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On the orbits of an orthogonal group action
Kyle Czarnecki, R. Michael Howe and Aaron McTavish

(Communicated by Józef H. Przytycki)

Let G be the Lie group SO(n,R)× SO(n,R) and let V be the vector space of
n× n real matrices. An action of G on V is given by

(g, h).v := g−1vh, (g, h) ∈ G, v ∈ V .

We consider the orbits of this group action and demonstrate a cross-section to
the orbits. We then determine the stabilizer for a typical element in this cross-
section and completely describe the fundamental group of an orbit of maximal
dimension.

1. Introduction

Let G be the Lie group SO(n,R)×SO(n,R) and let V be the vector space of n×n
real matrices. An action of G on V is given by

(g, h).v := gtvh = g−1vh, (g, h) ∈ G, v ∈ V,

where gt denotes the matrix transpose of g and where the operation on the right is
matrix multiplication. This action is obviously smooth (having continuous deriva-
tives of all orders) since the matrix entries in (g, h).v are polynomial functions of
the matrix entries of g, h and v.

For each v ∈ V we define the orbit of v, denoted by G.v ⊆ V , as the set

G.v := {(g, h).v | (g, h) ∈ G}.

For v,w ∈ V the relation

v ∼ w if v and w are in the same G-orbit
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is an equivalence relation and so V is partitioned into G-orbits. We also define Gv,
the stabilizer of v, to be the those elements in G that fix v:

Gv =: {(g, h) ∈ G | (g, h).v = v}.

For each v ∈ V , Gv is a closed (usually not normal) subgroup of G, and so is a Lie
group.

Let G/Gv denote the set of left cosets of Gv in G. Since Gv is a closed subgroup
of G, G/Gv is a differentiable manifold and dimG/Gv = dim G−dim Gv, where
dim indicates the dimension. Furthermore, G/Gv is diffeomorphic to the orbit
G.v. If Gv is normal in G, then G/Gv is a Lie group [Bröcker and tom Dieck
1985, Section1.4].

A subset D of V is a cross-section to the orbits if every G-orbit intersects D.
That is, for each v ∈ V there is an element (g, h) ∈ G and an element d ∈ D such
that (g, h).v=d . Some definitions of a cross-section are more restrictive, requiring
that each orbit intersect the cross-section exactly once.

In this paper we consider the orbits of this group action. In Section 2 we demon-
strate a cross-section of the orbits, and in Section 3 we determine the stabilizer for a
typical element in this cross-section. In Section 4 we discuss the orbits for the case
n = 2 and introduce generic orbits — those of maximal dimension — for arbitrary
n. Section 5 reviews some useful information about fundamental groups, covering
spaces, and the covering group Spin(n). Our main result is in Section 6 where
we connect these ideas in order to completely describe the fundamental group of
a generic orbit, and in Section 7 we work through an example that further exposes
the anatomy. We close with a few remarks in Section 8 regarding those orbits that
do not have maximal dimension.

2. Cross section to the orbits

In this section we show that the diagonal matrices with non-negative entries con-
stitute a cross-section to the group action.

Proposition 2.1. Let G = SO(n)× SO(n) and let V be the vector space of n× n
real matrices. Let G act on V via (g, h).v = gtvh. Then for each v ∈ V there is a
(k1, k)∈G such that (k1, k).v= diagonal(d1, . . . , dn), with d1≥ d2≥ · · ·≥ dn ≥ 0.

Proof. Let v ∈ GL(n,R) where GL(n,R) is the (dense, open) subset of invertible
n × n matrices in V . Then vtv is a symmetric matrix with positive eigenvalues,
and hence is diagonalizable via conjugation by an element in SO(n,R). That is,
there is a k in SO(n,R) such that

ktvtvk = a,

where a = diagonal(a1, . . . , an) with a1 ≥ a2 ≥ · · · ≥ an > 0.
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Now let a−1/2
=diagonal(1/

√
a1, . . . , 1/

√
an). If In is the n×n identity matrix

we have

In = a−1/2 a a−1/2
= a−1/2

[ktvtvk] a−1/2
= (vka−1/2)tvka−1/2.

