r j )
]

=
1
h

u(x2, r j + h)−
1
h

m∑
k=1

rku(ηk, r j + h)−
un

h

=
1
h

[
u(x2, r j + h)−

∑
k∈{1,...,m}\{ j}

rku(ηk, r j + h)

−r j u(η j , r j + h)− hu(η j , r j + h)+ hu(η j , r j + h)
]
−

un

h

=
1
h

[
u(x2, r j + h)−

∑
k∈{1,...,m}\{ j}

rku(ηk, r j + h)

−(r j + h)u(η j , r j + h)
]
+ u(η j , r j + h)−

un

h

=
un

h
+ u(η j , r j + h)−

un

h
= u(η j , r j + h).

And so by Theorem 2.1,

lim
h→0

v jh(x2)−

m∑
k=1

rkv jh(ηk)= u(η j , r j ).

Now recall that u(n−2)(x1, r j )= un−1, and define

β = u(n−1)(x1, r j ), and ε = ε(h)= u(n−1)(x1, r j + h)−β.

As usual, ε→ 0 as h→ 0. Once again, using the notation for solutions of initial
value problems for (1) and denoting y(x, x1, u1, . . . , un−1, β) by y(x, x1, β), we
have

v jh(x)=
1
h

[
y(x, x1, β + ε)− y(x, x1, β)

]
.

By the Mean Value Theorem,

v jh(x)=
1
h
αn
(
x, y(x, x1, β + ε)

)
(β + ε−β)

=
ε

h
αn
(
x, y(x, x1, β + ε)

)
,
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where αn(x, y(·)) is the solution of Equation (3) along y(·) and satisfies

α(i−1)
n (x1, y(·))= 0, 1≤ i ≤ n− 1,

α(n−1)
n (x1, y(·))= 1,

and β+ε lies between β and β+ε. As in previous cases, it follows from assumption
(v) that

αn(x2, y(·))−
m∑

k=1

rkαn(ηk, y(·)) 6= 0.

Hence,

ε

h
=

v jh(x2)−
∑m

k=1 rkv jh(ηk)

αn
(
x2, y(x, x1, β + ε̄)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, β + ε̄)

) ,
and so from above,

lim
h→0

ε

h
=

r j u(η j )

αn
(
x2, y(x, x1, β)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, β)

)
=

r j u(η j )

αn
(
x2, u(x)

)
−
∑m

k=1 rkαn
(
ηk, u(x)

) =: E j .

From

v jh(x)=
ε

h
αn
(
x, y(x, x1, β + ε̄)

)
,

if we set v j (x)= limh→0 v jh(x), we obtain v j (x)= ∂u/∂r j . In particular,

v j (x)= lim
h→0

v jh(x)= E jαn(x, y(x, x1, β))= E jαn(x, u(x)),

which is a solution of (3) along u(x). In addition, v j (x) satisfies the boundary
conditions,

v j (x1)= lim
h→0

v
(i−1)
jh (x1)= 0, 1≤ i ≤ n− 1,

v j (x2)−

m∑
k=1

rkv j (ηk)= u(η j ).

This completes case (iv), which in turn completes the proof of the theorem. �

We conclude the paper with a corollary to Theorem 2.2, whose verification is
a consequence of the n-dimensionality of the solution space for the variational
Equation (3). In addition, this corollary establishes an analogue of part (iii) of
Theorem 1.1.
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Corollary 2.2.1. Assume the conditions of Theorem 2.2. Then,

∂u
∂x1
=−

n−1∑
k=1

u(k)(x1)
∂u
∂ui

and
∂u
∂x2
=−u′(x2)

∂u
∂un

,

and for 1≤ j ≤ m,
∂u
∂η j
= r j

u′(η j )

u(η j )

∂u
∂r j

.
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Gap functions and existence of solutions for
generalized vector quasivariational inequalities

Xian Jun Long and Nan Jing Huang

(Communicated by Ram U. Verma)

The gap functions for generalized vector quasivariational inequalities in Haus-
dorff topological vector spaces are introduced, then using Fan–Knaster–Kura-
towski–Mazurkiewicz (FKKM) theorem, some existence theorems for a class of
generalized vector quasivariational inequalities under suitable assumptions are
established. The obtained results extend and unify corresponding results in the
literature.

1. Introduction

The vector variational inequality in a finite-dimensional Euclidean space was first
introduced by Giannessi [1980]. It is the vector-valued version of the variational
inequality of Hartman and Stampacchia [1966]. Later on, many authors have ex-
tensively studied various types of vector variational inequalities in abstract space
(see, for example, [Ansari 1995; Chen 1992; Chen et al. 1997; Chen et al. 2005;
Ding and Tarafdar 2000; Giannessi 2000; Göpfert et al. 2003; Huang and Fang
2005; Huang and Gao 2003; Huang and Li 2006; Khanh and Luu 2004; Konnov
and Yao 1997; Lee and Lee 2000; Lee et al. 1996; Li and He 2005; Siddiqi et
al. 1997; Yang 2003; Yang and Yao 2002; Yu and Yao 1996] and the references
therein).

The gap function approach is an important research method in the study of varia-
tional inequalities. One advantage of the gap function for the variational inequality
is that the variational inequality can be transformed into the optimization problem.
Thus, powerful optimization solution methods and algorithms can be applied to
find solutions of variational inequalities. Recently, many authors have investigated
the gap functions for vector variational inequalities. Chen et al. [1997] introduced
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Keywords: generalized vector quasivariational inequality, gap function, existence of solutions,

FKKM theorem, set-valued mapping.
This work was supported by the National Natural Science Foundation of China (10671135) and the
Specialized Research Fund for the Doctoral Program of Higher Education (20060610005).
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two set-valued functions as the gap functions for two classes of vector variational
inequalities. Yang and Yao [2002] introduced the gap function for the multivalued
vector variational inequality. Li and He [2005] generalized the results of Yang and
Yao [2002] to the generalized vector variational inequality. They introduced a gap
function for a class of generalized vector variational inequalities and proved the
existence of some solutions for such problems. For some related works, we refer
to [Li and Mastroeni 2008] and [Yang 2003].

Inspired and motivated by the reseach mentioned above, we introduce in this
paper some new gap functions for generalized vector quasivariational inequalities
in Hausdorff topological vector spaces. By using FKKM theorem, we prove a
number of existence theorems for a class of generalized vector quasivariational
inequalities under certain assumptions. The results presented in this paper extend,
improve and unify some corresponding results in the literature.

2. Gap functions for generalized vector quasivariational inequalities

Let X and Y be two real Hausdorff topological vector spaces and E a nonempty
subset of X . Let L(X, Y ) be the space of all the continuous linear operators from
X into Y and σ is the family of bounded subsets of X whose union is total in X ,
that is, the linear hull of ∪{S : S ∈ σ } is dense in X . Let B be a neighborhood base
of 0 in Y . When S runs through σ , V through B, the family

M(S, V )= {t ∈ L(X, Y ) : ∪x∈S〈t, x〉 ⊂ V }

is a neighborhood base of 0 in L(X, Y ) for a unique translation-invariant topol-
ogy, called the topology of uniform convergence on the sets S ∈ σ , or, briefly the
σ -topology where 〈t, x〉 denotes the valuation of the linear operator t ∈ L(X, Y )
at x ∈ X (see, [Schaefer 1971]). By the corollary of Schaefer [1971], L(X, Y )
becomes a locally convex topological vector space under the σ -topology, where Y
is assumed a locally convex topological vector space.

Lemma 2.1 ([Ding and Tarafdar 2000]). Let X and Y be two real Hausdorff topo-
logical vector spaces and L(X, Y ) be the topological vector space under the σ -
topology. Then the bilinear mapping

〈·, ·〉 : L(X, Y )× X→ Y

is continuous in L(X, Y )× X.

Let E be a nonempty compact subset of X , and C ⊆ Y be a closed, convex,
pointed cone in Y with apex at the origin and int C 6=∅. Assume that K : E→ 2E

is a lower semicontinuous with compact-valued mapping, and T : E×E→ 2L(X,Y )

is set-valued mapping such that T (x, x) is compact for any x ∈ E . Assume that
η : E×E→ E and h : E×E→ Y are two continuous functions with respect to the
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first argument. Let η(x, x)= 0 and h(x, x)= 0 for any x ∈ E . In this section, we
consider the following three generalized vector quasivariational inequalities (for
short, GVQVIs):

(I) find x∗ ∈ E and t∗ ∈ T (x∗, x∗) such that

x∗ ∈ K (x∗) and 〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int C, for all y ∈ K (x∗);(1)

(II) find x∗ ∈ E and t∗ ∈ T (x∗, x∗) such that

x∗ ∈ K (x∗) and 〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ −C\{0}, for all y ∈ K (x∗).(2)

Remark 2.1. It is clear that any solution of GVQVI (2) is a solution of GVQVI (1).
But the converse is not true in general.

Remark 2.2. If T (x, x)= T (x) and K = I (where I is the identity mapping) for
any x ∈ E , then GVQVI (1) and (2) reduce to the following generalized vector
variational inequalities (for short, GVVI), respectively:

(I) find x∗ ∈ E and t∗ ∈ T (x∗) such that

〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int C, for all y ∈ E; (3)

(II) find x∗ ∈ E and t∗ ∈ T (x∗) such that

〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ −C\{0}, for all y ∈ E . (4)

GVVI (3) and (4) were studied by Li and He [2005].

Remark 2.3. If η(x, y) = x − y and h(x, y) = 0 for any x, y ∈ E , then GVVI
(3) and (4) reduce to the following multivalued vector variational inequalities (for
short, MVVI), respectively:

(I) find x∗ ∈ E and t∗ ∈ T (x∗) such that

〈t∗, y− x∗〉 6∈ − int C, for all y ∈ E; (5)

(II) find x∗ ∈ E and t∗ ∈ T (x∗) such that

〈t∗, y− x∗〉 6∈ −C\{0}, for all y ∈ E . (6)

MVVI (5) and (6) were studied by Yang and Yao [2002].

In the rest of this section, let Rl be an l-dimensional vector space, and let

Rl
+
= {(r1, . . . , rl) ∈ Rl

| ri ≥ 0, i = 1, 2, . . . , l}

be the nonnegative orthant of Rl . Let Y = Rl and C = Rl
+

. Now we introduce
some gap functions for GVQVI (1) and (2). Set

S = {x ∈ E | x ∈ K (x)}.
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Definition 2.1. φ : S→ R is said to be a gap function for GVQVI (1) (resp. (2))
if it satisfies the following properties:

(i) φ(x)≤ 0 for all x ∈ S;

(ii) φ(x∗)= 0 if and only if x∗ solves GVQVI (1) (resp. (2)).

Let x ∈ S, y ∈ K (x) and t ∈ T (x, x). Denote

〈t, η(y, x)〉+ h(y, x)= ([〈t, η(y, x)〉+ h(y, x)]1, . . . , [〈t, η(y, x)〉+ h(y, x)]l).

Now, we introduce the mappings ϕ1 : S×L(X, Rl)→ R and ϕ : S→ R as follows:

ϕ1(x, t)= min
y∈K (x)

max
1≤i≤l

(〈t, η(y, x)〉+ h(y, x))i

and

ϕ(x)=max{ϕ1(x, t) | t ∈ T (x, x)}. (7)

Since K (x) is compact, η is continuous and h is continuous with respect to the
first argument respectively, ϕ1(x, t) is well-defined. By Lemma 2.1, ϕ(x) is well-
defined. For any x ∈ S and t ∈ T (x, x), it is easy to see that

ϕ1(x, t)= min
y∈K (x)

max
1≤i≤l

(〈t, η(y, x)〉+ h(y, x))i ≤ 0.

Theorem 2.1. The function ϕ(x) defined by Equation (7) is a gap function for
GVQVI (1).

Proof. Since

ϕ1(x, t)≤ 0, for all x ∈ S, t ∈ T (x, x), (8)

it follows that

ϕ(x)=max{ϕ1(x, t) | t ∈ T (x, x)} ≤ 0, for all x ∈ S.

If ϕ(x∗)= 0, then there exists a t∗ ∈ T (x∗, x∗) such that ϕ1(x∗, t∗)= 0. Thus,

min
y∈K (x∗)

max
1≤i≤l

(〈t∗, η(y, x∗)〉+ h(y, x∗))i = 0.

