Atoms of the relative block monoid
Nicholas Baeth and Justin Hoffmeier
Atoms of the relative block monoid
Nicholas Baeth and Justin Hoffmeier
(Communicated by Scott Chapman)

Let G be a finite abelian group with subgroup H and let $\mathcal{F}(G)$ denote the free abelian monoid with basis G. The classical block monoid $\mathcal{B}(G)$ is the collection of sequences in $\mathcal{F}(G)$ whose elements sum to zero. The relative block monoid $\mathcal{B}_H(G)$, defined by Halter-Koch, is the collection of all sequences in $\mathcal{F}(G)$ whose elements sum to an element in H. We use a natural transfer homomorphism $\theta : \mathcal{B}_H(G) \rightarrow \mathcal{B}(G/H)$ to enumerate the irreducible elements of $\mathcal{B}_H(G)$ given an enumeration of the irreducible elements of $\mathcal{B}(G/H)$.

1. Introduction

In this paper we will study the so-called block monoid and a generalization called the relative block monoid. The block monoid has been ubiquitous in the literature over the past thirty years and has been used extensively as a tool to study nonunique factorization in certain commutative rings and monoids. The relative block monoid was introduced by Halter-Koch [1992]. Our main goal in this paper is to provide an enumeration of the irreducible elements of the relative block monoid given an enumeration of the irreducible elements of a related block monoid.

In this section we offer a brief description of some central ideas in factorization theory. The quintessential reference for the study of factorization in commutative monoids — in particular block monoids — is [Geroldinger and Halter-Koch 2006, Chapters 5, 6, 7]. In Section 2, we give notations and definitions relevant to studying the relative block monoid. We conclude Section 2 by stating several known results about the relative block monoid. Section 3 provides a means of enumerating the atoms of the relative block monoid $\mathcal{B}_H(G)$ by considering a natural transfer homomorphism $\theta : \mathcal{B}_H(G) \rightarrow \mathcal{B}(G/H)$.

For our purposes, a monoid is a commutative, cancellative semigroup with identity. We will restrict our attention to reduced monoids, that is, monoids whose set of

Keywords: zero-sum sequences, block monoids, finite abelian groups.

This work consists of research done as part of Justin Hoffmeier’s Master’s thesis at the University of Central Missouri.
units, H^\times, contains only the identity element. An element h of a reduced monoid H is said to be \textit{irreducible} or an \textit{atom} if whenever $h = a \cdot b$ with $a, b \in H$, then either $a = 1$ or $b = 1$. We denote the set of atoms of a monoid H by $\mathcal{A}(H)$. If an element $a \in H$ can be written as $a = a_1 \cdots a_k$ with each $a_i \in \mathcal{A}(H)$, this factorization of a is said to have length k.

As it is often convenient to study factorization via a surjective map onto a smaller, simpler monoid, we now define transfer homomorphisms. Let H and D be reduced monoids and let $\pi : H \to D$ be a surjective monoid homomorphism. We say that π is a \textit{transfer homomorphism} provided that $\pi^{-1}(1) = \{1\}$ and whenever $\pi(\alpha) = \beta_1 \beta_2$ in D, there exist elements α_1 and $\alpha_2 \in H$ such that $\pi(\alpha_1) = \beta_1$, $\pi(\alpha_2) = \beta_2$, and $\alpha = \alpha_1 \alpha_2$. It is known that transfer homomorphisms preserve length [Geroldinger and Halter-Koch 2006, Proposition 3.2.3]. That is, if $\pi : H \to D$ is a transfer homomorphism then all questions dealing with lengths of factorizations in H can be studied in D.

2. The relative block monoid

Let G be a finite abelian group written additively and with identity 0. Let $\mathcal{F}(G)$ denote the free abelian monoid with basis G. That is, $\mathcal{F}(G)$ consists of all formal products $g_1^{n_1} \cdots g_k^{n_k}$ with $g_i \in G$ and $n_i \in \mathbb{N}$ with operation given by concatenation. When we write an element $g_1^{n_1} \cdots g_k^{n_k}$ of $\mathcal{F}(G)$ with exponents n_i larger than one, we generally assume that $g_i \neq g_j$ unless $i = j$. We define a monoid homomorphism $\sigma : \mathcal{F}(G) \to G$ by $\sigma(\alpha) = g_1 + \cdots + g_k$ where $\alpha = g_1 g_2 \cdots g_k$. We also use $|\alpha| = n_1 + n_2 + \cdots + n_t$ to denote the length of α in $\mathcal{F}(G)$. We call an element α in $\mathcal{F}(G)$ a \textit{zero-sum sequence} if and only if $\sigma(\alpha) = 0$ in G. If α is a zero-sum sequence and if there does not exist a proper subsequence of α which is also a zero-sum sequence, then we call α a \textit{minimal zero-sum sequence}. The collection of all zero-sum sequences in $\mathcal{F}(G)$, with operation given by concatenation, is called the \textit{block monoid} of G and is denoted $\mathcal{B}(G)$. That is,