It follows that vka−1/2 is in O(n,R). Let a1/2
= diagonal(

√
a1, . . . ,

√
an). Then

a1/2
= Ina1/2

= [a−1/2ktvtvka−1/2
] a1/2

= a−1/2ktvtvk.

Thus, if k1 = vka−1/2, we can write this as

(k1)
tvk = (k1, k).v = a1/2,

where k1 ∈ O(n,R) and k ∈ SO(n,R). If k1 happens to be in SO(n,R) we are
done. If not, we can change the sign of one of the entries in a−1/2 so that k1 is
in SO(n,R), proving the result for any V in the dense subset of invertible n × n
matrices. Since our group action is continuous, the result holds for all v ∈ V . We
could also modify the above proof slightly to account for those eigenvalues of vtv

that are equal to zero. �

3. The stabilizer of a representative element

Let 0 be an arbitrary group acting on a set X . If x and y are in the same 0-orbit,
then x = γ.y for some γ ∈ 0. It is a standard result that γ−10xγ = 0y , that is, the
stabilizers are isomorphic via conjugation. Therefore, it is sufficient to determine
the stabilizers of those elements that are in the cross section.

We start with a simple example that demonstrates the general idea for the situ-
ation that we are considering. Let d ∈ V and (g, h) ∈ G be given by

d =

 d1 0 0
0 d1 0
0 0 d2

 , where d1 > d2 > 0,

g =

 g1,1 g1,2 g1,3

g2,1 g2,2 g2,3

g3,1 g3,2 g3,3

 , h =

 h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

 .
We may assume d1 > d2 since conjugation by a matrix such as0 0 −1

0 1 0
1 0 0

 ∈ SO(3)

will reorder the entries in d .
If (g, h) stabilizes d then gt dh = d or equivalently, dh = gd , so we have
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d1h2,1 d1h2,2 d1h2,3

d2h3,1 d2h3,2 d2h3,3

=
 d1g1,1 d1g1,2 d2g1,3

d1g2,1 d1g2,2 d2g2,3

d1g3,1 d1g3,2 d2g3,3

 . (3-1)

That is, the first entry in d acts on the first row of h, but acts on the first column of
g, etc. The rows of g and h are orthonormal (considered as vectors in R3 with the
usual dot product), and we compare the squared length of the first row of dh with
the first row of gd in (3-1):

(d1h1,1)
2
+ (d1h1,2)

2
+ (d1h1,3)

2
= (d1g1,1)

2
+ (d1g1,2)

2
+ (d2g1,3)

2.

Since first rows of both h and g have length 1, we have

⇒ (d1)
2
= (d1)

2
[(h1,1)

2
+ (h1,2)

2
+ (h1,3)

2
]

= (d1g1,1)
2
+ (d1g1,2)

2
+ (d2g1,3)

2 < (d1)
2,

since d1>d2. But this is impossible unless g1,3=0, and hence h1,3=0. Comparing
the lengths of the second rows shows that g2,3 = h2,3 = 0, and applying this same
reasoning to the columns gives h3,1 = g3,1 = 0 and h3,2 = g3,2 = 0.

We now have d1h1,1 d1h1,2 0
d1h2,1 d1h2,2 0

0 0 d2h3,3

=
 d1g1,1 d1g1,2 0

d1g2,1 d1g2,2 0
0 0 d2g3,3

 ,
which immediately implies that h = g. The condition that gt g = I gives us that
each of the block submatrices must be orthogonal, and of course g must have
determinant 1. Note that if we were to allow d2 = 0 then g3,3 and h3,3 need not be
equal.

An inductive argument on the different eigenvalues of d proves the general case
and is not particularly enlightening, so we state the following result.

Proposition 3.1. Let G = SO(n)× SO(n) and let V be the vector space of n× n
real matrices. Let G act on V via (g, h).v = gtvh. Let

d = diagonal(d1, . . . , d1︸ ︷︷ ︸
s1

, . . . , dk, . . . , dk︸ ︷︷ ︸
sk

) ∈ V

with d1 > d2 > . . . > dk ≥ 0, and let Gd be the stabilizer of d in G. If dk > 0, then
Gd = {(g, g) : g ∈ S(O(s1)× · · ·× O(sk))}.