From which it follows that, for any y ∈ K (x∗),

max
1≤i≤l

(〈t∗, η(y, x∗)〉+ h(y, x∗))i ≥ 0,

which implies that for any y ∈ K (x∗),

〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int Rl
+
,

that is, x∗ is a solution of GVQVI (1).
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Conversely, if x∗ is a solution of GVQVI (1), then there exists a t∗ ∈ T (x∗, x∗)
such that

x∗ ∈ K (x∗) and 〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int Rl
+
, for all y ∈ K (x∗).

It follows that for any y ∈ K (x∗),

max
1≤i≤l

(〈t∗, η(y, x∗)〉+ h(y, x∗))i ≥ 0.

Hence, we have

ϕ1(x∗, t∗)= min
y∈K (x∗)

max
1≤i≤l

(〈t∗, η(y, x∗)〉+ h(y, x∗))i ≥ 0. (9)

It follows from (8) and (9) that ϕ1(x∗, t∗)= 0. Again, from (8), we obtain

ϕ1(x∗, t)≤ 0, t ∈ T (x∗, x∗).

Therefore, ϕ(x∗)= 0. This completes the proof. �
From Remark 2.1 and Theorem 2.1, it is easy to see that the following result

holds.

Corollary 2.1. If x∗ is a solution of GVQVI (2), then ϕ(x∗)= 0.

3. Existence theorems for generalized vector quasivariational inequalities

Let X and Y be two Hausdorff topological vector spaces and E be a nonempty
subset of X . Let L(X, Y ) be a set of all the continuous linear operators from X
into Y . Let C : E→ 2Y be a set-valued mapping such that for any x ∈ E , C(x) is a
point, closed and convex cone in Y with int C(x) 6=∅. Assume that K : E→2E and
T : E×E→2L(X,Y ) are two set-valued mappings, η : E×E→ E and h : E×E→Y
are two vector-valued functions. In this section, we consider GVQVI with moving
cone C(x): find x∗ ∈ E and t∗ ∈ T (x∗, x∗) such that x∗ ∈ K (x∗) and

〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int C(x∗), for all y ∈ K (x∗). (10)

The following problems are special cases of GVQVI (10).
(1) If T (x, x)=T (x) and K = I (where I is the identity mapping) for any x ∈ E ,

then problem (10) reduces to the following problem: find x∗ ∈ E and t∗ ∈ T (x∗)
such that

〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int C(x∗), for all y ∈ E, (11)

which was considered by Lee and Lee [2000] and Li and He [2005].
(2) If η(y, x) = y − x and h(y, x) = 0 for any x, y ∈ E , then problem (11)

reduces to the following problem: find x∗ ∈ E and t∗ ∈ T (x∗) such that

〈t∗, y− x∗)〉 6∈ − int C(x∗), for all y ∈ E, (12)
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which was considered by Konnov and Yao [1997].
(3) If T is a single-valued mapping, then problem (12) reduces the to following

problem: find x∗ ∈ E such that

〈T (x), y− x∗)〉 6∈ − int C(x∗), for all y ∈ E, (13)

which was considered by Chen [1992] and Yu and Yao [1996].
(4) If T is a single-valued mapping, η(y, x)= y− g(x) and h(y, x)= 0 for any

x, y ∈ E , where g : E→ E , then problem (11) reduces to the following problem:
find x∗ ∈ E such that

〈T (x), y− g(x)〉 6∈ − int C(x∗), for all y ∈ E, (14)

which was considered by Siddiqi et al. [1997].
In order to prove our main results, we need the following definitions and lemma.

Definition 3.1 ([Fan 1960/1961]). A multivalued mapping G : X→ 2X is called a
KKM-mapping if for any finite subset {x1, x2, . . . , xn} of X , co{x1, x2, . . . , xn} is
contained in

⋃n
i=1 G(xi ), where coA denotes the convex hull of the set A.

Lemma 3.1 ([Fan 1960/1961]). Let M be a nonempty subset of a Hausdorff topo-
logical vector space X. Let G : M → 2X be a KKM-mapping such that G(x) is
closed for any x ∈M and is compact for at least one x ∈M. Then

⋂
y∈M G(y) 6=∅.

Definition 3.2. Let h : E × E → Y be a vector-valued mapping. Then h(·, x) is
said to be C(x)-convex on E for a fixed x ∈ E if, for any y1, y2 ∈ E and λ∈ [0, 1],

h(λy1+ (1− λ)y2, x) ∈ λh(y1, x)+ (1− λ)h(y2, x)−C(x).

Remark 3.1. It is easy to say that h(·, x) is C(x)-convex if and only if for any
given x ∈ E ,

h(
n∑

i=1

λi yi , x) ∈
n∑

i=1

λi h(yi , x)−C(x),

for any yi ∈ E and λi ∈ [0, 1] (i = 1, 2, . . . , n) with
∑n

i=1 λi = 1.

Theorem 3.1. Assume that the following conditions hold:

(i) E is a compact subset of X and E ∩ K (x) is nonempty and convex for any
x ∈ E ;

(ii) K is a closed mapping and K−1(y) is open in E for any y ∈ E ;

(iii) for any x ∈ E , η(x, x)= h(x, x)= 0;

(iv) for any x ∈ E , the mapping y→ h(y, x) is C(x)-convex;

(v) for any fixed x, y ∈ E and each t ∈ T (x, x), the mapping y→ 〈t, η(y, x)〉 is
C(x)-convex;
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(vi) for any y ∈ E , {x ∈ E : ∃t ∈ T (x, x), 〈t, η(y, x)〉 + h(y, x) 6∈ − int C(x)} is
closed.

Then GVQVI (10) has a solution.

Proof. For any x, y ∈ E , set

S = {x ∈ E : x ∈ K (x)},

P(x)= {z ∈ E : 〈T (x, x), η(z, x)〉+ h(z, x)⊂− int C(x)},

ϕ(x)=
{

K (x)∩ P(x), if x ∈ S,
E ∩ K (x), if x ∈ E\S

and

Q(y)= E\ϕ−1(y).

First, we show that Q is a KKM-mapping. Indeed, suppose that there exists a finite
subset N = {y1, y2, . . . , yn} ⊆ E and that αi ≥ 0, i = 1, 2, . . . , n with

∑n
i=1 αi = 1

such that x =
∑n

i=1 αi yi 6∈
⋃n

i=1 Q(yi ). Then, x 6∈ Q(yi ); that is, yi ∈ ϕ(x) for
i = 1, 2, . . . , n. If x ∈ S, then

ϕ(x)= K (x)∩ P(x).

Thus, yi ∈ P(x), i = 1, 2, . . . , n, which implies that

〈T (x, x), η(yi , x)〉+ h(yi , x)⊂− int C(x).

It follows that
n∑

i=1

αi 〈T (x, x), η(yi , x)〉+
n∑

i=1

αi h(yi , x)⊂− int C(x). (15)

By conditions (iii)–(v) of Theorem 3.1 and (15), we have for any x ∈ E and
t ∈ T (x, x)

0= 〈t, η(x, x)〉+ h(x, x)

∈

n∑
i=1

αi 〈t, η(yi , x)〉−C(x)+
n∑

i=1

αi h(yi , x)−C(x)

⊆− int C(x)−C(x)−C(x)

⊆− int C(x).

Therefore, 0 ∈ − int C(x), which is a contradiction. So, the only possibility is
x ∈ E\S. By the definition of S, x 6∈ K (x). On the other hand, for i = 1, 2, . . . , n

yi ∈ ϕ(x)= E ∩ K (x).
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Hence,

x =
n∑

i=1

αi yi ∈ K (x),

represents another contradiction. Thus, Q is a KKM-mapping.
Next, we show that Q(y) is a closed set for any y ∈ E . In fact, we have

ϕ−1(y)= {x ∈ S : y ∈ K (x)∩ P(x)} ∪ {x ∈ E\S : y ∈ K (x)}

= {x ∈ S : x ∈ K−1(y)∩ P−1(y)} ∪ {x ∈ E\S : x ∈ K−1(y)}

= [S ∩ K−1(y)∩ P−1(y)] ∪ [(E\S)∩ K−1(y)]

= [(E\S)∪ P−1(y)] ∩ K−1(y).

Therefore,

Q(y)= E\{[(E\S)∪ P−1(y)] ∩ K−1(y)}

= {E\[(E\S)∪ P−1(y)]} ∪ [E\K−1(y)]

= [S ∩ E\P−1(y)] ∪ [E\K−1(y)]. (16)

Since K is closed mapping, S is closed set. From the definition of P(x), we have

E\P−1(y)= {x ∈ E : y 6∈ P(x)}

= {x ∈ E : ∃t ∈ T (x, x), 〈t, η(y, x)〉+ h(y, x) 6∈ − int C(x)},

which is closed by condition (vi). It follows from condition (ii) and (16) that Q(y)
is closed for any y ∈ E . Since E is compact, so is Q(y). Therefore, by Lemma 3.1,
we have that there exists x∗ ∈ E such that

x∗ ∈
⋂
y∈E

Q(y)= E\
⋃
y∈E

ϕ−1(y).

Thus, for any y ∈ E , x∗ 6∈ ϕ−1(y); that is, ϕ(x∗)=∅. If x∗ ∈ E\S, then we have

ϕ(x∗)= E ∩ K (x∗)=∅,

which contradicts condition (i).
If x∗ ∈ S, that is, x∗ ∈ K (x∗), then

∅= ϕ(x∗)= K (x∗)∩ P(x∗).

Thus, for any y ∈ K (x∗), y 6∈ P(x∗). It follows that there exists t ∈ T (x∗, x∗) such
that

〈t, η(y, x∗)〉+ h(y, x∗) 6∈ − int C(x∗), for all y ∈ K (x∗).

This completes the proof. �
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Example 3.1. Let X = Y = R, E = [0, 1], C(x)= R+,

K (x)= [0,
1
2
(x + 1)], for all x ∈ [0, 1],

T (x, x)=

{
[0, 2], if x = 0.5,

[4x, 4], if x 6= 0.5,

η(y, x)=

{
x−y

2 , if x ≥ y,
y−x

2 , if x < y,

h(y, x)= y2
− x2.

It is easy to verify that assumptions (i)–(iii) of Theorem 3.1 are fulfilled and for
any y ∈ E , K−1(y) is an open set which was shown in [Khanh and Luu 2004].
Since

λh(y1, x)+ (1− λ)h(y2, x)− h(λy1+ (1− λ)y2, x)=

= λ(y2
1 − x2)+ (1− λ)(y2

2 − x2)− [(λy1+ (1− λ)y2)
2
− x2
]

= λy2
1 + (1− λ)y

2
2 − x2

− [(λy1+ (1− λ)y2)
2
− x2
]

= λ(1− λ)(y1− y2)
2

≥ 0,

then condition (iv) of Theorem 3.1 is satisfied.
Let λy1+ (1− λ)y2 > x . If y1 > x and y2 > x , then

λ〈t, η(y1, x)〉+ (1− λ)〈t, η(y2, x)〉− 〈t, η(λy1+ (1− λ)y2, x)〉 = 0.

If y1 > x and y2 ≤ x , then we have

λ〈t, η(y1, x)〉+ (1− λ)〈t, η(y2, x)〉− 〈t, η(λy1+ (1− λ)y2, x)〉

= 〈t,
2(1− λ)(x − y2)

2
〉 ≥ 0.

If y1 ≤ x and y2 > x , then

λ〈t, η(y1, x)〉+ (1− λ)〈t, η(y2, x)〉− 〈t, η(λy1+ (1− λ)y2, x)〉

= 〈t,
2λ(x − y1)

2
〉 ≥ 0.

Let λy1+ (1− λ)y2 ≤ x . If y1 ≤ x and y2 ≤ x , then we have

λ〈t, η(y1, x)〉+ (1− λ)〈t, η(y2, x)〉− 〈t, η(λy1+ (1− λ)y2, x)〉 = 0.
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If y1 > x and y2 ≤ x , then

λ〈t, η(y1, x)〉+ (1− λ)〈t, η(y2, x)〉− 〈t, η(λy1+ (1− λ)y2, x)〉 =

= 〈t,
2λ(y1− x)

2
〉> 0.