$$\mathcal{B}(G) = \{\alpha \in \mathcal{F}(G) \mid \sigma(\alpha) = 0\}.$$

Notice that $\mathcal{B}(G) = \ker(\sigma)$ and that the atoms of $\mathcal{B}(G)$ are simply the nonempty minimal zero-sum sequences. For more general groups, enumerating the atoms of the block monoid is a difficult task. In general, there is no known algorithm to enumerate all atoms of $\mathcal{B}(G)$, although there are some results for special cases of G; see [Geroldinger and Halter-Koch 2006; Ponomarenko 2004]. We will return to this question in Section 3.

When studying zero-sum sequences, the Davenport constant is an important invariant. The \textit{Davenport constant} $D(G)$ is defined to be the smallest positive
integer d such that if $|\alpha| = d$ with $\alpha \in \mathcal{F}(G)$ then there must exist a nonempty subsequence α' of α such that $\sigma(\alpha') = 0$.

Over the past thirty years, several authors have attempted to calculate $D(G)$ in certain cases, but no general formula is known. What is known about the Davenport constant we summarize in the following theorem [Geroldinger and Halter-Koch 2006]. First we need to define another invariant of a finite abelian group G. If $G \cong \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_k}$, with $n_i | n_{i+1}$ and $n_i > 1$ for each $1 \leq i < k$, we let

$$d^*(G) = \sum_{i=1}^{k} (n_i - 1).$$

Theorem 2.1. Let G be a finite abelian group. Then:

1. $d^*(G) + 1 \leq D(G) \leq |G|$;
2. If G is a cyclic group of order n, then $D(G) = n$.

We now introduce a somewhat larger submonoid of $\mathcal{F}(G)$, first defined by Halter-Koch [1992]. Let G be a finite abelian group and let H be a subgroup of G. We call an element $\alpha \in \mathcal{F}(G)$ an H-sum sequence if $\sigma(\alpha) \in H$. If α is an H-sum sequence and if there does not exist a proper subsequence of an α which is also an H-sum sequence, then α is said to be a minimal H-sum sequence. We call the collection of all H-sequences, the block monoid of G relative to H and denote it by $\mathcal{B}_H(G)$. Note that if $H = \{0\}$, the H-sum sequences are precisely the zero-sum sequences and hence $\mathcal{B}_H(G) = \mathcal{B}(G)$. In the other extreme case, if $H = G$, then $\mathcal{B}_H(G) = \mathcal{F}(G)$.

As we are now concerned with H-sum sequences, it is natural to define the H-Davenport constant. Let G be a finite abelian group and let H be a subgroup of G. The H-Davenport constant, denoted by $D_H(G)$, is the smallest integer d such that every sequence $\alpha \in \mathcal{F}(G)$ with $|\alpha| \geq d$ has a subsequence $\alpha' \neq 1$ with $\sigma(\alpha') \in H$.

The following theorem [Halter-Koch 1992, Proposition 1] lists several known results about the relative block monoid. We are, in particular, interested in parts 2 and 3 of the theorem.

Theorem 2.2. Let G be an abelian group and let H be a subgroup of G.

1. The embedding $\mathcal{B}_H(G) \hookrightarrow \mathcal{F}(G)$ is a divisor theory with class group (isomorphic to) G/H and every class contains $|H|$ primes, unless $|G| = 2$ and $H = \{0\}$. If $|G| = 2$ and $H = \{0\}$, then obviously $\mathcal{B}_H(G) = \mathcal{B}(G) \cong (\mathbb{Z}_2^2, +)$.
2. The monoid homomorphism $\theta : \mathcal{B}_H(G) \to \mathcal{B}(G/H)$, defined by $\theta(g_1 \cdots g_k) = (g_1 + H) \cdots (g_k + H)$.
is a transfer homomorphism.

(3) $D_H(G) = \text{sup}\{|\alpha| \mid \alpha \text{ is an atoms of } \mathcal{B}_H(G)\} = D(G/H)$.