That is, each g consists of block-diagonal matrices where each block is an si×si

orthogonal matrix and where si is the multiplicity of the eigenvalue di in d. The
“S” indicates that the product of the determinants of the blocks is 1. If dk = 0 then
Gd = (g, h) where g and h consist of block-diagonal matrices with each i-th block
in O(si ), and where g = h except for the k-th block.



ON THE ORBITS OF AN ORTHOGONAL GROUP ACTION 499

4. Orbits

A natural question is “What are these orbits like?” From the introduction we know
that, for any element v ∈ V , the orbit G.v is diffeomorphic to the coset space
G/Gv, with dim G.v = dim G − dim Gv. Since any two elements in the same G-
orbit have isomorphic stabilizers, it will be sufficient to consider the orbits of those
representative elements d in the cross-section D. In particular, the dimension of
these orbits is completely determined by the multiplicity of the distinct eigenvalues
of d and is independent of their actual values.

Example: n = 2. In low-dimensional cases we can use computer graphics to get
an idea about the nature of these orbits, and we now illustrate this for the two-
dimensional Lie group G = SO(2)×SO(2). Figure 1 shows the orbit of d =

(
1 0
0 0

)
,

with a cut-away view on the right. Note that, for n=2, the orbit lies in Mat(2,R)∼=

R4, and each figure is a projection of this orbit onto R2. Since G is abelian, Gd

is normal in G and so G/Gd is an abelian Lie group which is compact since the
quotient map is continuous. Since Gd = {(I2,I2), (−I2,−I2)} which is discrete,
the orbit G.d has dimension 2. We conclude that this orbit is diffeomorphic to the
2-torus embedded in R4, since this is the only two-dimensional compact abelian
Lie group. Notice that the graphics could be misleading, since we usually picture
the 2-torus in R3 as resembling the surface of a donut.

Note that if an element d in the cross-section D has only one eigenvalue, then
the stabilizer Gd is isomorphic to SO(2) and so the orbit G.d is one-dimensional
and is diffeomorphic to SO(2), that is, a circle.

Generic orbits. We now move on to consider the following special case of generic
orbits — those with maximal dimension — for arbitrary n. We will reserve the
symbol δ for a diagonal matrix in the cross-section D with n distinct eigenvalues.

Figure 1. An orbit for n = 2 projected onto R2. Right: cut-away
view of same orbit.
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That is, δ=diagonal(d1, . . . , dn)with d1>d2> · · ·>dn≥0. From Proposition 3.1
we have Gδ = (g, g), where g = diagonal(±1, . . . ,±1) has an even number of
entries equal to −1. Since the stabilizer of δ is discrete, the dimension of the
G-orbit of δ is equal to the dimension of G.

Proposition 4.1. Let G = SO(n)× SO(n) and let V be the vector space of n× n
real matrices. Let G act on V via (g, h).v = gtvh. Let

δ = diagonal(d1, d2, . . . , dn) ∈ V

with d1 > d2 > · · ·> dn ≥ 0, and let Gδ be the stabilizer of δ in G. Then |Gδ|, the
order of Gδ, is 2n−1.

Proof. From Proposition 3.1, Gδ consists of n copies of O(1)=±1 lying in SO(n),
so there must be an even number of entries equal to −1. Thus

|Gδ| =

(n
0

)
+

(n
2

)
+

(n
4

)
+ · · ·+

(n
k

)
,

where k = n if n is even and k = n− 1 if n is odd. From the binomial theorem,

2n
= (1+ 1)n + (1− 1)n

=

[(n
0

)
+

(n
1

)
+

(n
2

)
+ · · ·+

(n
n

)]
+

[(n
0

)
−

(n
1

)
+

(n
2

)
− · · ·±

(n
n

)]
= 2

[(n
0

)
+

(n
2

)
+

(n
4

)
+ · · ·+

(n
k

)]
= 2 |Gδ|. �

Again, what are these orbits like? Figure 2 shows a (projection of a) two-dimen-
sional slice of the orbit of δ=diagonal(2, 1, 0) for the case n=3. Could this be just
a torus in disguise, as was the case n = 2? One way to determine how interesting
the orbits are is to consider their fundamental groups.

Figure 2. A section of an orbit for n = 3. Right: cut-away view
of same section.
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5. Fundamental groups, covering spaces and spin(n)

In order to make this exposition self-contained and to fix notation we review some
background material that will be familiar to many readers.