If y1 ≤ x and y2 > x , then we have

λ〈t, η(y1, x)〉+ (1− λ)〈t, η(y2, x)〉− 〈t, η(λy1+ (1− λ)y2, x)〉 =

= 〈t,
2(1− λ)(y2− x)

2
〉> 0.

Therefore, condition (v) of Theorem 3.1 is satisfied.
If x = 0.5, x ≥ y and let t = 2, then

〈t, η(y, x)〉+ h(y, x)= 〈2,
x − y

2
〉+ y2

−
1
4
= (y−

1
2
)2 ≥ 0.

If x = 0.5, x < y and let t = 0, then we have

〈t, η(y, x)〉+ h(y, x)= 〈0,
y− x

2
〉+ y2

−
1
4
= y2
−

1
4
> 0.

If x 6= 0.5, x ≥ y and let t = 4x , then

〈t, η(y, x)〉+ h(y, x)= 〈4x,
y− x

2
〉+ y2

− x2
= (x − y)2 ≥ 0.

If x 6= 0.5, x < y and let t = 4, then we have

〈t, η(y, x)〉+ h(y, x)= 〈4,
y− x

2
〉+ y2

− x2
= (y+ 1)2− (x + 1)2 > 0.

Thus, for any y ∈ E ,

{x ∈ E : ∃t ∈ T (x, x), 〈t, η(y, x)〉+ h(y, x) 6∈ − int C(x)} = [0, 1]

is a closed set. Therefore, all the assumptions of Theorem 3.1 are satisfied. It is
easy to see that x = 1 and t = 4 is a solution of GVQVI (10).

Remark 3.2. Theorem 3.1 extends and unifies corresponding results of [Chen
1992; Konnov and Yao 1997; Lee and Lee 2000; Lee et al. 1996; Li and He
2005; Siddiqi et al. 1997; Yang 2003; Yang and Yao 2002; Yu and Yao 1996].
Furthermore, our proof is different from the methods used in these papers.

Corollary 3.1. Assume that conditions (i)–(v) of Theorem 3.1 hold and the follow-
ing assumptions are satisfied:

(a) if xα → x , yα → y in E and if tα ∈ T (xα, xα), then there exists t ∈ T (x, x)
and subnets xβ , yβ and tβ ∈ T (xβ, xβ) such that (tβ, yβ)→ (t, y);

(b) for any y ∈ E , the mappings x→ η(y, x) and x→ h(y, x) are continuous;
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(c) the mapping x→ Y\(− int C(x)) is closed.

Then GVQVI (10) has a solution.

Proof. By Theorem 3.1, it is sufficient to show that for any y ∈ E , the set

M = {x ∈ E : ∃t ∈ T (x, x), 〈t, η(y, x)〉+ h(y, x) 6∈ − int C(x)}

is closed. Let {xα} ⊂ M and xα→ x∗. Then, there exists tα ∈ T (xα, xα) such that

〈tα, η(y, xα)〉+ h(y, xα) 6∈ − int C(xα).

By assumptions (a) and (b) of Corollary 3.2, there exists t∗∈T (x∗, x∗) and subnets
xβ and tβ ∈ T (xβ, xβ) such that

〈tβ, η(y, xβ)〉+ h(y, xβ)→ 〈t∗, η(y, x∗)〉+ h(y, x∗).

It follows from condition (c) that

〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int C(x∗).

Therefore, x∗ ∈ M . This means M is a closed set. This completes the proof. �

Remark 3.3. Example 2.1 in [Khanh and Luu 2004] illustrates that assumption (a)
is satisfied.

Remark 3.4. If T (x, x) = T (x), η(y, x) = y − g(x) and η(y, x) = 0, where
g : E → E is continuous mapping, then Corollary 3.1 reduces Theorem 2.1 in
[Khanh and Luu 2004].

Corollary 3.2. Assume that all conditions in Theorem 3.1 hold, except the assumed
compactness of E which is replaced by one of the following conditions:

(a) there exists y∗ ∈ E such that E\K−1(y∗) is compact and there exists a com-
pact subset B ⊂ E such that

〈T (x, x), η(y∗, x)〉+ h(y∗, x)⊂− int C(x), for all x ∈ E\B;

(b) there exists y∗ ∈ E such that E\K−1(y∗) is compact and S is compact.

Then GVQVI (10) has a solution.

Proof. From (16), it is sufficient to verify the compactness of S ∩ E\P−1(y∗) so
that the FKKM theorem can be applied.

In case (a), we can obtain E\B ⊂ P−1(y∗). Thus, E\P−1(y∗) ⊂ B. Since
E\P−1(y∗) is closed and B is compact, then both E\P−1(y∗) and S∩E\P−1(y∗)
are compact. For case (b), since S is compact and E\P−1(y∗) is closed, then
S∩E\P−1(y∗) is compact. Therefore, the FKKM theorem can be applied in cases
(a) and (b). By Theorem 3.1, GVQVI (10) has a solution. This completes the
proof. �
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Fibonacci sequences and the space
of compact sets

Kristina Lund, Steven Schlicker and Patrick Sigmon

(Communicated by Joseph O’Rourke)

The Fibonacci numbers appear in many surprising situations. We show that
Fibonacci-type sequences arise naturally in the geometry of H(R2), the space of
all nonempty compact subsets of R2 under the Hausdorff metric, as the number
of elements at each location between finite sets. The results provide an interest-
ing interplay between number theory, geometry, and topology.

1. Introduction

The famous Fibonacci sequence, named after Leonardo of Pisa “son of Bonaccio”,
is defined recursively by F0 = 0, F1 = 1, and

Fn = Fn−1+ Fn−2 (1)

for n ≥ 2 [Sloane 2006, A000045]. The Fibonacci numbers appear in an amazing
variety of interesting situations. For example, Fibonacci sequences have been noted
to appear in biological settings including the patterns of petals on various flowers
such as the cosmo, iris, buttercup, daisy, and the sunflower; the arrangement of
pines on a pine cone; the appendages and chambers on many fruits and vegetables
such as the lemon, apple, chili, and the artichoke; and spiral patterns in horns and
shells [Thompson 1942; Stevens 1979; Douady and Couder 1996; Stewart 1998].
Other Fibonacci-type sequences (also called Gibonacci sequences [Benjamin and
Quinn 2003]) can be obtained using the same recurrence relation (1) but with
different starting values. For example, the Lucas sequence {Ln} can be defined
by L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2 for n ≥ 2. This sequence is due to
Édouard Lucas (1842-1891) (who also named the numbers 1, 1, 2, 3, 5, . . . the
Fibonacci numbers). There are some useful relations between the Fibonacci and
Lucas numbers. For example, a simple induction argument can be used to show
Ln = Fn−1+ Fn+1 for n ≥ 1. Consequently, L2n = F2n−1+ F2n+1 = F2n+2F2n−1.

MSC2000: 00A05.
Keywords: Hausdorff metric, Fibonacci, metric geometry, compact plane sets.
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Mathematical applications of Fibonacci-type numbers abound. In the RSA
cryptosystem, for example, if an RSA modulus is a Fibonacci number, then the
cryptosystem is vulnerable [Dénes and Dénes 2001]. As another example, there
are no terms in the Fibonacci or Lucas sequences whose values are equal to the
cardinality of a finite nonabelian simple group [Luca 2004]. Fibonacci numbers
also have interesting geometric interpretations. For example, the Fibonacci num-
bers describe the number of ways to tile a 2× (n − 1) checkerboard with 2× 1
dominoes [Graham et al. 1994]. If we let Zn be the point (Fn−1, Fn) in the co-
ordinate plane, Xn = (Fn−1, 0), Yn = (0, Fn), and Pn the broken line from the
origin O to Zn consisting of the straight line segments O Z1, Z1 Z2, · · · , Zn−1 Zn ,
then Pn separates the rectangle O Xn ZnYn into two regions of equal area when n is
odd [Hilton and Pedersen 1994; Page and Sastry 1992]. In this paper, we describe
how Fibonacci-type sequences arise in the geometry of H(R2) as the number of
elements at each location between finite sets A and B.

2. The Hausdorff metric

The Hausdorff metric h was introduced by Felix Hausdorff in the early twentieth
century as a way to measure the distance between compact sets. We will work in
RN and denote the space of all nonempty compact subsets of RN as H(RN ). (Note
that H(RN ) is also called a hyperspace — a topological space whose elements are
subsets of another topological space.)

A metric is a function that measures distance on a space. We will denote the
standard Euclidean distance between x and y in RN as dE(x, y). The Hausdorff
metric, defined below, imposes a geometry on the space H(RN ) which will be the
subject of our study. To distinguish between RN and H(RN ), we will refer to points
in RN and elements in H(RN ).

Definition 2.1. Let A and B be elements in H(RN ). The Hausdorff distance,
h(A, B), between A and B is

h(A, B)=max{d(A, B), d(B, A)},

where

d(A, B)=max
x∈A
{min

b∈B
{dE(x, b)}}.

This metric is not very intuitive, so we present three examples to illustrate.

Example 2.1. Let A be the set {0, 2} in R and B the interval [0, 2] in R. Since
A is a subset of B, we have d(A, B) = 0. However, B is not a subset of A and
d(B, A)= dE(1, 0)= dE(1, 2)= 1. Thus, even though A is a subset of B, we have
h(A, B)= 1.
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Example 2.2. Let A be the unit disk and B the circle of radius 3, both cen-
tered at the origin in R2. Then d(A, B) = dE((0, 0), (3, 0)) = 3, but d(B, A) =
dE((3, 0), (1, 0))= 2. So h(A, B)= d(A, B)= 3.

Example 2.3. Let A be the segment from (0, 0) to (1, 0) and B the segment from
(2,−1) to (2, 1) in R2. Then d(A, B) = dE((0, 0), (2, 0)) = 2 and d(B, A) =
dE((2, 1), (1, 0))=

√
2. So h(A, B)= 2.

Note that these examples show d(A, B) is not symmetric, so we need to use
the maximum of d(A, B) and d(B, A) to obtain a metric in Definition 2.1. See
[Barnsley 1988] for a proof that h is a metric on H(RN ). The corresponding metric
space, (H(RN ), h), is then itself a complete metric space [Barnsley 1988]. The
definition of the metric h makes it rather cumbersome to work with, but there are
few good properties that h and d satisfy that help with computations. For example,

• h(A, B)= dE(a, b) for some a ∈ A and b ∈ B,

• if B ⊆ C , then d(A, B)≥ d(A,C) and d(C, A)≥ d(B, A),

• h(A∪B,C∪D) is less than or equal to the maximum of h(A,C) and h(B, D).

These properties are not difficult to verify and are left to the reader.
The geometry the metric h imposes on H(RN ) has many interesting properties.

For example, in [Bay et al. 2005] the authors show there can be infinitely many
different points at a given location on a line in this geometry and that, under certain
conditions, lines in this geometry can actually have end elements. In this paper,
we will focus our attention on the notion of betweenness in H(RN ).

3. Betweenness in H(RN)

In this section we define betweenness in H(RN ), mimicking the idea of between-
ness in RN under the Euclidean metric. It is in this context that we will later
encounter Fibonacci-type sequences. First we need to understand the dilation of a
set.

Definition 3.1. Let A ∈H(RN ) and let s > 0 be a real number. The dilation of A
by a ball of radius s (or the s-dilation of A) is the set

(A)s = {x ∈ RN
: dE(x, a)≤ s for some a ∈ A}.

As an example, let A be the triangle with vertices (−100, 0), (100, 0), and
(0, 150). The 30-dilation of A is shown in Figure 1. In essence, the dilation of
A by a ball of radius s is just the union of all closed Euclidean s-balls with centers
in A. So, for example, the dilation of a single point set A= {a} by a ball of radius
s is the ball centered at a of radius s. Using dilations, we can alternatively define
h(A, B) as the minimum value of s so that the s-dilation of A encloses B and the
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A

As

Figure 1. The dilation of a triangle.

s-dilation of B encloses A. An important and useful result about dilations is the
following (Theorem 4 from [Braun et al. 2005]).

Theorem 3.1. Let A ∈ H(RN ) and let s > 0 be a real number. Then (A)s is a
compact set that is at distance s from A. Moreover, if C ∈H(RN ) and h(A,C)≤ s,
then C ⊆ (A)s .