Note that in Theorem 2.2, $|H|$ denotes the cardinality of H while $|\sigma|$ denotes the length of σ. The transfer homomorphism θ from Theorem 2.2 will be heavily used in Section 3 to enumerate the atoms of the relative block monoid.

3. Enumerating the atoms of $\mathcal{B}_H(G)$

Define $N(H)$ to be the number of atoms of a monoid H. In this section we investigate $N(\mathcal{B}_H(G))$. Let G be a finite abelian group and let H be a subgroup. Since $\theta : \mathcal{B}_H(G) \to \mathcal{B}(G/H)$, as defined in Theorem 2.2, is a transfer homomorphism, lengths of factorizations of sequences in $\mathcal{B}_H(G)$ can be studied in the somewhat simpler structure $\mathcal{B}(G/H)$. When G is cyclic of order $n \geq 10$, the number of minimal zero-sum sequences in $\mathcal{B}(G)$ of length $k \geq 2n/3$ is $\phi(n)p_k(n)$ where ϕ is Euler’s totient function and where $p_k(n)$ denotes the number of partitions of n into k parts [Ponomarenko 2004, Theorem 8]. Note that by recent work of Yuan [2007, Theorem 3.1] and Savchev and Chen [2007, Proposition 10], the inequality $k \geq 2n/3$ can be replaced by $k \geq \lceil n/2 \rceil + 2$ (see also [Geroldinger 2009, Corollary 7.9]). In general, there is no known formula for the number of atoms of $\mathcal{B}_H(G)$. However, given an enumeration of the atoms of $\mathcal{B}(G/H)$ we can calculate $N(\mathcal{B}_H(G))$ exactly, as the following example illustrates.

Example 1. Let G be a finite abelian group with a subgroup H of index 2. We will calculate $N(\mathcal{B}_H(G))$ as a function of $|H|$, the order of H. Write

$$G/H = \{H, g+H\}, \quad \text{for some } g \in G \setminus H.$$

It is clear that

$$\mathcal{A}(\mathcal{B}(G/H)) = \{H, (g+H)^2\}.$$

From Theorem 2.2 we know that for each atom $\alpha \in \mathcal{B}_H(G)$, either $\alpha \in \theta^{-1}(H)$ or $\alpha \in \theta^{-1}((g+H)^2)$. In the first case $|\alpha| = 1$ and so $\alpha \in H$. In the second case, $\alpha = xy$ where $x, y \in g + H$, not necessarily distinct. To count the number of elements of this form, note that we are choosing two elements from the $|H|$ elements of the coset $g + H$. That is, there are $\binom{|H|+1}{2}$ elements in the preimage of $(g_1 + H)^2$. Therefore,

$$N(\mathcal{B}_H(G)) = |H| + \binom{|H|+1}{2} = \frac{1}{2}|H|^2 + \frac{3}{2}|H|.$$

In the previous example, $N(\mathcal{B}_H(G))$ is a polynomial in $|H|$ with rational coefficients. We now give a series of results to establish this fact in general.
Theorem 3.1. Let G be a finite abelian group and let H be a subgroup of G. If $\alpha = \alpha_1^1 \alpha_2^2 \cdots \alpha_n^\nu \in \mathcal{B}(G/H)$ where $\alpha_i \neq \alpha_j$ whenever $i \neq j$ then

$$|\theta^{-1}(\alpha)| = \prod_{i=1}^{n} \left(|H| + t_i - 1 \right).$$

Proof. Let $\alpha = (x_1 + H)^{\nu_1} (x_2 + H)^{\nu_2} \cdots (x_n + H)^{\nu_n}$ be a sequence in $\mathcal{B}(G/H)$ where $x_i + H \neq x_j + H$ unless $i \neq j$. Each element of $\theta^{-1}(x_i + H)^{\nu_i}$ looks like $y_1 y_2 \cdots y_{\nu_i}$ where each $y_j \in x_i + H$. We wish to count the number of such elements in $\mathcal{B}(G)$. Since $|\theta^{-1}(x_i + H)| = |H|$, we have $|H|$ elements from which to choose. Then to find $|\theta^{-1}((x_i + H)^{\nu_i})|$, we choose t_i not necessarily distinct elements from $x_i + H$. Thus,

$$|\theta^{-1}((x_i + H)^{\nu_i})| = \left(|H| + t_i - 1 \right).$$

Since each $x_i + H$ is a distinct coset representative, the elements in the preimage of $x_i + H$ are not in the preimage of any other coset. That is,