Review of the fundamental group and covering spaces. Let X be a topological
space and let [0, 1] ⊂ R be the closed unit interval. A path in X is a continuous
map f : [0, 1] → X . Two paths f and g from x1 to x2 are said to be homotopic if
one can be continuously deformed into the other. This is obviously an equivalence
relation, and we denote the equivalence class of f by [ f ]. Of special interest will
be loops, or closed paths that start and end at a distinguished base point x ∈ X ,
and we can define a multiplication of loops by concatenation. That is, f · g means
first go around f and then go around g. This operation is associative and is well
defined when taking equivalence classes: [ f ] · [g] = [ f · g]. The constant loop
ex : [0, 1]→ X given by ex(t)= x serves as the identity element for this operation
and the loop f −1 is the loop f traversed in the opposite direction. We can then
define the first homotopy group or the fundamental group, denoted π1(X, x), as
the group of (equivalence classes of) loops in X that start and end at x , along
with this multiplication. If x1 and x2 are connected by a path in X , then π1(X, x1)

and π1(X, x2) are isomorphic. Homeomorphic topological spaces have isomorphic
fundamental groups, but the converse need not be true.

We will also require the notion of a covering. Let (X, x), (Y, y) be topological
spaces with base points x and y respectively. A map p : (Y, y) → (X, x) is a
covering map if

(i) p(y)= x ;

(ii) p is continuous and surjective;

(iii) for every x0 ∈ X there is an open neighborhood Ux0 ⊂ X so that p−1(Ux0) is
a disjoint union of open sets {Vα} and so that for each α, the map p restricted
to Vα is a homeomorphism of Vα onto Ux0 .

We then say that (Y, y) is a covering space of (X, x) and refer the the covering
space along with the covering map as a cover of (X, x). We will also use the
standard results, roughly stated, that the composition of covers is a cover, and that
the cover of a product is the product of the respective covers.

Remark 5.1. A topological space with trivial fundamental group is called simply
connected. A covering space that is simply connected is called a universal covering
space. It is unique up to homeomorphism.

We will need the notion of lifting a path from a space to a covering space.
Let p : (Y, y)→ (X, x) be a covering map. Let f : [0, 1]→ X be a path starting

at x . A lifting of f is a path f̃ : [0, 1] → Y such that p ◦ f̃ = f . For the cases we
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are considering, these lifts are unique up to homotopy. That is, let f be a path in
X beginning at x , and let f̃ and g̃ be two lifts of f both beginning at y. Then f̃ is
homotopic to g̃. In particular, f̃ and g̃ must end at the same point in Y .

Let p : (Y, y) → (X, x) be a covering map. A homeomorphism h : Y → Y
is called a deck transformation or covering transformation if p ◦ h = p. Clearly
the collection of all such deck transformations is a group with the operation being
composition of maps.

We will use the following fact to determine π1(G.δ, δ).

Theorem 5.2. [Massey 1991, Corollary 7.5] If (Y, y) is a universal covering space
of (X, x), the group of deck transformations of (Y, y) is isomorphic to π1(X, x). If
p : (Y, y) :→ (X, x) is a covering map, then the order of π1(X, x) is equal to the
cardinality of the set p−1(x).

Now consider the map p1 : G → G.δ given by g 7→ g.δ. Since p−1
1 (δ) =

{γ ∈ G | γ.δ = δ} = Gδ is discrete, Theorem E4 of [Hall 2003] has the following
consequence.

Proposition 5.3. Let G = SO(n)× SO(n) and let 111 denote the identity element in
G. Let V be the vector space of n× n real matrices and let G act on V by

(g, h).v := gtvh, (g, h) ∈ G, v ∈ V .

If δ ∈ V is a diagonal matrix with n distinct eigenvalues, and if G.δ is the G-orbit
of δ, then the map p1 : (G,111)→ (G.δ, δ) given by g 7→ g.δ is a covering map.

Said another way, G is a fiber bundle over the orbit G.δ with projection map
(g, h) 7→ (g, h).δ and discrete fiber Gδ.