Theorem 3.1 tells us that (A)s is the largest element in H(RN ) (in terms of
containment) that is a distance s from A. Now we discuss betweenness. In the
standard Euclidean geometry, a point x lies between the points a and b if and only
if dE(a, b) = dE(a, x)+ dE(x, b). We extend this idea to define betweenness in
H(RN ).

Definition 3.2. Let A, B ∈ H(RN ) with A 6= B. The element C ∈ H(RN ) lies
between A and B if h(A, B)= h(A,C)+ h(C, B).

As an example, let A be the disk centered at (−100, 0) with radius 50 and B
the circle centered at (100,0) with radius 25 in H(R2). Then h(A, B)= d(A, B)=
dE((−150, 0), (75, 0))= 225 as shown in Figure 2. The element

C125 = (A)125 ∩ (B)100

is the grey shaded region in Figure 2. Note that h(A,C125) = d(C125, A) =
dE((75, 0), (−50, 0))= 125 and h(B,C125)= d(C125, B)= dE(−25, 0), (75, 0)=
100 as indicated in Figure 2. So h(A, B)= h(A,C125)+h(C125, B) and C125 lies
between A and B at the location 125 units from A. Moreover, any element that is s
units from A and t units from B must be a subset of Cs = (A)s ∩ (B)t by Theorem
3.1. So C125 is the largest element C ∈ H(RN ) (in the sense of containment)
between A and B with h(A,C)= 125.

We will use the notation AC B as in [Blumenthal 1953] to indicate that C is
between A and B. In Euclidean geometry, the set of points c satisfying dE(a, b)=
dE(a, c)+ dE(c, b) is the line segment ab. For this reason, we will denote the set
of elements C ∈H(RN ) that lie between A and B as S(A, B) and call this set the
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A
B

C125

x

y

h(A,B)
h(A,C)

h(B,C)

(0,0)

Figure 2. Distinct elements Cs and ∂Cs at the same location be-
tween A and B.

Hausdorff segment with end elements A and B. As we will see, there can be many
different elements that lie at the same location between elements A and B, so there
are many different collections of sets we could call a Hausdorff segment with end
elements A and B. In light of Theorem 3.1, we might call S(A, B) the maximal
Hausdorff segment with end elements A and B, but we won’t need to make that
distinction in this paper.

An interesting property of Hausdorff segments is the possibility for the presence
of more than one distinct element at a specific location between the end elements.
For example, consider the sets A and B in Example 2.1. If we let C =

{1
2 ,

3
2

}
and

C ′ =
{1

2 ,
5
2

}
∪
[3

2 , 2
]
, then a simple computation (left to the reader) shows C and

C ′ satisfy AC B and AC ′B with h(A,C) = h(A,C ′) = 1
2 . So both C and C ′ lie

between A and B at the same location 1
2 units from A. The following definition

formalizes the idea of two elements at the same location on a Hausdorff segment.

Definition 3.3. Let A, B ∈ H(RN ) with A 6= B. The elements C,C ′ ∈ S(A, B)
are said to be at the same location between A and B if h(A,C)= h(A,C ′)= s for
some 0< s < h(A, B).

As another example, if A and B are the elements in Figure 2, consider the
elements C125 = (A)125 ∩ (B)100 and ∂C125, the boundary of C125 (outlined in the
figure). As Theorem 4.1 will show, these two elements, C125 and ∂C125, both lie
between A and B with h(A,C125)= 125= h(A, ∂C125). So C125 and ∂C125 lie at
the same location between A and B. In fact, Theorem 4.1 shows that any compact
subset C of C125 that contains ∂C125 also satisfies AC B with h(A,C)= s.
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4. Finding points between A and B

Let A 6= B ∈H(RN ). Hausdorff segments fall into two categories: those containing
infinitely many elements at each location (except at the locations of either A or B),
and those containing a finite number of elements at each location.

Lemma 4.1 [Bogdewicz 2000]. Let A, B ∈ H(RN ), r = h(A, B), and let Cs =

(A)s ∩ (B)r−s for every s ∈ [0, r ]. Then h(A,Cs)= s and h(Cs, B)= r − s.

Bay, Lembcke, and Schlicker [Bay et al. 2005] extended Lemma 4.1 to find
more elements on Hausdorff segments.

Theorem 4.1. Let A, B ∈H(RN ) with A 6= B and let r = h(A, B). Let s ∈ R with
0 < s < r, and let t = r − s. If C is a compact subset of (A)s ∩ (B)t containing
∂((A)s ∩ (B)t), then C satisfies AC B with h(A,C)= s and h(B,C)= t .

Recall that Theorem 3.1 shows us that an element C ∈H(RN ) with h(A,C)= s
and h(B,C)= t must be a subset of both (A)s and (B)t (and so Cs = (A)s ∩ (B)t
is the largest set, in the sense of containment, that is between A and B at a distance
s from A). Theorem 4.1 tells us that if (A)s ∩ (B)t has an infinite interior, then
there will be infinitely many elements in H(RN ) at each location between A and
B. An example of this situation occurs in Figure 2. Alternatively, if (A)s ∩ (B)t is
finite, it has only finitely many subsets and therefore we can have at most a finite
number of elements at each location between A and B. In [Blackburn et al. 2008],
the authors show if there are finitely many elements at each location between A
and B, then every point in A is the same distance from B and every point in B
is that same distance from A. We label the distance from a point a to a set B as
d(a, B) and define it as follows.

Definition 4.1. Let a ∈ RN and B ∈H(RN ). The distance from a to B is

d(a, B)=min
b∈B
{dE(a, b)}.

When d(a, B) = d(b, A) for all a ∈ A and b ∈ B, it is possible for a pair of
elements (A, B) to have only a finite number of elements at each location between
them. Finite sets satisfying this condition are important enough that we give the
following definition.

Definition 4.2. A finite configuration is a pair [A, B] of elements A, B ∈ H(RN )

where A and B are finite sets and d(a, B)= d(b, A)= h(A, B) for all a ∈ A and
b ∈ B.

An easy example of this occurs when A and B are both single point sets. In this
case, (A)s ∩ (B)t will always be a single point set for 0< s < h(A, B); see [Braun
et al. 2005]. In [Blackburn et al. 2008], the authors prove the following lemma that
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tells us about the number of elements at each location between elements A, B in a
finite configuration [A, B].

Lemma 4.2. Let A, B be finite sets in H(RN ). If all points b ∈ B are equidistant
from A and h(A, B)= d(B, A)≥ d(A, B), then there is the same finite number of
elements at every location between A and B.

Lemma 4.2 shows that for a finite configuration [A, B], the number of elements
at each location between A and B is always the same (except at the end elements -
there is only one element a distance 0 from A and only one a distance 0 from B).
We denote this number by #([A, B]).

A more interesting example of a configuration [A, B] and the corresponding
segment with a finite number of elements at each location is the following. Let
A = {a1, a2, a3, a4}, where a1 = (2, 2), a2 = (−2, 2), a3 = (−2,−2), and a4 =

(2,−2) are the vertices of a square and B={b1, b2, b3, b4}, where b1= (8, 0), b2=

(0, 8), b3 = (−8, 0), and b4 = (0,−8) are the vertices of a square eight times the
size of A and rotated 45 degrees in H(R2). If s, t ∈ R+ with r = h(A, B)= s+ t ,
then each t disk centered at a point in B is tangent to the two s-disks around the
points in A closest to it as shown at left in Figure 3. Therefore, Cs = (A)s∩(B)t =
{1, 2, 3, 4, 5, 6, 7, 8} is the eight-point set that is illustrated at left in Figure 3. In
fact, Cs is only one of 47 elements at each location on S(A, B). Interestingly, 47
is the eighth Lucas number, L8.

Now we find all 47 elements in H(RN ) that lie at this location between A
and B. To begin, we recall that the largest element between A and B is Cs =

a1a2

a3 a4
b1

b2

b3

b4

1 2

3

4

56

7

8

Cs

Cs

CsCs

Figure 3. Left: #([A, B])= 47. Right: The trace diagram.
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{1, 2, 3, 4, 5, 6, 7, 8}. The other 46 elements C that lie between A and B at this
location are certain subsets of Cs :

(1) C = Cs −{c} where c ∈ Cs (8 elements).

(2) C=Cs−{c1, c2}where c1 6=c2∈Cs and c1 and c2 are not labeled consecutively
(mod 8) (20 elements). (To have d(A,C) = s, the boundary of the dilation
around each point in A must contain at least one point in C . So, for example,
if 2 /∈ C and 3 /∈ C , then the boundary of ({a1})s does not contain a point in
C . Thus, d(A,C) > s and therefore h(A,C) > s.)

(3) C = Cs −{c1, c2, c3} where c1 6= c2 6= c3 ∈ Cs and c1 is not labeled consecu-
tively (mod 8) with c2 or c3, and c2 is not labeled consecutively (mod 8) with
c3 (16 elements).

(4) C = Cs −{1, 3, 5, 7} and C = Cs −{2, 4, 6, 8}.

We leave it to the reader to verify that each of these elements lies at the same
location as Cs on S(A, B). Thus we have found all 47 elements between A and B
at this location.

We can create a graphical representation of the Hausdorff segment S(A, B) for
this configuration by tracing out the locus of points in Cs = (A)s ∩ (B)t as s varies
from 0 to h(A, B) as shown at right in Figure 3 (one specific Cs is shown as the
set of eight black points). We call the resulting figure a trace diagram. Two other
trace diagrams are also shown in Figure 4, the diagram at left presents a trace of a
configuration with 7 elements at each location and at right we have the trace of a
configuration with 13 elements at each location.

Figure 4. Trace diagrams: 7 elements (left), 13 elements (right).

5. Equivalent configurations

As we have seen, when determining #(X) for a finite configuration X = [A, B] we
only need to know which collection of points in Cs = (A)s ∩ (B)t we can exclude
and still have a set C that satisfies AC B. The actual distance h(A, B) is irrelevant;
the only property of the configuration that determines the points in Cs are the points
in a ∈ A and b ∈ B with dE(a, b)= h(A, B).
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Definition 5.1. Let [A, B] be a finite configuration. Two points a ∈ A and b ∈ B
are adjacent if dE(a, b)= h(A, B).

The trace diagrams we have seen provide an obvious connection between finite
configurations and graphs - where the points in a configuration [A, B] provide
the vertices of a graph and adjacent points in A and B correspond to adjacent
points in the graph. Thus the use of the term “adjacent” in Definition 5.1. If
two finite configurations X and X ′ have the same adjacencies, we should expect
#(X)= #(X ′). The next definition formalizes this notion of same adjacencies.

Definition 5.2. The finite configuration [A′, B ′] is equivalent to the finite config-
uration [A, B] if there are bijections f : A→ A′ and g : B→ B ′ such that

(1) if dE(a, b)= h(A, B) for a ∈ A and b ∈ B, then dE( f (a), g(b))= h(A′, B ′)
and

(2) if dE(a, b) > h(A, B) for a ∈ A and b ∈ B, then dE( f (a), g(b)) > h(A′, B ′).

When [A′, B ′] is equivalent to [A, B] we write [A′, B ′] ∼ [A, B].

Informally, two finite configurations X and X ′ are equivalent if there is a bijec-
tion φ : X → X ′ that preserves adjacencies and nonadjacencies. For example, the
configuration shown in Figure 5 is equivalent to the configuration in Figure 3. It
is easy to show that the relation ∼ is an equivalence relation on the set of finite
configurations. One important result involving equivalent configurations is that if
X and X ′ are equivalent configurations, then #(X)= #(X ′) [Blackburn et al. 2008].

Figure 5. A configuration equivalent to the one in Figure 3.

6. Fibonacci-type sequences in H(RN)

It may not be obvious that Fibonacci-type numbers have any connection to the idea
of betweenness in the Hausdorff metric geometry. The connection lies in string and
polygonal configurations.

6.1. String Configurations. Perhaps the simplest type of configuration in H(RN )

occurs when we uniformly space points on a line segment. Let x1, x2, . . . , xn be n
uniformly spaced points in order on a line, A= {xk : k odd}, and B = {xk : k even}.
In this case we will call any configuration equivalent to the configuration Sn =



206 KRISTINA LUND, STEVEN SCHLICKER AND PATRICK SIGMON

a1 a2b1
c1 c2

(A)s

(B)t

(A)s

Figure 6. Configuration for S3.

[A, B] a string configuration and S(A, B) a string segment. As we will see, the
Fibonacci numbers are related to string configurations. We begin by finding #(Sn)

for the first few values of n.