$$\theta^{-1}(x_i + H) \cap \theta^{-1}(x_j + H) = \emptyset,$$

whenever $i \neq j$. To find $|\theta^{-1}(\alpha)|$, we simply multiply, which yields

$$|\theta^{-1}(\alpha)| = \prod_{i=1}^{n} \left(|H| + t_i - 1 \right).$$

Let $\alpha = \alpha_1^1 \alpha_2^2 \cdots \alpha_n^\nu \in \mathcal{B}(G/H)$. We say that two sequences $\alpha_1^1 \alpha_2^2 \cdots \alpha_n^\nu$ and $\beta_1^1 \beta_2^2 \cdots \beta_n^\nu \in \mathcal{B}(G/H)$ are of similar form if

1. $\alpha_i \neq \alpha_j$ when $i \neq j$,
2. $\beta_k \neq \beta_l$ when $k \neq l$, and
3. there exists some $r \in S_n$ such that $t_i = r \circ (i)$ for all i.

As we see in the following corollary if α and β are sequences of similar form, then

$$|\theta^{-1}(\alpha)| = |\theta^{-1}(\beta)|.$$

Corollary 3.2. Let $\alpha = \alpha_1^1 \alpha_2^2 \cdots \alpha_n^\nu$ and $\beta = \beta_1^1 \beta_2^2 \cdots \beta_n^\nu \in \mathcal{B}(G/H)$ be of similar form. Then

$$|\theta^{-1}(\alpha)| = |\theta^{-1}(\beta)|.$$

Proof. By Theorem 3.1,

$$|\theta^{-1}(\alpha)| = \prod_{i=1}^{n} \left(|H| + t_i - 1 \right)$$

and

$$|\theta^{-1}(\beta)| = \prod_{i=1}^{n} \left(|H| + r_i - 1 \right).$$
By assumption, there exists a \(\tau \in S_n \) such that \(t_i = r_{\tau(i)} \) for all \(i \). Thus, after an appropriate reordering, \(t_i = r_i \) for all \(i \). Hence,

\[
|\theta^{-1}(\alpha)| = \prod_{i=1}^{n} \left(|H| + t_i - 1 \right) = \prod_{i=1}^{n} \left(|H| + r_i - 1 \right) = |\theta^{-1}(\beta)|. \quad \square
\]

In Example 2, we will categorize the atoms of \(\mathcal{B}(G/H) \) to make use of this corollary. We now give our main result. A polynomial \(f \in \mathbb{Q}[X] \) is called \textit{integer-valued} if \(f(\mathbb{Z}) \subseteq \mathbb{Z} \), and we denote \(\text{Int}(\mathbb{Z}) \subseteq \mathbb{Q}[X] \) the set of integer-valued polynomials on \(\mathbb{Z} \). It is well-known that the polynomials \(\binom{x}{n} \) form a basis of the \(\mathbb{Z} \)-module \(\text{Int}(\mathbb{Z}) \) (see [Cahen and Chabert 1997, Proposition I.1.1]).

Theorem 3.3. Let \(K \) be a finite abelian group. There exists an integer-valued polynomial \(f \in \text{Int}(\mathbb{Z}) \) of degree \(\text{deg}(f) = D(K) \) with the following property: if \(G \) is a finite abelian group and \(H \leq G \) a subgroup with \(G/H \cong K \), then

\[
N(\mathcal{B}_H(G)) = f(|H|).
\]

Proof. From Theorem 2.2 every atom of \(\mathcal{B}_H(G) \) is in the preimage of an atom from \(\mathcal{B}(G/H) \) under the transfer homomorphism \(\theta : \mathcal{B}_H(G) \to \mathcal{B}(G/H) \). Let \(A_1, A_2, \ldots, A_m \) denote the atoms of \(\mathcal{B}(G/H) \). Then

\[
N(\mathcal{B}_H(G)) = |\theta^{-1}(A_1)| + |\theta^{-1}(A_2)| + \cdots + |\theta^{-1}(A_m)|
\]

since the preimages \(\theta^{-1}(A_j) \) are pairwise disjoint. From Theorem 3.1,

\[
|\theta^{-1}(A_i)| = \prod_{i=1}^{n} \left(|H| + t_i - 1 \right)
\]

where \(A_i = a_1^{t_1} a_2^{t_2} \cdots a_n^{t_n} \). Since \(\binom{|H|+t_i-1}{t_i} \) is a polynomial in terms of \(|H| \), we know that \(\prod_{i=1}^{n} \binom{|H|+t_i-1}{t_i} \) is a polynomial in terms of \(|H| \). Thus,

