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Some results on the size of sum and product sets
of finite sets of real numbers

Derrick Hart and Alexander Niziolek

(Communicated by Andrew Granville)

Let A and B be finite subsets of positive real numbers. Solymosi gave the sum-
product estimate max(|A+ A|, |A · A|)≥ (4dlog |A|e)−1/3

|A|4/3, where d e is the
ceiling function. We use a variant of his argument to give the bound

max(|A+ B|, |A · B|)≥ (4dlog |A|edlog |B|e)−1/3
|A|2/3 |B|2/3.

(This isn’t quite a generalization since the logarithmic losses are worse here than
in Solymosi’s bound.)

Suppose that A is a finite subset of real numbers. We show that there exists
an a ∈ A such that |a A+ A| ≥ c|A|4/3 for some absolute constant c.

1. Introduction

Given finite subsets A and B of an additive group, the sum set of A and B is

A+ B = {a+ b : a ∈ A, b ∈ B}.

Similarly, define the product set by

A · B = {ab : a ∈ A, b ∈ B}.

If M and N are numbers (depending on A and B) we write M & N to mean that
M ≥ cN for some constant c > 0 (independent of A and B). We write M ≈ N to
mean that cN ≤ M ≤ c′N for c, c′ > 0.

Suppose that A = B is an arithmetic progression. Then

|A+ A|. |A| and |A · A|& |A|2−δ,

where here and throughout δ→ 0 as |A| →∞ and | · | denotes the size of the set.
In contrast, if A = B is a geometric progression then

|A+ A|& |A|2 and |A · A|. |A|.
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These examples led Erdős and Szemerédi [1983] to ask whether both the product
set and sum set can be small at the same time. They conjectured that it is not
possible in the following sense.

Conjecture 1. Let A be a finite subset of Z. Then

max(|A+ A|, |A · A|)≥ |A|2−δ.

They showed that
max(|A+ A|, |A · A|)≥ |A|1+ε,

for a positive ε.
The explicit bound ε ≥ 1

31 was given by Nathanson [1997], and ε ≥ 1
15 by Ford

[1998]. A breakthrough was achieved by Elekes [1997], who connected the prob-
lem to incidence geometry and applied the Szemerédi–Trotter incidence theorem
to obtain ε ≥ 1

4 . This was improved by Solymosi [2005] to ε ≥ 3
14 − δ. These

bounds hold in the more general context of finite subsets of R.
Recently, by a short and ingenious argument it was shown by Solymosi [2009]

that ε ≥ 1
3 − δ. In Section 3 we mimic Solymosi’s argument with a few changes to

give an analogous estimate for sums and products of different sets.
Given the strong relationship between sums and products one may ask a related

question: how large is the set A · B +C guaranteed to be? Elekes (see [Alon and
Spencer 2000]) showed that |A·B+C |&

√
|A| |B| |C |with certain size restrictions

on the three sets. His argument relied on the aforementioned Szeremedi–Trotter
incidence theorem and is short enough to present in the next few lines.

Let P be a set of points in R2 and L a set of lines. We say a point p ∈ P is
incident to a line l ∈ L if p lies on l. In this case, we denote this incidence by
(p, l) ∈ P × L .

Theorem 2 [Szemerédi and Trotter 1983]. Let IP,L denote the number of inci-
dences between P and L. Then bound

IP,L . |P|2/3 |L|2/3+ |P| + |L|.

Let L = {y = ax + c : a ∈ A, c ∈ C} and P = B × A · B +C . Clearly, given
any a ∈ A, b ∈ B, c ∈ C , the point (b, ab+ c) is incident to the line y = ax + c.
Therefore, by Szemeredi–Trotter, |A| |B| |C |. |A|2/3 |B|2/3 |C |2/3 |A · B+C |2/3.

In the context of Fq , the finite field containing q elements, similar questions
have been explored as well. Bourgain [2005] showed that for A ⊆ Fq such that
|A| & q3/4, one has A · A + A · A + A · A = Fq ; in particular, if |A| ≈ q3/4,
then |A · A+ A · A+ A · A| & |A|4/3. In [Hart and Iosevich 2008] it was shown
that if |A| & q3/4, then A · A + A · A = F∗q ; in particular, if |A| ≈ q3/4, then
|A · A + A · A| & |A|4/3. Due to the misbehavior of the zero element, it is not
possible to guarantee that A · A+ A · A = Fq unless A is a positive proportion of
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the elements of Fq . Under the weaker conclusion that |A · A + A · A| & q it is
shown in the same paper that one may take |A|& q2/3. Shparlinski [2008] applied
multiplicative character sums to show that if |A| & q2/3, then |A · A + A| & q ,
implying that if |A| ≈ q2/3, then |A · A+ A|& |A|3/2.