I. The simplest case occurs when n = 2 and |A| = |B| = 1 (i.e., when A and B
are singleton sets), which was considered in [Braun et al. 2005]. In this case
we have #(S2)= 1= F1.

II. Now suppose A = {a1, a2} and B = {b1}. Note that (A)s ∩ (B)t is a two
point set Cs = {c1, c2}, with c1 < c2 as shown in Figure 6. Each element C in
question will be a subset of Cs . If c1 6∈ C , then h(A,C)= dE(a1, c2) > s. A
similar argument shows that C contains c2. Thus, #(S3)= 1= F2.

III. Consider A= {a1, a2} and B = {b1, b2}. Note that (A)s ∩ (B)t is a three point
set Cs = {c1, c2, c3}, with dE(a1, c1)= dE(a2, c2)= dE(a2, c3)= s as shown
in Figure 7. Again, each element C in question will be a subset of Cs . As
above, if c1 6∈ C , then h(A,C) ≥ dE(a1, c2) > s. A similar argument shows
that C contains c3. Notice that both C = Cs and C = {c1, c3} satisfy AC B
with h(A,C)= s. Therefore, #(S4)= 2= F3.

a1 a2b1 b2
c1 c2 c3

(A)s

(B)t

(A)s

(B)t

Figure 7. Configuration for S4.
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The next theorem provides the general case.

Theorem 6.1. For each integer n ≥ 2, #(Sn)= Fn−1.

Proof. Let Sn = [A, B] and label the points in A in order as a1, a2, . . . , ak so that
dE(a1, ai ) < dE(a1, a j ) when i < j and the points in B as b1, b2, . . . , bm so that
dE(a1, b1)= h(A, B) and dE(b1, bi ) < dE(b1, b j ) when i < j . Note that k =m or
k=m+1 and n=k+m. Let r=h(A, B), 0< s<r and t=r−s. We will determine
the number of elements C in H(RN ) satisfying AC B with h(A,C)= s. Theorem
3.1 tells us that C will be a subset of Cs = (A)s∩(B)t . We have already considered
the cases with n ≤ 4. Now we argue the general case with n ≥ 5. Then k ≥ 3 and
m ≥ 2. The proof is by induction on n. Assume n ≥ 5 and that #(Sl) = Fl−1 for
all l ≤ n−1. Let Cs = (A)s ∩ (B)t . We will show that there are Fn−2 subsets C of
Cs with c2 ∈ C satisfying AC B with h(A,C)= s and Fn−3 subsets C of Cs with
c2 6∈ C satisfying AC B with h(A,C) = s. Then #(Sn) = Fn−2+ Fn−3 = Fn−1 as
desired.

Now Cs={c1,c2,c3, . . . ,cp}, with s=dE(a1,c1)<dE(a1,c2)< · · ·<dE(a1,cp)

(where p= n− 1). Note that

{c2i−1} = ({ai })s ∩ ({bi })t and {c2i } = ({ai+1})s ∩ ({bi })t .

Each element C satisfying AC B with h(A,C) = s and h(B,C) = t will be a
subset of Cs . If c1 6∈ C , then h(A,C) ≥ d(a1,C) = dE(a1, c2) > s. So c1 ∈ C .
Similarly, we can show cp ∈ C . Now we consider the cases c2 6∈ C and c2 ∈ C .

Case I: c2 6∈ C
In order to have C satisfy AC B, we must have d(a2,C) = s. We know
({a2})s ∩ (B)t = {c2, c3}. Since c2 6∈ C , it must be the case that c3 ∈ C . We
now notice that the configuration [A′, B ′] with A′={a2, a3, . . . , ak} and B ′=
{b2, b3, . . . , bm} is a string configuration equivalent to Sn−2 and C = {c1}∪C ′

where C ′ is a set satisfying A′C ′B ′ with h(A′,C ′) = s. So there is a one-to-
one correspondence (given by φ(C)=C−{c1, c2}) between sets C satisfying
AC B and h(A,C)= s and sets C ′ satisfying A′C ′B ′ with h(A′,C ′)= s. By
the induction hypothesis, the number of such sets C is #([A′, B ′])=#(Sn−2)=

Fn−3.

Case II: c2 ∈ C
In this case, let A∗ = {a2, a3, . . . , ak} and C∗ = C − {c1}. Since c2 ∈ C∗ and
C satisfies ABC , it is clear that C∗ satisfies A∗C∗B with h(A∗,C∗)= s and
h(C∗, B) = t . Again, this provides a one-to-one correspondence φ between
the elements C on the segment joining A and B and the elements C∗ on the
segment joining A∗ and B, where φ(C)=C−{c1}. Now [A∗, B] is equivalent
to Sn−1 and so there are exactly #(Sn−1) = Fn−2 such elements C∗ by our
inductive hypothesis. Consequently, there are Fn−2 elements C .
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a1

a2

b1

b2

X0

a1

a2

b1

b2

b3

X1

Figure 8. Left: A finite configuration X0. Right: Adjoining a
point to X0.

Cases I and II show us that there are exactly Fn−3 + Fn−2 = Fn−1 elements at
each location on the segment between A and B and #(Sn)= Fn−1. �

6.2. Adjoining Strings to Configurations. We can see how other Fibonacci-type
numbers arise in the Hausdorff metric geometry by successively adjoining points
to finite configurations. We will illustrate the idea by adjoining a point to the
finite configuration X0 = [A, B], where A= {(1, 1), (−1,−1)} and B = {(−1, 1),
(1,−1)} in H(R2) as shown at left in Figure 8. Note that d(a, B)= d(b, A)= 2=
h(A, B) for all a ∈ A and b ∈ B. To adjoin a point to X0 at a1, we simply add a
new point b3 to B so that b3 is adjacent to a1 and dE(b3, a2) > 2 as seen at right
in Figure 8. This gives us a new finite configuration X1.

The general construction is described in the next definition.

Definition 6.1. Let [A, B] be a finite configuration. A finite configuration

[A, B](a, y)

obtained by adjoining a point y to [A, B] at the point a ∈ A is any configuration
equivalent to the configuration [A, B ′], where B ′= B∪{y} and dE(y, a)=h(A, B)
and dE(y, a′) > h(A, B) for all other a′ ∈ A.

If we adjoin points successively to a configuration X from a fixed point a, the
net result is to adjoin a string configuration of some length to X at the point a.
We continue our example from above by adjoining a point to X1 to obtain finite
configurations X2 = X1(b3, a3), X3 = X2(a3, b4), and so on as shown in Figure 9.
We will show later that #(X0) = 7. Theorem 6.2 will show #(X1) = 8, #(X2) =

15= #(X0)+ #(X1), and #(X3)= 23= #(X1)+ #(X2). If we continue extending
the configuration by adjoining more and more points, we construct a Fibonacci-
type sequence {Xn} with #(Xn) = #(Xn−1)+ #(Xn−2) for n ≥ 2. Note that this
sequence is also, among other things, the sequence A041100 in [Sloane 2006].

A general argument can be made to determine #([A, B](a, y)), as shown in the
next theorem.



FIBONACCI SEQUENCES AND THE SPACE OF COMPACT SETS 209

a1

a2

b1

b2

b3 a3

X2

a1

a2

b1

b2

b3 a3 b4

X3

Figure 9. Adjoining points to a finite configuration.

Theorem 6.2. Let X = [A, B] be a finite configuration. Define X ′ to be the con-
figuration [A, B](a, y) by adjoining a point y to X at the point a ∈ A, where a is
adjacent to k points b1, b2, . . . , bk in B, each of which is adjacent to at least one
point in A other than a. Then #(X ′)= #(X)+ #(X −{a}).

Proof. Let X be a finite configuration defined by elements A and B. Let X ′ =
[A, B](a, y) and assume a is adjacent to k points b1, b2, . . . , bk in X , each of
which is adjacent to at least one point in A other than a as shown in Figure 10.
Let s, t > 0 so that r = h(A, B)= s+ t and let B∗ = B ∪{y}. Since dE(a, y)= r ,
we know ({a})s ∩ ({y})t is a single point set. Let {c0} = ({a})s ∩ ({y})t , and let
ci = ({a})s ∩ ({bi })t for i from 1 to k. Let C∗ be an element in H(RN ) satisfying
AC∗B∗ so that C∗ is s units from A. Note that C∗ must be a subset of (A)s∩(B∗)t
and must also contain c0. Now C∗ either contains ci for some i ≥ 1 or C∗ contains
no ci for i ≥ 1. We will show that there are #(X) elements C∗ satisfying AC∗B∗

and h(A,C∗)= s that contain ci for some i and #(X−{a}) elements C∗ satisfying
AC∗B∗ and h(A,C∗)= s that contain none of the ci .

Case I: C∗ contains ci for some i ≥ 1. Let

C = C∗−{c0}. (2)

a

y

b1

b2
b3

bk
...

X

Figure 10. Adjoining a point to a configuration X .
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a a a

Figure 11. Configurations {Xn} with Lucas numbers as #(Xn).

Now every point in A or B is adjacent to some point in C with a adjacent to
ci . Thus, C satisfies AC B with h(A,C) = s. So (2) provides a one-to-one
correspondence between sets C∗ and sets C . The number of such sets C is
#(X).

Case II: C∗ contains no ci for i ≥ 1. In this case, C = C∗ − {c0} must satisfy
(A− {a})C B with h(A− {a},C) = s. Again, (2) provides a one-to-one cor-
respondence between sets C∗ and sets C . The number of such sets C in this
case is #([A−{a}, B])= #(X −{a}).

Cases I and II show that

#(X ′)= #(X)+ #(X −{a}). �

Theorem 6.2 shows how we can construct Fibonacci-type sequences by adjoin-
ing string configurations to finite configurations. Let X0 be a finite configuration
and let a be a point in X0. If Xn is the configuration obtained by adjoining Sn to
X0 at a, then Theorem 6.2 shows

#(Xn)= #(Xn−1)+ #(Xn−2)

for n ≥ 2. Thus, we obtain a Fibonacci-type sequence. As another example, let X0

be the configuration shown at left in Figure 11 and let a be the indicated point.
Simple calculations show that #(X0 − {a}) = 4 and #(X0) = 7. In this case,
#(Xn) = Ln−2, the (n − 2)nd Lucas number. Lucas numbers also appear in other
configurations as we will see in the next section.

For one final example in this section, consider the configurations in Figure 12.
In this example, X0 = S6 as shown at left. So #(X0) = #(S6) = F5 = 5 and it
is easy to see that #(X1) = 5 where X1 is the configuration shown in the middle

a a a

Figure 12. Configurations {Xn} creating the sequence 5, 5, 10, 15, 25, . . .
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b2

b1b4

b3

a2

a1

a4

a3

Figure 13. Example of two 4-gons with segment shown.

diagram. Therefore, the sequence generated by adjoining strings to S6 at the point
a is 5, 5, 10, 15, 25, . . .. This sequence is listed as A022088 in [Sloane 2006] and
is described only as the Fibonacci sequence beginning with 0, 5. Now we have
provided a geometric context for this sequence.

A natural question to ask is, given a positive integer k, is it possible to construct
a Fibonacci-type sequence of finite configurations {Xn} so that #(Xm)= k for some
m. It turns out that this is not possible. Blackburn et al. [2008] proved the surprising
result that there is no configuration X (either finite or infinite) with #(X)= 19.

6.3. Polygonal Configurations. String configurations provide a simple type of fi-
nite configuration in H(RN ). Another basic family of finite configurations is the
collection of polygonal configurations. As an example, let A= {a1, a2, a3, a4} and
B = {b1, b2, b3, b4} each be the set of vertices of a square, as seen in Figure 13.
We see that d(a, B) = d(b, A) for all a in A and all b in B. This configuration is
equivalent to the one shown in Figure 3. So there are 47 elements that lie at each
location on the Hausdorff segment between A and B and all such elements were
exhaustively listed earlier.

The general construction of a polygonal configuration is as follows. Let A and
B be vertices of regular n-gons with n ∈ N in which the n-gons share the same
center point and initially are stacked such that the vertices correspond. Then B is
rotated π

n radians with respect to A about the center point. We call the configuration
Pn = [A, B] (or any configuration equivalent to it) a polygonal configuration and
S(A, B) a polygonal segment. As we will see, #(Pn) = L2n where Ln is the n-th
Lucas number.