\[
N(\mathcal{B}_H(G)) = |\theta^{-1}(A_1)| + |\theta^{-1}(A_2)| + \cdots + |\theta^{-1}(A_m)|
\]

is also a polynomial in terms of \(|H| \). The definition of the Davenport constant implies that there exists an atom in \(\mathcal{B}(G/H) \) with length \(D(G/H) = D_H(G) \) and that no longer atom exists. Let \(A = a_1^{t_1} a_2^{t_2} \cdots a_n^{t_n} \in \mathcal{B}(G/H) \) such that \(|A| = D(G/H) = D_H(G) \). Then

\[
t_1 + t_2 + \cdots + t_n = D_H(G).
\]

Since

\[
\binom{|H|+t_i-1}{t_i} = \frac{(|H|+t_i-1)(|H|+t_i-2) \cdots |H|}{t_i}
\]
is a polynomial in terms of $|H|$ of degree t_i. $\prod_{i=1}^n (t_i^{H_i} - 1)$ has degree $D_H(G)$. Since $|A_j| \leq D_H(G)$ for all j, we have that

$$N(\mathcal{B}_H(G)) = |\theta^{-1}(A_1)| + |\theta^{-1}(A_2)| + \cdots + |\theta^{-1}(A_m)|,$$

which also has degree $D_H(G)$.

\section*{Remark 1.} If $|H| = 1$, then $H = \{0\}$ and so $\mathcal{B}_H(G) = \mathcal{B}(G)$. In this case, $|\theta^{-1}(A_i)| = 1$ for all i and thus $N(\mathcal{B}_H(G)) = N(\mathcal{B}(G))$.

We conclude with a final example, which illustrates how much larger $\mathcal{A}(\mathcal{B}_H(G))$ is than $\mathcal{A}(\mathcal{B}(G/H))$.

\section*{Example 2.} We calculate $N(\mathcal{B}_H(G))$ where $G/H \cong \mathbb{Z}/6\mathbb{Z} = \{0, 1, 2, 3, 4, 5\}$. Note that $\mathcal{A}(\mathcal{B}(\mathbb{Z}/6\mathbb{Z}))$ consists of the following twenty elements:

$$0 \; 1^6 \; 1^42 \; 1^33 \; 1^22^2 \; 1^24 \; 123 \; 134^2 \; 15 \; 2^3 \; 2^235 \; 24 \; 25^2 \; 3^2 \; 345 \; 35^3 \; 4^3 \; 4^25^2 \; 45^4 \; 5^6$$

For each sequence $\alpha \in \mathcal{A}(\mathcal{B}(G/H))$, we compute $|\theta^{-1}(\alpha)|$. Several pairs of atoms have similar forms and thus we can reduce the number of calculations by using Corollary 3.2. By applying Theorem 3.1 we obtain, for example:

$$|\theta^{-1}(3^2)| = \binom{|H| + 1}{2} = \frac{1}{2}|H|^2 + \frac{1}{2}|H|,$$

$$|\theta^{-1}(123, 345)| = 2 \binom{|H|}{1}^3 = 2|H|^3,$$

and

$$|\theta^{-1}(1^42, 5^44)| = 2 \binom{|H| + 3}{4} \binom{|H|}{1} = \frac{1}{12}|H|^5 + \frac{1}{2}|H|^4 + \frac{11}{12}|H|^3 + \frac{1}{2}|H|^2.$$

These and several similar calculations yield

$$N(\mathcal{B}_H(G)) = \frac{1}{360}|H|^6 + \frac{1}{8}|H|^5 + \frac{185}{72}|H|^4 + \frac{63}{8}|H|^3 + \frac{1247}{180}|H|^2 + \frac{5}{2}|H|.$$

Applying this formula to the case when $|H| = 1$, we find $N(\mathcal{B}_H(G)) = 20$. If $|H| = 10$, then $N(\mathcal{B}_H(G)) = 49, 565$, illustrating how quickly $\mathcal{A}(\mathcal{B}_H(G))$ grows as a function of $|H|$.

\section*{Acknowledgement}

The authors wish to thank the anonymous referee for many insightful comments that greatly improved this paper.
References

Received: 2008-09-15 Revised: 2008-11-10 Accepted: 2008-11-12

baeth@ucmo.edu Mathematics and Computer Science, University of Central Missouri, Warrensburg, MO 64093, United States

hoffmeier@ucmo.edu Mathematics and Computer Science, University of Central Missouri, Warrensburg, MO 64093, United States