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A specific rectangular array of lattice points is investigated. We say that the array
is weakly visible from a lattice point not in the array if no point in the array lies
on the line connecting the external point to any other point in the array. A lower
bound is found for the distance from a weakly viewing point to the array, and a
point of minimal distance is determined for arrays of a specific size. A secondary
type of visibility is also discussed, and a closest point viewing the array in this
style is completely determined.

1. Introduction

Laison and Schick [2007] describe the situation of a photographer attempting to
photograph every person in a rectangular formation, with all persons, including the
photographer, standing on lattice points. The photos must be taken from a fixed
position and each member of the formation must have a straight-line view of the
photographer, unobstructed by all other persons in the rectangle. They prove that
there are positions for the photographer to stand, but these may be quite a long way
from the formation. How can we minimize this distance?

The problem is turned into one involving lattice points in the plane (the persons
to be photographed forming the rectangle), and such an unobstructed view between
two points is termed weak visibility. Utilizing a result from [Herzog and Stewart
1971], Laison and Schick proceed to investigate a more complicated question:
assume the lattice points outside the formation also form obstructions. They term
this situation being externally visible. In this paper we only consider the simpler
question of weak visibility. We begin in Section 2 with the necessary terminology
and preliminary results. In Section 3 we prove our main results. Section 4 considers
a more specific type of visibility which we call weak integer visibility. Lastly,
natural questions for future research are provided in Section 5.
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2. Definitions and basics

All points are assumed to be lattice points in the first quadrant. Let 1r,s be the r×s
rectangle of points with its lower left corner placed at (1, 1). Say 1r,s is weakly
visible from a point P if no point in 1r,s lies on any line segment connecting P
and any other point in 1r,s . Laison and Schick immediately prove the following
result.

Theorem 2.1 [Laison and Schick 2007]. The points P1 = (rs − s + r, s + 1) and
P2 = (r + 1, rs− r + s) weakly view 1r,s (r, s ∈ Z+).

It turns out that this point may be quite far from 1r,s , with distance being mea-
sured to the point (r, s). In the next section, we will place a lower bound on this
distance dependent upon only the greater dimension of 1r,s .

Notice that if s < r , then the point P1 (of Theorem 2.1) is of closer distance
to 1r,s than P2. If r < s, then P2 is closer to 1r,s . If r = s, then the points are
equidistant from 1r,s . Because of this we will assume s ≤ r for the remainder of
the paper. The following lemma provides maximal and minimal values for certain
calculations.

Lemma 2.2. The lines of maximal (resp. minimal) positive slope passing through
at least two points of 1r,s have slope s− 1 (resp. 1/(r − 1)).

Our last two definitions are the main reference tools for placing bounds on the
visibility distance. Let Adjr,s , the adjacency square to 1r,s , be the square of points
whose corners are the points (r, s), (r, r+s−1), (2r−1, r+s−1), and (2r−1, s).
Define the adjacency flag of slope m, where m = m y/mx , by

AdjF(m)
r,s =

{
(x, y)

∣∣ mx − (m(r −mx)− 1)≤ y ≤ mx − (m(1+mx)− s)
}
.

Intuitively, this is the union of all points between the extremal lines of slope m
passing through at least two points of 1r,s . See Figures 1 and 2.

3. Bounding visibility distance

To begin the search for a point of minimal distance weakly viewing 1r,s , we look
to adjacency flags. For certain values of m, every point in the adjacency flag can
be disregarded.

Lemma 3.1. Suppose that

(1) m ≤ s/2, m ∈ Z+ or (2) 2/r ≤ m, 1/m ∈ Z.

Then every point in AdjF(m)
r,s does not weakly view 1r,s .
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Figure 1. 15,3 and Adj5,3.

Figure 2. 15,4 with a portion of AdjF(1/2)
5,4 .

Proof. We will prove the first case; the second is proven similarly. Suppose m ∈Z+

and m ≤ s/2. Take (x0, y0) ∈ AdjF(m)
r,s . Let L be the line

y− y0 = m(x − x0). (1)

Let (a0, b0) be the point no in 1r,s on L closest to L . First, we claim that there
is a point on L in 1r,s . To prove this, we consider two possibilities:

Case 1: s < b0. Since (a0, b0) /∈1r,s , then 2≤ a0 and b0 ≤ s+m by the choice of
(a0, b0). Thus, since m ∈ Z+, (a0− 1, b0−m) ∈1r,s .
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Case 2: b0 ≤ s. Since m ∈ Z+, we must have a0 = r + 1. We need only show
1≤ b0−m ≤ s. We know b0−m ≤ s and since (a0, b0) ∈ AdjF(m)

r,s , we have:

ma0−mr +m+ 1≤ bo, (2)

ma0−mr + 1≤ b0−m, (3)

m(a0− r)+ 1≤ b0−m, (4)

1≤ b0−m. (5)

Line (5) of the derivation follows from r < a0. Both cases are proven, showing
that there is indeed a point on L in 1r,s . To finish the proof, we show that if
(a, b) ∈1r,s ∩ AdjF(m)

r,s , then either (a+1, b+m) or (a−1, b−m) ∈1r,s . There
are three cases to consider: a = 1, a = r , and 1 < a < r .