As examples, we consider the two smallest cases: P2 and P3.

I. Figure 14 at left shows the configuration P2 = [A, B] with A = {a1, a2} and
B = {b1, b2}. Let r = h(A, B), 0 < s < r , and t = r − s. Then Cs =

{c1, c2, c3, c4} = (A)s ∩ (B)t . To compute #(P2) we simply count. Each
element C satisfying AC B is a subset of Cs . Only those subsets that do not
isolate any points in A or B from points in C are relevant. These sets are
• C = Cs (1 element),
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• C = Cs −{ci } for any i from 1 to 4 (4 elements),
• C = Cs −{c1, c3} (1 element), and
• C = Cs −{c2, c4} (1 element),

for a total of 7 elements. Therefore, #(P2)= 7= F4+ 2F3 = L4.

II. Figure 14, right, shows the configuration P3 = [A, B] with A = {a1, a2, a3}

and B = {b1, b2, b3}. Let r = h(A, B), 0 < s < r , and t = r − s. Then
Cs = {c1, c2, c3, c4, c5, c6} = (A)s ∩ (B)t . To compute #(P3) we again count.
Each element C satisfying AC B is a subset of Cs . Only those subsets that do
not isolate any points in A or B from points in C are relevant. These sets are
• C = Cs (1 element),
• C = Cs −{ci } for any i from 1 to 6 (6 elements),
• C = Cs − {ci , c j } for i < j as long as j 6= i + 1 or i = 1 and j = 6 (9

elements),
• C = Cs −{c1, c3, c5} (1 element), and
• C = Cs −{c2, c4, c6} (1 element),

for a total of 18 elements. Therefore, #(P3)= 18= p3= 18= F6+2F5= L6.

Recall that earlier we saw #(P4) = 47 = L8. The general case is given in the
following theorem.

Theorem 6.3. For n ≥ 2,

#(Pn)= F2n + 2 · F2n−1 = L2n (3)

Proof. Let n ∈ N and let A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}, where a1

is selected from the vertices of one n-gon and the point ai is the i-th vertex from
a1 moving counterclockwise on the same n-gon. On the second n-gon, which was
rotated π

n about the center, b1 is the first vertex that lies πn degrees counterclockwise
from a1 and the point b j is the j-th vertex moving counterclockwise from b1 on
the same n-gon. Now let d(ai , B)= r = d(b j , A) for each i and let 0< s < r and
t = r−s. We determine the number of elements C in H(RN ) satisfying AC B with
h(A,C)= s.

We have already verified this theorem for n = 2, 3, and 4. Now assume n > 4.
The element Cs = (A)s ∩ (B)t is a 2n point set Cs = {c1, c2, c3, . . . , c2n}, where

a1

a2

b1

b2

c1

c3

c4c2

a1

a2

a3

b1

b2

b3

c1

c2

c3

c4

c5

c6

Figure 14. Left: P2. Right: P3.
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c2i−1 is the point of intersection of the s-dilation about ai and the t-dilation about
bi and c2i is the point of intersection of the t-dilation about bi and the s-dilation
about ai+1 for i = {1, 2, . . . , n}. Recall that every element C satisfying AC B with
h(A,C)= s is a subset of Cs . To find all of the elements C , we argue cases: c1 6∈C ,
c2 6∈ C and c1, c2 ∈ C .

Case I: c1 6∈ C
In order to have C satisfy AC B we must have d(a1,C)= s and d(b1,C)= t .
This implies c2, c2n ∈ C . We now notice the subconfiguration of alternat-
ing points from A and B, starting with b1 and ending with a1, is equivalent
to a string configuration of 2n points, which we have shown to have F2n−1

elements satisfying AC B by Theorem 6.1.

Case II: c2 6∈ C
This case can be argued in a similar manner as the previous case, thus we
know that there will be an additional F2n−1 elements which satisfy AC B.

Case III: c1, c2 ∈ C
We claim this case is similar to having a 2n+1 string of alternating points from
A and B, which by Theorem 6.1 will have F2n elements that satisfy AC B. By
assumption we have C ={c1, c2}∪C ′, where C ′ is a subset of {c3, c4, . . . , c2n}

such that if ci 6∈ C ′ then ci−1 or ci+1 ∈ C ′ for i = {3, 4, 5, . . . , 2n}. We can
think of this as a string of alternating points starting with b1, working in the
counterclockwise direction, and ending with a new point b∗, where b∗ = b1,
such that c1 lies between a1 and b∗. Then we see this is exactly the case
when there is a string configuration of 2n + 1 alternating points as desired.
Therefore, by Theorem 6.1, we have F2n elements which satisfy AC B.

Cases I, II and III show us that there are exactly L2n = 2F2n−1+ F2n elements
at each location on S(A, B). �

In hindsight, the fact that string and polygonal configurations produce Fibonacci-
type numbers should not be too surprising. Configurations look somewhat like
graphs (with string and polygonal configurations related to paths and cycles), and
in [Prodinger and Tichy 1982; Staton and Wingard 1995] the authors show that the
Fibonacci and Lucas numbers occur as the number of independent vertex sets in
paths and cycles.

7. Extensions to H(RN)

All of the examples we have presented so far have been in R2, so it is reasonable
to wonder what this paper has to do with RN . It should be clear that all of the
examples and results we have seen extend to RN , but there is a more interesting
connection than that. Dan Schultheis (2006, personal communication) has shown
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that 57 is the smallest integer for which there is a configuration X that can be
constructed in R3 with #(X) = 57, but no such configuration can be constructed
in R2. The proof is not particularly enlightening, as it is an exhaustive analysis by
cases. He identified all configurations in R and R2 such that #(X)≤58, and showed
that there were none for which #(X) = 57. He did identify a finite configuration
X57 which exists in R3, however. Due to the difficulty of drawing 3-dimensional
configurations, we will describe this configuration X57 = [A, B] in terms of its
adjacency matrix 

1 1 0
1 1 0
1 1 1
0 0 1

 .
The rows of this matrix correspond to the points in A and the columns to the points
in B (so |A| = 4 and |B| = 3). The entry mi j of this adjacency matrix is 1 if the
i-th point in A and the j-th point in B are adjacent and 0 otherwise.

This shows that there are Fibonacci-type sequences in the geometry of H(RN )

that do not appear in H(R2). We expect that there are other numbers with this same
property as 57, but that is an open question. It is also an open question if there
are integers that appear as #(X) for finite configurations X ∈ Rn+1 that cannot be
constructed in Rn for n ≥ 3. As a final note, in [Blackburn et al. 2008] the authors
show that configurations X exist such that #(X) = k for all k from 1 to 18, so
19 is the smallest number that cannot be realized as #(X) for any configuration
X . It is unknown for exactly which integers k there exist configurations X so that
#(X)= k.
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The coefficients of the Ihara zeta function
Geoffrey Scott and Christopher Storm

(Communicated by Andrew Granville)

In her Ph.D. Thesis, Czarneski began a preliminary study of the coefficients of
the reciprocal of the Ihara zeta function of a finite graph. We give a survey of the
results in this area and then give a complete characterization of the coefficients.
As an application, we give a (very poor) bound on the number of Eulerian circuits
in a graph. We also use these ideas to compute the zeta function of graphs which
are cycles with a single chord. We conclude by posing several questions for
future work.

1. Introduction

Ihara wrote two papers [1966a; 1966b] in which he set forth the framework to
define the Ihara zeta function of a finite k-regular graph. Then Bass [1992] gave
an expression for the zeta function that applied to all graphs, regardless of the
regularity. Since then a great deal of work has been done on this function. We
refer the reader to the series [Stark and Terras 1996; 2000; Terras and Stark 2007]
for a very comprehensive overview. In general, the zeta function of a graph is
the reciprocal of a polynomial and can be computed in polynomial time. The aim
of this paper is to study the coefficients of this polynomial with an eye towards
relating each coefficient to a specific structure in the graph.

Answering this question opens the door to some very interesting questions for
future study. By understanding the polynomial, we have a solid ground to investi-
gate families of graphs which are uniquely determined by their zeta functions. This
type of question is addressed in a survey by Noy [2003] for several other important
polynomial invariants. In addition, the roots of this polynomial connect to the
Ramanujan condition on a graph [Bass 1992; Stark and Terras 1996; Kotani and
Sunada 2000], and it would be very interesting to be able to construct polynomials
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which are reciprocals of Ihara zeta functions and then to find which graph gives
rise to it. We pose some of these questions at the end of the paper.

For the rest of this section, we give a definition of the Ihara zeta function and
then survey the work that has been done on the coefficients. We also present our
main result at the end of this section. In Section 2, we give Kotani and Sunada’s
“oriented line graph” construction [2000], which will allow us to write the zeta
function as

det(I − uT )−1,

where T is the adjacency operator on the oriented line graph. Our results come
from analyzing this determinant expression, much as Biggs [1994] analyzed the
coefficients of the characteristic polynomial. In Section 2, we explicitly compute
the zeta function of graphs which are cycles with a single chord. In addition, we
give a rough bound on the number of Eulerian circuits in a graph in Section 3.
Finally, we conclude by posing several questions for future work.

We begin by defining graphs, digraphs, and the symmetric digraph associated
to a graph. All structures treated here are finite. We refer the reader to the books
[Harary 1969b; Chartrand and Lesniak 1986] for a good overview of these struc-
tures.

A graph X = (V, E) is a finite nonempty set V of vertices and a finite multiset E
of unordered pairs of vertices, called edges. If {u, v} ∈ E , we say that u is adjacent
to v and write

u ∼ v.

A graph X is simple if there is no edge of the form {v, v} and if there is no repeated
edge.

A directed graph or digraph D = (V, E) is a finite nonempty set V of vertices
and a finite multiset E of ordered pairs of vertices, called arcs. For an arc e =
(u, w), we define the origin of e to be o(e)=u and the terminus of e to be t (e)=w.
The inverse arc of e, written as e, is the arc formed by switching the origin and
terminus of e: e= (w, u). In general, the inverse arc of an arc need not be present
in the arc set of a digraph.

A digraph D is called symmetric if whenever (u, w) is an arc of D, its inverse
arc (w, u) is as well. There is a natural one-to-one correspondence between the set
of symmetric digraphs and the set of graphs, given by identifying an edge of the
graph to an arc and its inverse arc on the digraph on the same vertices. We denote
by D(X) the symmetric digraph associated with the graph X . We give an example
in Figure 1.

To define the Ihara zeta function, we need several cycle definitions. Let X be a
graph and D(X) its symmetric digraph. A cycle c of length n in X is a sequence
c= (e1, . . . , en) of n arcs in D(X) such that t (ei )= o(ei+1) for 1≤ i ≤ n− 1 and
t (en) = o(e1). We say that c has backtracking if ei+1 = ei for some i satisfying
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Figure 1. The complete graph minus an edge and its symmetric digraph.

1≤ i ≤ n−1. Also, c has a tail if e1= en . We will primarily be interested in cycles
with no backtracking or tail.

The r-multiple of the cycle c is the cycle cr formed by going r times around
c. We say a cycle is primitive if it is not the r -multiple of some other cycle b for
r ≥ 2. We impose an equivalence relation on cycles via cyclic permutation; that
is, two cycles b = (e1, . . . , en) and c = ( f1, . . . , fn) are equivalent if there is a
fixed α ∈ Z/nZ such that ei = fi+α for all i ∈ Z/nZ (all indices are considered
modulo n). Note that the direction of travel does matter so traversing a cycle in
the opposite direction does not give a cycle equivalent to the original one. A prime
cycle is the equivalence class of primitive cycles which have no backtracking or
tail, written as [c].

The Ihara zeta function of a graph X is defined as a function of u ∈ C for |u|
sufficiently small by

Z X (u)=
∏
[c]

(1− ul(c))−1,

where the product is over the prime cycles in X and l(c) is the length of the cycle
c. Typically, this is an infinite product; however, the function is always rational. In
fact, Z X (u) is always the reciprocal of a polynomial of maximum degree 2|E |.

For a graph X , we let n = |V | and m = |E |. We write

1
Z X (u)

= Z X (u)−1
= c0+ c1u+ c2u2

+ c3u3
+ · · ·+ c2mu2m .

We are concerned with determining the coefficients ci in terms of structure in the
graph X . We cite the known results and then give our main result.