Spin(n). We now provide a brief review of the construction of the Lie group
Spin(n) and the covering map from Spin(n) to SO(n). This abridged description
should be sufficient for our purposes, but for a more complete discussion, see
[Bröcker and tom Dieck 1985]. The presentation below borrows extensively from
the excellent exposition in [Simon 1996].

Consider the vector space Rn with standard basis {e1, . . . , en}. We form C(n),
the Clifford algebra on Rn , by declaring that multiplication is associative, distribu-
tive over addition, and obeys the relations ei e j +e j ei =−2δi j . This is just a fancy
way of saying that the basis elements anti-commute and e2

i =−1. If I = i1i2 . . . ik

is a multiindex with 1 ≤ i1 < · · · < ik ≤ n we set e0 = 1, we set eI = ei1ei2 . . . eik

and we set |I | = k. Then C(n) is an algebra with basis {eI } and it follows that the
dimension of C(n) is 2n . We also have the subalgebra of even elements

C(n)even = {A ∈ C(n) | A is a linear combination of eI with |I | even}.
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Examples. We have canonical isomorphisms:

• C(0)∼= R;

• C(1)∼= C via the map e1 7→ i =
√
−1;

• C(2)∼=H (the quaternion algebra) via the map e1 7→ i , e2 7→ j and so e1e2 7→k.
Here, i , j , and k are those elements in H with i2

= j2
= k2
=−1 and i j = k;

• we also have C(3)even ∼= H via the map e1e2 7→ i , e1e3 7→ j , so

(e1e2)(e1e3)= e2e3 7→ k.

We can define Spin(n) to be the invertible elements S of C(n)even that (among
other things) leave the vector space W = Rn invariant under conjugation:

SW S−1
⊆W.

Now consider the quadratic elements

qi j =
1
2 ei e j ,

for 1≤ i < j ≤ n, and observe that they obey the same commutation relations as the
generators L i j of the Lie algebra so(n). Therefore these quadratic elements form a
Lie algebra isomorphic to so(n), and so to get the group Spin(n) we exponentiate
these quadratic elements:

Si j (t) := exp(t qi j )= 1+ (tqi j )+
1
2!
(tqi j )

2
+

1
3!
(tqi j )

3
+ · · ·

= cos(t/2)+ sin(t/2)(2qi j ),

since q2
i j = −1. As t goes from 0 to 4π , Si j (t) gives a copy of U (1) in Spin(n)

which is homeomorphic to a circle in the plane spanned by 1 and 2qi j .
Now the elements A in Spin(n) act on Rn by conjugation and this gives a rep-

resentation of Spin(n) on Rn . Consequently, we have a map

R : Spin(n)→ SO(n,R)

defined by

Aei A−1
=

n∑
i=1

R j i (A)e j . (5-1)

We now determine the matrix representation of the group elements

Si j (t) := exp(tqi j )= cos(t/2)+ sin(t/2)(ei e j ) (5-2)

by determining the action on the basis vectors. First observe that ei e j commutes
with ek when k is equal to neither i nor j , so in this case

Si j (t)ek S−1
i j (t)=

(
cos(t/2)+ sin(t/2)(ei e j )

)
ek
(
cos(t/2)− sin(t/2)(ei e j )

)
= ek .
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Now conjugating ei by Si j (t) we have

Si j (t)ei S−1
i j (t)=

(
cos(t/2)+ sin(t/2)(ei e j )

)
ei
(
cos(t/2)− sin(t/2)(ei e j )

)
=
(
cos(t/2)+ sin(t/2)(ei e j )]

2ei

=
(
cos2(t/2)− sin2(t/2)

)
ei − 2 cos(t/2) sin(t/2)e j

= cos(t)ei − sin(t)e j .

A similar computation applied to e j gives

Si j (t) e j S−1
i j (t)= sin(t)ei + cos(t)e j .

Therefore, conjugation by Si j (t)= exp(tqi j ) induces a rotation by an angle t in the
ei , e j plane. Since these rotations generate SO(n), this map is surjective.

The following result is well known (see [Simon 1996, Sections VII.6–VII.7] or
[Bröcker and tom Dieck 1985, Section 1.6].