If a = 1, then b ≤ s −m, giving (a + 1, b+m) ∈ 1r,s . If a = r , then m ≤ b,
yielding (a− 1, b−m) ∈1r,s . If 1 < a < r but (a− 1, b−m) /∈1r,s , then

b−m ≤ 0, b ≤ m, b+m ≤ s.

Thus, (a+1, b+m) ∈1r,s . Together with the first claim this shows that there are
two points in 1r,s on L . Hence, (x0, y0) does not weakly view 1r,s . �

Though it may seem restricted in its usefulness, this lemma is the main tool
in proving our main result, Theorem 3.2. To prove it, we need one additional
definition. Notice that the flag AdjF(1)

r,s partitions Adjr,s into two regions: those
points that lie in AdjF(1)

r,s and those that do not. We will refer to those points of
Adjr,s not in AdjF(1)

r,s as the lower triangle of Adjr,s , denoted AdjLT
r,s . In particular,

it is the triangle of points whose vertices are (s+r, s), (2r−1, s), and (2r−1, r).

Theorem 3.2. For r, s > 1, no point in Adjr,s weakly views 1r,s .

Proof. First note that no point on y= s weakly views 1r,s . Via the following claims
we will show the remainder of AdjLT

r,s is contained in the union of adjacency flags
satisfying the hypotheses of Lemma 3.1 (in the case of s = 2 we will need one
additional observation).

Claim 1. The upper edge of AdjLT
r,s is fully contained in Adj1/2

r,s .

The upper and lower boundaries of Adj1/2
r,s are, respectively,

y = 1
2 x − 3

2 + s (6)

and
y = 1

2 x − 1
2r. (7)

Line (6) intersects x = 2r − 1 at (2r − 1, r + s − 2). Thus, the upper corner of
AdjLT

r,s (the point (2r − 1, r)) lies within AdjF(1/2)
r,s . The line

y = x − r + 1 (8)
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forms the upper boundary of AdjLT
r,s and it intersects (7) at x = r − 2, which is to

the left of (r + s, s+ 1). Therefore Claim 1 holds.

Claim 2. The lower edge of AdjLT
r,s is fully contained in AdjF(2/r)

r,s (s ≥ 3).

As in Claim 1, the segment connecting

(s+ r, s+ 1) and (2r − 1, s+ 1)

(the lower edge of AdjLT
r,s satisfying y > s) lies on or between the lines forming the

boundary of AdjF(2/r)
r,s . The details are left to the reader.

Claim 3. AdjLT
r,s ⊆

⋃
m

AdjF(1/m)
r,s (2≤ m ≤ r/2).

Due to the previous two claims, it is necessary only to consider

AdjF(1/n)
r,s ∩ AdjF(1/(n+1))

r,s .

The upper boundaries of these flags intersect at (1, s−1) while the lower boundaries
intersect at (r, 2). We need only show the intersection of the lower boundary of
AdjF(1/n)

r,s and the upper boundary of AdjF(1/(n+1))
r,s occurs at or to the right of x =

2r − 1, the right edge of AdjLT
r,s . This intersection occurs at

x = (n+ 1)r − 3n(n+ 1)− n+ sn(n+ 1). (9)

For s = 3,

2r−1 < 5
2r+1≤ 3r−n ≤ (n+1)r−n = (s−3)n(n+1)−n+r(n+1),

while for s ≥ 4, both

−1 < (s− 3)n(n+ 1− n) and 2r < (n+ 1)r. (10)

For s = 2, the lower edge of AdjF(2/r)
r,s intersects x = 2r − 1 at y = 4, leaving

numerous points of AdjLT
r,s (those with y= 3) unaccounted for in the above claims.

However, consider the points (x, 3) (r ≤ x ≤ 2r − 1). Take the line through (x, 3)

and (r, 2). This line also passes through (2r − x, 1), which lies in 1r,s . Moreover,
the overlapping flags of Claim 3 contain all (x, y) of AdjLT

r,s when y ≥ 4.
In all cases, we have shown that Claim 3 holds; that is,

AdjLT
r,s ⊆

⋃
m

AdjF(1/m)
r,s (2≤ m ≤ r/2).

Since r ≥ s, we know

Adjr,s −(AdjLT
r,s ∪(2r − 1, s))⊆ AdjF(1)

r,s . (11)

Because (2r − 1, s) lies on x = 2r − 1 and s ≥ 2, the result holds. �
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Considering that every point in the adjacency square does not weakly view 1r,s ,
we place a lower bound on the distance any point weakly viewing 1r,s must be
from our 1r,s :

Corollary 3.3. If a point P weakly views 1r,s , then P is at least
√

r2+ 1 units
away from 1r,s .

Proof. The closest possible P would be (2r, s + 1), which is of distance
√

r2+ 1
from 1r,s . �

We conclude our discussion on weak visibility with a complete determination
of the specific case s = 2. This result is an improvement upon the initial point P1

of in Theorem 2.1.