Theorem 3 [Chapman et al. 2009, Theorem 2.10]. Let A be a subset of F∗q . Then

|A|−1
∑
a∈A

|a A+ A|&min(q, |A|3q−1).

In particular, if |A| ≈ q2/3, there exists a subset A′ of A with |A′|& |A| such that

|a A+ A|& |A|3/2 ≈ q,

for all a ∈ A′.

It is natural to ask whether a similar statement holds in the case that A is a finite
subset of the real numbers. We show that this is in fact the case in Section 4.

2. Statement of results

Define the multiplicative energy of the finite subsets A, B,C, D of real numbers
by

E(A, B,C, D)=
∣∣{(x1, x2, y1, y2) ∈ A× B×C × D : x1 y2 = x2 y1

}∣∣.
For A, B finite subsets of positive real numbers with |A| ≤ |B|, the argument of
[Solymosi 2009] gives the bound

E(A, B, A, B)≤ 4dlog |A|e |A+ A| |B+ B|. (2-1)

A short Cauchy–Schwarz argument gives that E(A, B, A, B) ≥ |A|2|B|2/|A · B|,
which in turn gives the sum-product inequality

|A|2|B|2 ≤ 4dlog |A| e|A+ A| |B+ B| |A · B|. (2-2)

In the case that A = B, this immediately implies the Solymosi sum-product
bound discussed in the introduction:

max(|A+ A|, |A · A|)≥ (4dlog |A|e)−1/3
|A|4/3. (2-3)

We will use a slight variant of the argument of Solymosi to give a different
bound on the multiplicative energy:

Theorem 4. Let A, B,C, D be finite subsets of positive real numbers. Then

E(A, B,C, D)≤ 4dlog(min(|A|, |C |))edlog(min(|B|, |D|))e|A+ B| |C + D|.
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(Notice that the logarithmic loss is worse than what was obtained by Solymosi.)
Using the fact that E(A, B, A, B) ≥ |A|2|B|2/|A · B|, we obtain the following

sum-product estimate.

Corollary 5. Let A, B be finite subsets of positive real numbers. Then

max(|A+ B|, |A · B|)≥ (4dlog |A|edlog |B|e)−1/3
|A|2/3 |B|2/3. (2-4)

One may compare this to the result of applying Plünnecke’s inequality to (2-2):

max(|A+ B|, |A · B|)≥ (4dlog |A|e)−1/5
|A|3/5 |B|3/5. (2-5)

We will also show this:

Theorem 6. Let A, B,C be finite subsets of R such that |B|1/2 |C |−1/2 . |A| .
|B|2|C |. Then

|A|−1
∑
a∈A

|aB+C |& |A|1/3 |B|1/3 |C |2/3. (2-6)

In particular, there exists an a ∈ A such that

|aB+C |& |A|1/3 |B|1/3 |C |2/3. (2-7)

3. Proof of Theorem 4

We begin by writing

E(A, B,C, D)=
∑

x1 y2=x2 y1

A(x1)B(x2)C(y1)D(y2)

=

∑
t 6=0

∑
x1=t x2
y1=t y2

(A×C)(x1, y1)(B×D)(x2, y2),

where A( · ) denotes the characteristic function of the set A and × denotes the
Cartesian product. Summing in t we have

E(A, B,C, D)=
∑

y∈(B×D)

|(A×C)∩ lm y |,

where lm y is the line through the origin and the point y with slope m y . Each
y ∈ (B×D) lies on some line lm y with m y ∈ D · B−1

= {db−1
: d ∈ D, b ∈ B}.