From the definition of Z X (u), it is immediate that c0 = 1. The first result in this
area was given by Kotani and Sunada [2000], which is an expression for c2m .

Theorem 1. Let X be a graph and Z X (u) its Ihara zeta function as written above.
We take n = |V | and m = |E |. We denote by d(v) the degree of vertex v which is
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the number of edges to which v is incident. Then,

c2m = (−1)m−n
∏
vi∈V

(d(vi )− 1).

Czarneski computed c1 in her dissertation [2005]:

Theorem 2. Let X be a graph and Z X (u) its Ihara zeta function as written above.
Then the coefficient c1 is the negative of twice the number of loops in X.

In his dissertation, Storm [2007] computed c3 from the number of triangles in X .
The method used in the next section for an arbitrary coefficient is an extension of
the one used for this theorem. We will look at it in more detail in the next section.

Theorem 3. Let X be a simple graph and Z X (u) its Ihara zeta function as written
above. Then the coefficient c3 is the negative of twice the number of triangles in X.

The final result in this area comes from Horton’s dissertation [2006]. It encom-
passes Theorem 3; however, it is harder to generalize to realize the other coeffi-
cients. He shows that the girth of X can be recovered from the zeta function and
relates a coefficient of the zeta function to this. We give two definitions and then
his theorem.

Definition 4. Let X be a graph. The girth of X is the length of the shortest cycle in
X . A k-gon in X is a subgraph of X which is isomorphic to the cycle graph Ck–Ck

is the connected graph on k vertices such that the degree of every vertex is 2.

Theorem 5. Let g be the girth of a simple connected graph X with zeta function
Z X (u) written as above. Then, ck = 0 for 1≤ k < g. Moreover, cg is the negative
of twice the number of g-gons in X.

To state our more general result, we need a few more digraph definitions. The
indegree of a vertex v, in(v), in a digraph D is the number of arcs with terminus
v. Similarly, the outdegree of v, out (v), is the number of arcs with origin v. A
subgraph of a digraph D is a digraph having all of its vertices and arcs in D. A
spanning subgraph is a subgraph containing all of the vertices of D. Finally, a
linear subgraph of a digraph D is a spanning subgraph in which each vertex has
indegree one and outdegree one. A linear subgraph is thus a disjoint spanning
collection of directed cycles.

Definition 6. Let D be a digraph. We denote by Sk(D) the set of subgraphs of D
which have exactly k vertices. For an element D̃ of Sk(D), we denote by Ek(D̃)
the number of linear subgraphs of D̃ which consists of an even number of cycles
of even length. Similarly we denote by Ok(D̃) the number of linear subgraphs of
D̃ with an odd number of cycles of even length.

We now state our main theorem:



THE COEFFICIENTS OF THE IHARA ZETA FUNCTION 221

Theorem 7. Let X be a connected graph with oriented line graph Lo X (defined
in the next section) and Z X (u) its Ihara zeta function as before. We also take the
notation of Definition 6 as applied to the digraph Lo X. Then for 1 ≤ k ≤ 2m, the
coefficient ck can be realized as

ck =
∑

D ∈Sk(Lo X)

(−1)k(Ek(D)−Ok(D)).

We prove this theorem in the next section and explore some of its consequences.
In particular, we can realize Theorems 3 and 5 as corollaries to this. We will also
give a practical list of things the Ihara zeta function must determine about a graph
as a consequence of this theorem. In particular, Corollary 14 points out that the
Ihara zeta function of a simple graph determines the number of triangles, squares,
and pentagons in the graph.

2. Explicit representation of the coefficients

The first step to analyzing the coefficients of the zeta function is to realize the zeta
function as a determinant expression. To do this, we construct an oriented line
graph, a technique which was first proposed by Kotani and Sunada [2000].

We begin with a graph X and form its symmetric digraph D(X). Hence D(X)
has 2|E(X)| arcs. Now we construct the oriented line graph Lo X = (VL , Eo

L) by

VL = E(D(X)),

Eo
L =

{
(ei , e j ) ∈ E(D(X))× E(D(X)); ei 6= e j , t (ei )= o(e j )

}
.

We give an example of this construction in Figure 2. The intuitive idea is that
we are building a digraph which models all of the “legal” moves we could take
to get prime cycles in X . It is for this reason that we disallow going from an arc
to its inverse arc. We are particularly concerned with the adjacency matrix of this
digraph.

Definition 8. Let D be a digraph with n vertices, written as {v1, . . . , vn}. The
adjacency matrix T of D is the n× n matrix given by setting the (i, j)-entry Ti, j

to be 1 if there is an arc with origin vi and terminus v j , and zero otherwise.

Thus for the oriented line graph, the matrix T is a 2|E(X)| × 2|E(X)| matrix
which catalogues whether it is legal for an arc in D(X) to feed into another arc.
This matrix is given several different names in the zeta function literature. Stark
and Terras [1996] refer to it as an “edge routing matrix”. Kotani and Sunada [2000]
call it the Perron–Frobenius matrix.

The following proposition, found in [Kotani and Sunada 2000], makes it clear
why we are concerned with the oriented line graph and its adjacency matrix.
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Figure 2. Construction of an oriented line graph of K4 minus an edge.

Proposition 9. There is a one-to-one correspondence between primitive cycles
with no backtracking or tail in X and primitive cycles in Lo X. Moreover, if X
is a connected graph, the zeta function Z X (u) can be written as

Z X (u)= det(I − uT )−1,

where T is the adjacency matrix of the oriented line graph Lo X.

Studying this determinant expression will give us insight into the coefficients.
For the rest of this section we let m = |E(X)|. We first note that the coefficients of
the characteristic polynomial of T and those of the reciprocal of the zeta function
are intimately related.

Lemma 10. Let T be the adjacency matrix of the oriented line graph associated
with the connected graph X. We write the characteristic polynomial of T as

χT (u)= det(T − uI )= u2m
+ c1u2m−1

+ · · ·+ c2m .

Then the reciprocal of the Ihara zeta function of X can be written as

1
Z X (u)

= Z X (u)−1
= 1+ c1u+ c2u2

+ c3u3
+ · · ·+ c2mu2m .

Proof. We begin by considering χT (u)= det(T − uI ). We rewrite this as

det(T − uI )= (−u)2m det
(

I − 1
u

T
)
.

We now replace u by 1/u and the result follows. �

This is very helpful since the coefficients of characteristic polynomials are very
well understood as the sum of the principal minors of the matrix involved.
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Definition 11. A principal minor of a square matrix M is the determinant of a
submatrix of M formed by selecting a subset of the matrix’s rows and the columns
indexed by the same subset.

We make use of a useful linear algebra fact:

Lemma 12. Let M be an n× n square matrix with characteristic polynomial

χM(u)= un
+ c1un−1

+ · · ·+ cn.

Then the coefficient ci is (−1)i times the sum of all i × i principal minors of M.

We wish to apply Lemma 12 to the characteristic polynomial of the adjacency
matrix T of the oriented line graph of X . This will then give us the information
we need about coefficients of the reciprocal of the Ihara zeta function.

How can we interpret a principal minor of the matrix T ? We let I be the index
set which determines which rows we are keeping when we pass to the principal
minor. Each row and the corresponding column represent a vertex in the oriented
line graph. These vertices in turn represent arcs in the symmetric digraph D(X).
Then by reducing the matrix T to only keeping the rows and columns indexed by I ,
we are in fact looking at the matrix T̃ we would get by taking the subgraph induced
on D(X) by the arcs indexed by I and then forming the submatrix’s oriented line
graph and adjacency matrix. Thus an i × i principal minor can be computed by
taking the appropriate subgraph of D(X) induced by i edges, forming its T̃ matrix,
and then taking the determinant.

This leaves only the question: how can we compute the determinant of the
adjacency matrix of a digraph? Fortunately Harary [1962] answers this by

Lemma 13. Let D be a digraph whose linear subgraphs are Di , for i = 1, . . . , n,
and suppose each Di has ei even cycles. Then

det A =
n∑

i=1

(−1)ei ,

where A is the adjacency matrix of D.

Proof of Theorem 7. We consider the coefficient ck for 2≤ k < 2m. By Lemma 12,
we must consider all of the k×k principal minors of T . Each such principal minor
corresponds to picking k vertices of Lo X and then taking the subdigraph induced
by those vertices. Such a subgraph is then a member of Sk(Lo X). We call this
subgraph D̃.

Then the principal minor corresponds to the determinant of the adjacency opera-
tor T̃ of D̃. To take this determinant, we use Lemma 13. We let D̃i for i = 1, . . . , j
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be the linear subgraphs of D̃. Then

det T̃ =
j∑

i=1

(−1)ei ,

where ei is the number of even cycles in D̃i . Using the notation of Definition 6,
we have

det T̃ = Ek(D̃)−Ok(D̃).

We combine this statement with Lemma 12 to get the result

ck =
∑

D̃∈Sk(Lo X)

(−1)k
(
Ek(D̃)−Ok(D̃)

)
. �

With this theorem it is fairly easy to compute the coefficients of smaller powers
of u. We use Proposition 9 to take information about cycles in the oriented line
graph back to information about cycles in the graph. In particular, notice that a
linear subgraph of Lo X corresponds to an edge-disjoint collection of backtrack-
free, tailless cycles in the symmetric digraph of the original graph. Therefore,
each subgraph of the symmetric digraph that has k edges and consists only of
edge-disjoint backtrackfree, tailless cycles contributes to the coefficient ck . This
approach, of course, is not a practical way to compute higher powers; fortunately,
we can get a great deal of information from the lower powers. We first give a very
explicit statement; then, we give a second corollary which is more general.

Corollary 14. Let X be a connected graph with Ihara zeta function as above.

(1) If X has loops, the coefficient c1 can be computed by Theorem 2.

(2) If X does not have loops, then the coefficient c2 is the negative of twice the
number of primitive cycles of length 2 in X. Also, the coefficient c3 is the
negative of twice the number of triangles in X. In addition, c4 is the number of
primitive cycles of length 2 plus twice the number of pairs of primitive cycles
of length 2 that share an edge plus four times the number of edge disjoint pairs
of primitive cycles of length 2 minus twice the number of squares in X.

(3) If X is a simple graph, the coefficients c3, c4, and c5 are the negative of twice
the number of triangles, squares, and pentagons in X respectively. Also, c6 is
the negative of twice the number of hexagons in X plus four times the number
of pairs of edge disjoint triangles plus twice the number of pairs of triangles
with a common edge, while c7 is the negative of twice the number of heptagons
in X plus four times the number of edge disjoint pairs of one triangle and one
square plus twice the number of pairs of one triangle and one square that
share a common edge.
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Figure 3. The complete graph K4.

Proof. We leave the proof as an exercise to the reader. Particular care should be
taken to get the coefficient c4 as detailed in the second statement. The possible
ways to orient the smaller cycles show up in the number of subgraphs on 4 vertices
of the oriented line graph. �

Corollary 14 provides a very concrete way to compute the coefficients of smaller
powers of u. We give a definition and then a more general statement.

Definition 15. Let X be a graph with two cyclic subgraphs Cn and Cm . We call
Cn and Cm compatible if it is possible to orient the edges of X so that Cn and Cm

both become oriented cycles.

Example 16. We consider the complete graph K4 shown in Figure 3. For our first
cycle, we choose the cycle which goes from v1 to v2 to v3 to v4 and back to v1.
This is a copy of C4. Now consider the copy of C3 given by going from v1 to
v2 to v3 and back to v1. These two cycles are compatible. Any orientation which
makes our copy of C4 into an oriented cycle will work so long as we orient the
edge {v1, v3} correctly.

Let’s look at an example of some cycles which are not compatible. We keep
the same graph and the same initial copy of C4. Now we choose a second copy
of C4 given by going from v1 to v2 to v4 to v3 and back to v1. These two cycles
are not compatible. Orient the first cycle so that you get an oriented cycle. Now
either the edge {v1, v2} or {v3, v4} will not be oriented correctly to make the second
cycle into an oriented cycle, irrespective of how the edges {v1, v3} and {v2, v4} are
oriented.

