Vol. 1, No. 2, 2008

Download this article
Download this article For screen
For printing
Recent Issues

Volume 11
Issue 2, 181–359
Issue 1, 1–179

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editors’ Addresses
Editors’ Interests
Scientific Advantages
Submission Guidelines
Submission Form
Ethics Statement
Editorial Login
Author Index
Coming Soon
Contacts
 
ISSN: 1944-4184 (e-only)
ISSN: 1944-4176 (print)
The coefficients of the Ihara zeta function

Geoffrey Scott and Christopher Storm

Vol. 1 (2008), No. 2, 217–233
Abstract

In her Ph.D. Thesis, Czarneski began a preliminary study of the coefficients of the reciprocal of the Ihara zeta function of a finite graph. We give a survey of the results in this area and then give a complete characterization of the coefficients. As an application, we give a (very poor) bound on the number of Eulerian circuits in a graph. We also use these ideas to compute the zeta function of graphs which are cycles with a single chord. We conclude by posing several questions for future work.

Keywords
Ihara zeta, polynomial coefficient, graph zeta, Eulerian circuit, graph, digraph, oriented line graph
Mathematical Subject Classification 2000
Primary: 00A05
Milestones
Received: 29 October 2007
Revised: 28 February 2008
Accepted: 6 May 2008
Published: 1 July 2008

Communicated by Andrew Granville
Authors
Geoffrey Scott
Department of Mathematics
2074 East Hall
530 Church Street
Ann Arbor, MI 48109-1043
United States
Christopher Storm
Department of Mathematics and Computer Science
111 Alumnae Hall
Adelphi University
Garden City, NY 11530
United States
http://www.adelphi.edu/~stormc