Since the quantity |(A×C)∩ lm y | is constant and nonzero for each y on lm y with
slope m y in C · A−1, we have

E(A, B,C, D)=
∑
m∈M

|(A×C)∩ lm | |(B×D)∩ lm |,
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where M = C · A−1
∩ D · B−1. We then take a dyadic decomposition

E(A, B,C, D)=
∑∑

0≤i≤dlog(min(|A|,|C |))e
0≤ j≤dlog(min(|B|,|D|))e

∑
m∈Mi, j

|(A×C)∩ lm | |(B×D)∩ lm |,

where Mi, j = {m ∈ M : 2i
≤ |(A×C)∩ lm | < 2i+1, 2 j

≤ |(B×D)∩ lm | < 2 j+1
}.

Therefore, for some i ′ and j ′,

E(A, B,C, D)
dlog(min(|A|, |C |))edlog(min(|B|, |D|))e

≤

∑
m∈Mi ′, j ′

|(A×C)∩ lm | |(B×D)∩ lm |.

Set n = |Mi ′, j ′ | and order the elements of Mi ′, j ′ : m1 < m2 < . . . < mn . This gives

E(A, B,C, D)
dlog(min(|A|, |C |))edlog(min(|B|, |D|))e

≤ 4n2i ′+ j ′ .

Given that |(A×C)∩lml+(B×D)∩lml+1 | = |(A×C)∩lml | |(B×D)∩lml+1 |, noting
that any two sum sets (A×C)∩lml+(B×D)∩lml+1 and (A×C)∩lmk+(B×D)∩lmk+1

are disjoint for any l 6= k gives

n2i ′+ j ′
≤

∣∣∣∣ n⋃
l=1

((A×C)∩ lml + (B×D)∩ lml+1)

∣∣∣∣≤ |A+ B| |C + D|.

Here, in an abuse of notation, (B×D) ∩ lmn+1 is the orthogonal projection of
(B×D) ∩ lmn onto the vertical line running through the minimal element of B.
We may without loss of generality assume that the minimal element of B is also
the minimal element of A∪ B.

4. Proof of Theorem 6

We will need a lemma, whose proof we will delay until the end of the section.

Lemma 7. Let A, B,C be finite subsets of R such that |B|1/2 |C |−1/2 . |A| .
|B|2 |C |. Then∣∣{(a, b, c, d, e) ∈ A× B×C × B×C : ab+ c = ad + e

}∣∣. |A|2/3 |B|5/3 |C |4/3.
With this lemma in hand one may then apply the Cauchy–Schwarz inequality:

|A| |B|2 |C |2 = |A|−1
( ∑

t∈aB+C
a∈A

∑
ab+c=t

B(b)C(c)
)2

≤

(
|A|−1

∑
a∈A

|aB+C |
) ∑

t∈aB+C
a∈A

( ∑
ab+c=t

B(b)C(c)
)2

.



608 DERRICK HART AND ALEXANDER NIZIOLEK

Noting that∑
t∈aB+C

a∈A

( ∑
ab+c=t

B(b)C(c)
)2

=
∣∣{(a, b, c, d, e) ∈ A× B×C × B×C : ab+ c = ad + e

}∣∣
completes the proof of Theorem 6.

Proof of Lemma 7. We will apply the Szemerédi–Trotter incidence theorem. For
a fixed b ∈ B, consider the set of lines Lb = {y = (b− d)x + c : c ∈ C, d ∈ B}.
Also consider the set of points P = {(a, e) ∈ (A×C)}. Then |{(a, b, c, d, e) ∈
A×B×C×B×C :ab+c=ad+e}|≤ |B|maxb∈B IP,Lb .Noting that |Lb|= |B| |C |
and |P| = |A| |C | and applying the Szemerédi–Trotter theorem gives∣∣{(a, b, c, d, e) ∈ A× B×C × B×C : ab+ c = ad + e

}∣∣. |A|2/3 |B|5/3 |C |4/3,
as long as |B|1/2 |C |−1/2 . |A|. |B|2|C |. �

5. Remarks

The argument of Elekes [1997] actually gives a more general bound for finite sub-
sets A, B,C of positive real numbers:

max(|A+ B|, |A ·C |)& |A|3/4 |B|1/4 |C |1/4.

A direct application of Plünnecke’s inequality [Tao and Vu 2006, Corollary 6.26]
to (2-3) gives

max(|A+ B|, |A ·C |)≥ (4dlog |A|e)−1/6
|A|2/3 |B|1/3 |C |1/6.

This bound is preferable if |B| is much larger than |A| |C |. We do not currently
know of a way to use Solymosi’s argument to obtain an improved bound for the
case that the three sets are close together in size.
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