Corollary 3.4. A point of minimal distance from 1r,2 weakly viewing 1r,2 is (2r,3),
for r ≥ 2.

Proof. The point P = (2r, 3) lies below the line of minimal slope (from Lemma
2.2) passing through at least two points of 1r,s and P realizes the lower bound of
Corollary 3.3. �

4. Weak integer visibility

Lemma 3.1 induces a different though significantly weaker version of viewing 1r,s .
Let m ∈ Z. Say a point P weakly integer views 1r,s if no line of slope m or 1/m
passes through P and two or more points of 1r,s . The original question of weak
visibility can now be posed in terms of weak integer visibility and its solution is
completely determined. We begin by considering adjacency flags of integral (resp.
integer reciprocal) slopes. Lemma 4.1 is a generalization of Claim 3 in the proof
of Theorem 3.2. Its computational proof is left to the reader.

Lemma 4.1. Let n ∈ Z+.

(1) The upper boundary of AdjF(n)
r,s and the lower boundary of AdjF(n+1)

r,s intersect
at ((r − 3)n+ r + s− 2, (r − 3)n2

+ (r + s− 4)n+ s).

(2) The lower boundary of AdjF(1/n)
r,s and the upper boundary of AdjF(1/(n+1))

r,s
intersect at ((s− 3)n2

+ (s+ r − 4)n+ r, (s− 3)n+ s+ r − 2).

Each pair of adjacency flags creates a region of lattice points that weakly integer
views 1r,s : all points that are both below the higher sloped flag and above the lower
sloped flag. Within each region there is a point closest to 1r,s weakly integer
viewing 1r,s , as described below. By comparing these points, we can find the
point of minimal distance weakly integer viewing 1r,s .

Notice where Lemma 4.1 places the intersection of flags of slopes n and n+ 1,
and of those of slopes 1/n and 1/(n+1). For fixed values of r and s, the coordinate
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functions of the intersection point are strictly increasing with respect to n. Within
these regions of points weakly integer viewing 1r,s there is a point closest to 1r,s .

Lemma 4.2. Let n ∈ Z.

(1) The point of minimal distance to 1r,s between the upper boundary of AdjF(n)
r,s

and the lower boundary of AdjF(n+1)
r,s is(

(r − 3)n+ r + s, (r − 3)n2
+ (r + s− 2)n+ s+ 1

)
. (12)

(2) The point of minimal distance to 1r,s between the lower boundary of AdjF(1/n)
r,s

and the upper boundary of AdjF(1/(n+1))
r,s is(

(s− 3)n2
+ (s+ r − 2)n+ r, (s− 3)n+ s+ r

)
. (13)

Proof. Suppose two lines L1 and L2 of positive integral slopes n and n+1, respec-
tively, intersect at (a, b). In the positive direction, the next lattice points to lie on L1

and L2 are (a+1, b+n) and (a+1, b+n+1). The triangle created by these two
points and (a, b) contains no lattice points on its interior or its boundary (other
than its vertices). Similarly, the quadrilateral whose vertices are (a + 1, b + n),
(a+1, b+n+1), (a+2, b+2n), and (a+2, b+2n+2) contains no lattice points
on its interior. However, there is a single nonvertex lattice point on its exterior:
(a+ 2, b+ 2n+ 1).

The second case follows mutatis mutandis. �

With regards to the comments preceding Lemma 4.2, to prove the following
theorem we need only consider the two pairs of flags of slopes 1 and 2 and slopes
1 and 1/2.

Theorem 4.3. The point of minimal distance weakly integer viewing 1r,s is

(2(r + s)− 4, r + 2s− 3).

Proof. Consider the two points weakly integer viewing 1r,s in the regions formed
by the pair AdjF(1)

r,s and AdjF(2)
r,s and by the pair AdjF(1)

r,s and AdjF(1/2)
r,s . We assume

s < r . Because of this, the point of Lemma 4.2 falling between the flags of slope
1 and 1/2 is nearer to 1r,s . Moreover, this point is closer to 1r,s than the nearest
point found outside the boundaries of considered flags, the point of Theorem 2.1:
(rs− s+ r, s+ 1). �

5. Further questions

The foremost natural question is still that posed in [Laison and Schick 2007]: is
there a formula dependent only upon r and s giving the point closest to 1r,s weakly
viewing 1r,s? If not, how strong can the bounds be made? The flags mentioned
can be broken into two types: integral (or reciprocal of) and fractional slopes. We
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did not discuss fractional sloped flags at all, but a deeper discussion of them may
lead to more precise answers.

In terms of the original question, what if the formation is not rectangular? What
can be said about triangular, pentagonal, or other simple geometric shapes? An-
other way of making the situation more realistic is by considering each lattice point
to have some sort of weight attached to it.

Finally, following Laison and Schick’s thoughts, what happens when we at-
tempt to weakly view similar structures in higher dimensions? The problem be-
comes much more realistic by attaching weight functions corresponding to persons’
heights to lattice points on the xy-plane in R3.
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