Proposition 5.4. Spin(n) is simply connected. If A ∈ Spin(n) and if R(A) is
the n × n matrix with entries R j i (A) described in (5-1) above, then the map
R : (Spin(n),111)→ (SO(n,R),111) is a twofold universal covering map and a homo-
morphism of Lie groups. The symbol 111 denotes the unit elements in the respective
groups.

6. The fundamental group of a generic orbit

We are now ready to determine the fundamental group for a generic orbit of max-
imum dimension. We will proceed by elaborating on some previously introduced
ideas and connecting them together in order to invoke Theorem 5.2.

As before, δ ∈ D denotes an element in the cross-section with n distinct eigen-
values. By Proposition 3.1, a typical element in its stabilizer Gδ can be represented
by a diagonal matrix with each entry equal to ±1, and where an even number of
entries are equal to −1. From now on, let I = i1i2 · · · ik be a multiindex with
1 ≤ i1 < · · · < ik ≤ n, k even and set l = k/2. Let STI be the element in Gδ with
those entries that are equal to −1 indexed by I . For example, if n = 6,

ST1,2,3,5 =



–1 0 0 0 0 0
0 –1 0 0 0 0
0 0 –1 0 0 0
0 0 0 1 0 0
0 0 0 0 –1 0
0 0 0 0 0 1


.

Using this notation, Gδ = {(STI , STI ) : |I | is even}.
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Let τ = (t1, . . . , tl) and let SOI (τ ) be the matrix consisting of rotations by an
angle t j in the planes indexed pairwise by I . These pairs are of the form i2m−1, i2m .

For example, if I = 1, 2, 3, 5 and τ = (t1, t2) then SOI (τ ) rotates by an angle t1
in the 1, 2 plane and by an angle t2 in the 3, 5 plane. For instance, if n = 6,

SO1,2,3,5(τ )=



cos t1 sin t1 0 0 0 0
–sin t1 cos t1 0 0 0 0

0 0 cos t2 0 sin t2 0
0 0 0 1 0 0
0 0 –sin t2 0 cos t2 0
0 0 0 0 0 1


.

Notice that SO1,2,3,5(τ ) is equal to the matrix product SO1,2(t1)SO3,5(t2). It should
be easy to see that

Lemma 6.1. STI = SOI (±π, . . . ,±π).

We next consider product of elements Si j (t) ∈ Spin(n) and relate them to the
corresponding elements in SO(n).

Lemma 6.2. Let I = i1i2 · · · ik be a multiindex with k even and where

i1 < i2 < · · ·< ik .

Set l= k/2. Let τ = (t1, . . . , tl) and let SOI (τ ) be the matrix consisting of rotations
by an angle t j in the planes indexed pairwise by I . Let Si, j (t) be defined as in
(5-2), and let SI (τ ) designate the product SI (τ ) = Si1i2(t1)Si3i4(t2) · · · Sik−1ik (tl).
Let R : Spin(n) → SO(n) be the covering map given by Proposition 5.4. Then
R(SI (τ ))= SOI (τ ).

Further, eI := ei1ei2 · · · eik , we have eI = SI (π, . . . , π).

Proof. Since the entries in the multiindex I are distinct, the designation SOI (τ )=

SOi1i2···ik (τ )= SOi1i2(t1)SOi3i4(t2) · · · SOik−1ik (tl) is unambiguous. Since the map
R is a representation, we have

R[SI (τ )] = R[Si1i2(t1)] R[Si3i4(t2)] · · · R[Sik−1ik (tl)]

= SOi1i2(t1)SOi3i4(t2) · · · SOik−1ik (tl)= SOI (τ ).

For the last assertion, note that (5-2) gives ei e j = Si j (π) for any i, j , since
cos(π/2)= 0 and sin(π/2)= 1. Hence

eI = [ei1ei2][ei3ei4] · · · [eik−1eik ] = Si1i2(π)Si3i4(π) · · · Sik−1ik (π)= SI (π, . . . , π),

as required. �

This next result is proven similarly.
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Lemma 6.3. Denote by π+ an l-tuple π+ = (±π, . . . ,±π) with an even number
of entries equal to −π and denote by π− an l-tuple π− = (±π, . . . ,±π) with an
odd number of entries equal to −π . Let SI (τ ) and eI be as in the previous lemma.
Then SI (π

+)= eI and SI (π
−)=−eI .

