Vol. 1, No. 2, 2008

Download this article
Download this article For screen
For printing
Recent Issues

Volume 15, 1 issue

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1944-4184 (e-only)
ISSN: 1944-4176 (print)
Author Index
Coming Soon
Other MSP Journals
Invariant polynomials and minimal zero sequences

Bryson W. Finklea, Terri Moore, Vadim Ponomarenko and Zachary J. Turner

Vol. 1 (2008), No. 2, 159–165

A connection is developed between polynomials invariant under abelian permutation of their variables and minimal zero sequences in a finite abelian group. This connection is exploited to count the number of minimal invariant polynomials for various abelian groups.

invariant polynomials, minimal zero sequences, finite abelian group, block monoid, zero-sum
Mathematical Subject Classification 2000
Primary: 13A50, 20K01
Secondary: 20M14
Received: 28 October 2007
Accepted: 1 November 2007
Published: 1 July 2008

Communicated by Scott Chapman
Bryson W. Finklea
Terri Moore
Department of Mathematics
University of Nebraska-Lincoln
203 Avery Hall
Lincoln, NE 68588-0130
United States
Vadim Ponomarenko
Department of Mathematics and Statistics
San Diego State University
San Diego, CA 92182
United States
Zachary J. Turner