Compatible cycles play an important role in this analysis since, whenever two
cycles are compatible, they give rise to edge-disjoint cycles in the symmetric di-
graph — simply take one cycle as oriented then reverse the edge orientations for the
other cycles so that neither of them ever use an edge in the same direction. These
edge-disjoint cycles then show up in the oriented line graph as disjoint unions of
cycles, exactly the structures that contribute to the coefficients of the zeta function.
Now that we have this connection in general, we can state a more general corollary.
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Corollary 17. Let X be a connected graph with girth g and Ihara zeta function as
above.

(1) Whenever 0< i < g, the coefficient ci equals 0.

(2) Whenever g ≤ i < 2g, the coefficient ci is the negative of twice the number of
i-gons in X.

(3) Whenever 2g ≤ i < 3g, the coefficient ci is the sum of the following terms:

• the negative of twice the number of i-gons in X ,
• four times the number of edge disjoint pairs of a k-gon and a (ci −k)-gon

for g ≤ k < 2g,
• twice the number of pairs of a k-gon and a (ci−k)-gon that share at least

one edge and are compatible for g ≤ k < 2g, and
• twice the number of edge disjoint pairs of a k1-gon and a k2-gon that

have a path of length 1
2(ci − k1 − k2) between them and are compatible

for k1+ k2 < 3g.

Corollary 17 thus encompasses Theorems 3 and 5. It also makes it possible to
write down the zeta function of certain graphs, particularly graphs which have very
few cycles. The fewer the number of cycles, the easier it is to identify where the
linear subgraphs are showing up in the calculations of Theorem 7. We look at the
graphs Cn and the graphs which are a cycle with a single chord. The zeta function
of Cn is easy to compute directly from the definition, but it is instructive to apply
the corollary to these graphs.

Example 18. Consider the graph Cn which is the graph that is a cycle on n vertices.
Then its zeta function is given by

ZCn (u)
−1
= 1− 2un

+ u2n.

The graph Cn has girth n, so all of the coefficients up to cn are zero. In addition,
there is a single n-gon, so the coefficient cn is given by −2. There are no other
k-gons, so all of the rest of the coefficients up to c2n must be zero. Finally, c2n

can be computed by Czarneski’s result or as a consequence of there being only one
n-gon and no primitive cycle of length 2n.

Cycles which have exactly one chord are a bit more delicate since there are
more cycles to consider. With due care, we can still work out the zeta function.
We define the graph CHn,k by starting with the cycle graph Cn and adding an
additional edge so that the smallest cycle in CHn,k has length k+ 1. We illustrate
CH10,4 in Figure 4.
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Figure 4. CH10,4.

Corollary 19. The zeta function of CHn,k is given by

ZCHn,k (u)
−1
= 1− 2uk+1

− 2un−k+1
− 2un

+ 2u2n−k+1

+2un+2
+ 2un+k+1

+ u2k+2
+ u2n−2k+2

+ u2n
− 4u2n+2.

Proof. By inspection, it is easy to see that there are exactly six backtrackfree, tail-
less cycles in the symmetric digraph D(CHn,k). Specifically, D(CHn,k) contains
clockwise and counterclockwise copies of Cn , Cn−k+1, and Ck+1. Taken individu-
ally, these cycles contribute the second, third and fourth term of ZCn,k (u)

−1 above.
There are nine different subgraphs of the symmetric digraph that consist of exactly
two of these cycles; these subgraphs contribute the next six terms. Finally there
are four linear subgraphs of the oriented line graph of CHn,k , giving us the final
u2n+2 term. We leave it to the reader to find these four linear subgraphs and verify
that they break up into an odd number of cycles. There is no further backtrackfree,
tailless cycle in D(CHn,k). �

Example 20. We return to the example of CH10,4. By direct calculation, using the
formula det(I − uT ), we see that

ZCH10,4(u)
−1
= 1− 2u5

− 2u7
− u10

+ 2u12
+ u14

+ 2u15
+ 2u17

+ u20
− 4u22.

Corollary 19 would have us write the function as

ZCH10,4(u)
−1
= 1−2u5

−2u7
−2u10

+2u17
+2u12

+2u15
+u10

+u14
+u20

−4u22.

By collecting common powers in the second expression, we see that we do have
the same polynomial.



228 GEOFFREY SCOTT AND CHRISTOPHER STORM

Thus the reciprocal of the Ihara zeta function of a graph encodes a great deal
of structural information about the graph, particularly about the graph’s primitive
cycles. We have high hopes that, in general, it encodes enough information to
allow us to conclude that certain families of graphs are determined by their zeta
functions. We will pose this question and a few others in the next section.

3. Conclusion

In this section, we first explore the question of bounding the number of Eulerian
circuits in an Eulerian graph. Recently, the problem of counting the number of
Eulerian circuits has been shown to be #P-complete in the class of undirected
graphs by Brightwell and Winkler [2004]. There has been very little success at even
bounding this number. We give a fairly rough bound, which is very inaccurate.

We let X be an (undirected) Eulerian graph and denote by eul X the number of
Eulerian circuits on X . An Eulerian circuit is a cycle which uses every edge of X
exactly once. As such, it is a primitive cycle of length m where m is the number of
edges in X . When counting Eulerian circuits, we do distinguish direction of travel,
so given one circuit, we can get another by traversing the same edge sequence by
in reverse order. Thus the cycle graphs Cn satisfy eul Cn = 2.

To state our bound, we need to define the permanent of a matrix M .

Definition 21. Let M = (mi, j ) be an n × n square matrix. The permanent of M
the “signless determinant”, that is,

perm M =
∑
σ∈Sn

n∏
i=1

mi,σ (i),

where Sn is the symmetric group over the set {1, . . . , n} (the group of permutations
of this set).

The permanent shows up in several interesting ways in graph theory. For in-
stance, it gives the number of perfect matchings of a bipartite graph [Harary 1969a].
For a general (0, 1)-square matrix, the same reference gives us a useful expression
connecting the permanent to linear subgraphs of a digraph:

Lemma 22. We use the notation from Definition 6. Let D be a digraph with n
vertices and adjacency matrix A. Then the permanent of A is given by

perm A = En(D)+On(D).

In other words, the permanent of A counts the number of linear subgraphs of D.

With this interpretation, it is easier to be persuaded of the validity of the next result:
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Theorem 23. Let X be an Eulerian graph with oriented line graph Lo X. We let T
be the adjacency matrix of Lo X. Then

eul X ≤ det T + perm T .

We will use the notation ϑ(X)= det T + perm T .

Proof. For a particular Eulerian circuit c, we denote by c the Eulerian circuit
formed by traversing the edges in the opposite direction. Thus the pair of Eulerian
circuits c and c induce a linear subgraph of the oriented line graph Lo X . This linear
subgraph is composed of exactly 2 cycles. They are either both even or both odd
cycles. In either case, this linear subgraph contributes positive 1 to the computation
of det T .

We can think of the determinant of T as the sum of the positive contribution
minus the negative contribution. The permanent, however, is the sum of the positive
contribution plus the negative contribution. Thus if we take det T + perm T , we
get twice the positive contribution. Since two Eulerian circuits add exactly 1 to the
positive contribution, we get the desired result. �

There is a fairly serious flaw with this bound. In general, computing the per-
manent of a (0, 1)-matrix is a #P-complete problem [Valiant 1979], so we do not
seem to have really improved matters. Fortunately, there are polynomial proba-
bilistic algorithms that can compute the permanent within a specific amount of
error [Jerrum et al. 2004]. As there is no known polynomial algorithm to even
estimate the number of Eulerian circuits in a graph, we have actually managed to
say something.

We present in Table 1 the results of computing the number of Eulerian circuits
as well as the sum of the determinant and the permanent of the adjacency matrix of
the oriented line graph for all connected Eulerian graphs on 6 vertices. We denote
by n the number of vertices, by m the number of edges, by −χ the negative of the
Euler number (which is n−m), by eul the exact number of Eulerian circuits, and
by ϑ the given bound. The graphs here are given in graph6 format. We use the
program Nauty [McKay 2007] to generate the graphs. All calculations were done
in SAGE [Stein 2008]. The exact number of Eulerian circuits was computed using
an algorithm that is currently being worked on by Klyve and Storm. The graphs
are small enough and the algorithm is developed well enough so we are certain of
the calculations presented.

From the data presented, we see that this bound fluctuates wildly in terms of
error and would be completely ineffective for a graph with decent size.

This work suggests a great many problems for further research. We present a
few of them here, in no particular order of perceived difficulty.
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Graph n m −χ eul ϑ error

EqGW 6 6 0 2 2 0
E@ro 6 7 1 4 6 2
E lw 6 8 2 12 90 78
E?∼o 6 8 2 12 90 78
EElw 6 9 3 32 702 670
ET\w 6 10 4 88 6642 6554
Er\w 6 11 5 264 58806 58542
E}lw 6 12 6 744 532170 531426

Table 1. Computations for all connected Eulerian graphs on 6 vertices.

Problem 24 (Graphs determined by their zeta functions). Recently, there has been
some good work showing that several infinite families of graphs are determined by
their Tutte polynomials [de Mier and Noy 2004]. One of the keys to these proofs
is that the Tutte polynomial determines the number of triangles and squares in a
graph. We saw in the previous section that the zeta function determines the number
of triangles, squares, and pentagons in a simple graph. This gives us some hope
that some large families of graphs are determined by their zeta functions. This
would be particularly interesting since the Ihara zeta function can be computed in
polynomial time.

A reader interested in this problem may want to start with the survey by Stark
and Terras [1996] to become familiar with the edge zeta function as this function is
necessary to determine if every vertex of a graph has degree greater than or equal
to 2 or not. Cooper [2006] also has some preliminary work towards identifying
other graph invariants determined by the zeta function that could prove useful.

We conjecture that the wheel graphs Wn defined by taking the cycle Cn and
adding a vertex which is adjacency to every other vertex are uniquely determined
by the Ihara zeta function among the connected graphs for which every vertex has
degree at least 2. Through a computer search, we have verified

Theorem 25. Within the family of connected graphs such that the degree of every
vertex in a graph is at least 2, the graphs W3, W4, W5, W6, W7, W8 and W9 are
determined by their Ihara zeta functions. If , instead, we consider the edge zeta
function defined by Stark and Terras [1996], we can remove the condition on the
degrees of the vertices.

In the left half of Table 2, we count the number of connected graphs on n ver-
tices for n = 4, . . . , 8 as well as how many distinct zeta functions, characteristic
polynomials, and pairs of zeta function and characteristic polynomial. In the right
half, we only count graphs which are “md2” — every vertex has degree at least
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Vertices Graphs Distinct
Zetas

Distinct
Spectra

Distinct
Pairs

md2
Graphs

Distinct
Zetas

Distinct
Spectra

Distinct
Pairs

4 6 5 6 6 3 3 3 3
5 21 16 21 21 11 11 11 11
6 112 77 111 112 61 61 61 61
7 853 584 821 850 507 507 494 507
8 11117 10423 8025 11106 7442 7441 7064 7442

Table 2. Graph and zeta function counting.

2 — as these are the more natural classes to consider zeta functions. The column
referring to “Spectra” is counting the number of unique adjacency matrix spectra
which appear. We see that the zeta function does remarkably well at distinguishing
graphs, suggesting that there could be a lot of opportunities to show that families
are uniquely determined.

Problem 26 (The inverse problem). Though we have given a characterization of
the coefficients of the reciprocal of the Ihara zeta function, we have not answered
some important questions.

(1) Given a polynomial p(u), determine if it is the reciprocal of the Ihara zeta
function of some graph.

(2) Given a polynomial p(u)which is the reciprocal of the Ihara zeta function of a
graph, construct an oriented line graph which gives rise to it. This is equivalent
to constructing a graph which gives rise to it, as Cooper’s algorithm [2006]
recovers the graph from its oriented line graph.

(3) Construct a polynomial which satisfies the graph “Riemann” hypothesis (see
[Kotani and Sunada 2000; Stark and Terras 1996] for details) and which is
also the reciprocal of the Ihara zeta function of some graph.

Solving the last two questions would provide a new construction of Ramanujan
graphs. We also suggest [Horton et al. 2006; Murty 2003] for more information
on Ramanujan graphs and their connection to the Ihara zeta function.

Problem 27 (A better Eulerian circuit count bound). It should be possible to give
a better bound than the one found in Theorem 23. In our examination of Eulerian
circuits, we really only scratched the surface of the structure that the zeta function
tells us about. A deeper study may prove fruitful.
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