Finally, let 1̃11 denote the unit element in G̃ = Spin(n)×Spin(n) and let 111 denote
the unit element in G=SO(2,R)×SO(2,R). Then (G̃, 1̃11) is the universal covering
space (in fact, a covering group) of (G,111) and the map

ρ = R× R : (G̃, 1̃11)→ (G,111)

is a fourfold covering map. Now recall the covering map p1 : (G,111)→ (G.δ, δ)
from Proposition 5.3. It follows that the composition

P = ρ ◦ p1 : (G̃, 1̃11)→ (G.δ, δ)

is a covering map and that G̃ is the universal covering space of the orbit G.δ.

Definition 6.4. E(n)= {± eI : |I | is even}.

Observe that E(n) is closed under multiplication since, if eI eJ = eK then |K | =
|I | + |J | when I and J are distinct indices, and the entries of K contract in pairs
when I and J have repeated entries. For example, e1,2 e2,3=−e1,3. Since (eI )

−1
=

±eI , E(n) is a group under multiplication. A computation very similar to that in
Proposition 4.1 shows that |E(n)| = 2n .

Definition 6.5. Consider the set Ẽ(n)={(ν,±ν) | ν ∈ E(n)}. This is a subgroup of
G̃ which is isomorphic to the group E(n)×Z2 via the identifications (ν, 1) 7→ (ν, ν)

and (ν,−1) 7→ (ν,−ν) for ν ∈ E(n).

Proposition 6.6. P−1(δ)= Ẽ(n).

Proof.

P[(eI , eI )] = p1 ◦ [R(eI ), R(eI )],

Lemma 6.3⇒= p1 ◦ [R(SI (π
+), R(SI (π

+)],

Lemma 6.2⇒= p1 ◦ [SOI (π
+),SOI (π

+)],

Lemma 6.1⇒= p1 ◦ [STI , STI ],

= δ.

The proofs of the other cases such as P[(eI ,−eI )] = δ are similar and hence
Ẽ(n)⊆ P−1(δ).

Now p−1
1 (δ)= {(STI , STI ) : |I | is even} ⊆ G has order 2n−1 (Proposition 4.1)

and ρ is a fourfold covering map G̃→G. Therefore the set P−1(δ) has order 2n+1

which is equal to the order of Ẽ(n). �
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The main result of this paper completely describes the fundamental group of a
generic orbit.

Theorem 6.7. Let G = SO(n)×SO(n) and let V be the vector space of n×n real
matrices. Let G act on V via (g, h).v= gtvh. Let δ= diagonal(d1, d2, . . . , dn)∈V
with d1 > d2 > . . . > dn ≥ 0, and let G.δ be the G-orbit of δ in V . Let e1, . . . , en

be the standard basis vectors in Rn and let E(n) = {±ei1 . . . eik | k is even} be the
group generated by the quadratic units ei e j , i < j in the Clifford algebra on Rn .
Then the fundamental group π1(G.δ, δ) is isomorphic to E(n)×Z2.

Proof. We will show that the group of deck transformations Aut(G̃, P) on the
universal covering (G̃,111) is isomorphic to Ẽ(n) which is isomorphic to E(n)×Z2.

For each ω̃ ∈ Ẽ(n) and s̃ ∈ G̃ define the left translation map Lω̃ : G̃ → G̃ by
Lω̃ (̃s) = ω̃ s̃, the operation on the right-hand side being multiplication in G̃. It is
a standard exercise that the set of all such translations L = {Lω̃ | ω̃ ∈ Ẽ(n)} is a
group that is isomorphic to Ẽ(n) via the map ω̃ 7→Lω̃. Since G̃ is a Lie group, each
translation is continuous with a continuous inverse, hence a homeomorphism from
G̃ to G̃. Furthermore, for each ν̃ ∈ Ẽ(n), the composition P ◦Lω̃ (̃ν)= P(ω̃ ν̃)= δ
so each Lω̃ is a deck transformation and therefore L is a subgroup of Aut(G̃, P).
But Aut(G̃, P) has order 2n+1 by Theorem 5.2, and since both these groups have
the same order, they must be equal. By Theorem 5.2 again we have π1(G.δ, δ) ∼=
Aut(G̃, P)= L∼= Ẽ(n)∼= E(n)×Z2. �

7. An illustration

We conclude with an example for n = 6 that further illustrates the previous con-
structions. The element

S3,5(t)= exp[(t/2)e3e5] = cos(t/2)+ sin(t/2)e3e5

in Spin(6) defined in (5-2) is homeomorphic to a circle lying in the plane spanned
by 1 and e3e5 in the Clifford algebra C(6), and which projects onto the rotation
SO3,5(t) in SO(6) via the representation R. Consider the path f̃ : [0, 4π ] → G̃
given by t 7→ (S35(t), S35(t)).

Since f̃ is homeomorphic to a circle and G̃ is a simply connected covering
group, [ f̃ ] is trivial in π1(G̃,111). Now as t goes from 0 to π , we get a path f̃[0,π ]
from (1, 1) to (e3e5, e3e5) in G̃ that projects down via P to a loop f : [0, π]→G.δ
given by f (t) = (SO3,5(t),SO3,5(t)).δ. By uniqueness of path lifting, f cannot
be homotopic to the trivial loop since f̃[0,π ] is not trivial in G̃. Similarly, as t goes
from π to 2π , we get a path f̃[π,2π ] from (e3e5, e3e5) to (−1,−1) in G̃ that also
projects down to the loop f in the orbit G.δ. Not until t travels the entire distance
[0, 4π ] do we obtain the product f 4 in G.δ that lifts to the (trivial) loop f̃ in G̃.
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Thus, [ f ]4 is trivial in π1(G.δ, δ). We chart here the information as the path f̃ is
projected onto G and then G.δ for the successive landmark values of t .

t f̃ (t)) ρ((S3,5(t), S3,5(t))) P(S3,5(t), S3,5(t))

0 (1, 1) (I6,I6) δ

π (e3e5, e3e5) (ST3,5, ST3,5) δ

2π (−1,−1) (I6,I6) δ

3π (−e3e5,−e3e5) (ST3,5, ST3,5) δ

4π (1, 1) (In,In) δ

As in the previous discussion regarding deck transformations in the proof of
Theorem 6.7, we can translate the loop f̃ via left multiplication by the element
(e1e2, e1e2)∈ Ẽ(n). This gives us the loop g̃ : [0, 4π ]→ G̃ given by t 7→ (ν(t), ν(t))
where

ν(t)= e1e2[cos(t/2)+ sin((t/2))e3e5] = cos(t/2)e1e2+ sin(t/2)e1e2e3e5.

This is a loop starting at e1e2 which lies in the plane spanned by e1e2 and e1e2e3e5

in the Clifford algebra C(6).
We check that

ν−1(t)= [− cos(t/2)e1e2+ sin(t/2)e1e2e3e5]

and that conjugating the basis vectors ei ∈ R6 by ν(t) produces the map R which
takes ν(t) to the rotation

R(ν(t))=



–1 0 0 0 0 0
0 –1 0 0 0 0
0 0 cos t 0 sin t 0
0 0 0 1 0 0
0 0 – sin t 0 cos t 0
0 0 0 0 0 1


∈ SO(6).

As above, the projection P maps g̃[0,π ] to the loop g(t)= R(ν(t)).δ in the orbit
G.δ and [g]4 is trivial. Here is part of this information for the path g̃:

t g̃(t) ρ(g̃(t))) P(g̃(t)))

0 (e1e2, e1e2) (ST1,2, ST1,2) δ

π (e1e2e3e5, e1e2e3e5) (ST1,2,3,5, ST1,2,3,5) δ

2π (−e1e2,−e1e2) (ST1,2, ST1,2) δ

3π (−e1e2e3e5,−e1e2e3e5) (ST1,2,3,5, ST1,2,3,5) δ

By considering the loops in the orbit G.δ that lift to the path from

(1, 1)→ (e1e2, e1e2)→ (e1e2e3e5, e1e2e3e5)
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in G̃ we see that g and f cannot be homotopic, so [g] and [ f ] are distinct elements
in π1(G.δ, δ).

8. Final remarks on the general case

Determining the first homotopy group for the orbits in the more general case, when
the representative element d in the cross-section contains eigenvalues with multi-
plicities greater than 1, does not lend itself to such direct construction since the
map G→ G.d is not a covering map.
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