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We investigate the Gram determinant of the pairing arising from curves in a
planar surface, with a focus on the disk with two holes. We prove that the
determinant based on n − 1 curves divides the determinant based on n curves.
Motivated by the work on Gram determinants based on curves in a disk and
curves in an annulus (Temperley–Lieb algebra of type A and B, respectively),
we calculate several examples of the Gram determinant based on curves in a disk
with two holes, and advance conjectures on the complete factorization of Gram
determinants.

1. Introduction

Gram matrices and Gram determinants. Let B be a finite set and R a commutative
ring. A pairing over B is a map B × B → R, denoted by 〈 · , · 〉. A very simple
case is the Kronecker delta,

〈i, j〉 = δi j :=

{
1 if i = j,
0 if i 6= j,

for i, j ∈ B.

Let b1, . . . , bn be a list of the elements of B, with bi 6= b j if i 6= j . The Gram
matrix of the pairing 〈 · , · 〉 is the n× n matrix

G = [〈bi , bj 〉]1≤i, j≤n,

and the Gram determinant is the determinant of this matrix.
The name is derived from the classical case where R is a field, B = {b1, . . . , bn}

is a set of points in a vector space V over R, and the pairing is given by an inner
product 〈 · , · 〉 on V . This situation is familiar; for instance, B is an orthonormal
basis of V if and only if V has dimension n and the pairing coincides with the
Kronecker delta described above.
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The Gram determinant plays a significant role in the classical case; for example,
a set of vectors B = {b1, . . . , bn} ⊂ V is linearly independent if and only if the
Gram determinant of B is nonzero.

In our situation B will be a certain set of equivalence classes arising from sets of
curves on a disk with holes. The ring R is a polynomial ring in many variables, and
the pairing describes the interaction between the sets of curves when two copies
of the disk are glued along their outer boundaries.1

The Gram matrix for a system of plane curves. Let Fn
0 be a unit disk with 2n

points on its boundary. Let Bn
0 be the set of all possible diagrams, up to deforma-

tion, in Fn
0 with n noncrossing chords connecting these 2n points. It is known that

|Bn
0 | is equal to the n-th Catalan number Cn :=

(2n
n

)
/(n+1); see [Stanley 1999],

for example. Accordingly, we will call Bn
0 the set of Catalan states.

Consider the following generalized setup. Let Fk ⊂ D2 be a plane surface with
k+1 boundary components, which are given distinct labels. In particular, F0= D2,
and for k ≥ 1, Fk is equal to D2 with k holes. Let Fn

k be Fk with 2n points,
a0, . . . , a2n−1, arranged counterclockwise along the outer boundary; see Figure 1,
left. Throughout this paper, we use ak and ak−1 to denote two adjacent points along
the outer boundary, where k is taken modulo 2n.

Let Bn
k be the set of all possible diagrams, up to equivalence, in Fn

k with n
noncrossing chords connecting these 2n points, where equivalence is defined as
follows: for each diagram b ∈ Bn

k , there is a corresponding diagram γ(b) ∈ Bn
0

obtained by filling the k holes in b. We call γ(b) the underlying Catalan state of b
(see Figure 1, right).

Figure 1. Left: notational conventions for Fn
k . Right: action of γ.

1A pairing over B extends to a bilinear form on the free R-module over B; this form is similar
to the inner product on a vector space. Note, however, that the inner product over a complex vector
space is linear in the first variable only, and conjugate-linear in the second; additionally, it is positive
definite and conjugate-symmetric (skew-symmetric). The corresponding bilinear form in the more
general setting need not be positive definite, symmetric, or conjugate-symmetric, although we will
see echos of these properties in our situation.
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Figure 2. List of diagrams in B2
= B2

2 .

A given diagram in Fn
k partitions Fk into n + 1 regions. Two diagrams are

equivalent if and only if they have the same underlying Catalan state and the labeled
holes are distributed in the same manner across regions. Accordingly, Bn

k has
elements (n+ 1)k−1

(2n
n

)
. See Figure 2 for the 18 diagrams in B2

2 .
We remark that if k = 0 or k = 1, two diagrams are equivalent only if they are

homotopic, but for k > 2, this need not be true; see Figure 3 for a counterexample.
The study of noncrossing partitions of n points has a long history in enumera-

tive combinatorics. Beyond purely combinatorial questions, noncrossing partitions
arise in the study of a number of problems lying at the intersection of combina-
torics and topology. Lickorish examines the matrix of a bilinear form defined
on noncrossing planar diagrams in a disk, motivated by the theory of 3-manifold
invariants. Motivated by the work of Birkhoff and Lewis [1946] on the four color
conjecture, Tutte [1991] introduced the matrix of chromatic joins.

In this paper, we define a pairing over Bn
k and investigate the Gram matrix of the

pairing. This concept is a generalization of a problem posed by W. B. R. Lickorish
[1991; 1997] for type A Gram determinants — those based on a disk, i.e., k = 0 —

Figure 3. Two nonisotopic but equivalent diagrams in F2
2 ; they

correspond to the same state in B2.
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and by Rodica Simion for type B Gram determinants [Schmidt 2004; Simion 2000]
(these are related to k = 1 and the Kauffman bracket skein module of an annulus;
see [Przytycki 1999]). Simion was motivated by Tutte’s work [1991; 1993] on
chromatic joins; see also [Chen and Przytycki 2008].

Significant research has been completed for the Gram determinants for type A
and B. In particular, Di Francesco [1998] and Westbury [1995] gave a closed
formula for the type A Gram determinant; a complete factorization of the type B
Gram determinant was conjectured by Gefry Barad, and a closed formula (quoted
in Theorem 7.4) was proved by Martin and Saleur [1993] and by Chen and Przy-
tycki [2009]. The type A Gram determinant was used by Lickorish to find an ele-
mentary construction of Reshetikhin–Turaev–Witten invariants of oriented closed
3-manifolds.

We specifically investigate the Gram determinant Gn of the bilinear form defined
over Bn

2 and prove that det Gn−1 divides det Gn for n> 1. Furthermore, we investi-
gate the diagonal entries of Gn and give a method for computing terms of maximal
degree in det Gn . We conclude the paper by briefly discussing generalizations of
the Gram determinant and presenting some open questions.

2. Definitions and basic facts for Bn
2

Consider Fn
2 , a unit disk with two holes, along with 2n points along the outer

boundary. Denote the holes in Fn
2 by X1 and Y1. To differentiate between them,

we will always place X1 to the left and Y1 to the right if labels are not present.
Let

Bn
:= Bn

2 =:
{
b1, . . . , b(n+1)(2n

n )
}

be the set of all possible diagrams with n noncrossing chords connecting these 2n
points, up to equivalence in Fn

2 .
Recall that in complex analysis an inversion (in the unit circle) is the involution

defined on the sphere S2
= C∪∞ by z↔ z/|z|2. Let X2 and Y2 be the inversions

of X1 and Y1, respectively, and let S = {X1, X2, Y1, Y2}. Given bi ∈ Bn , let b∗i
denote the inversion of bi . Given bi , b j ∈ Bn , we glue bi with b∗j along the outer
boundary, respecting the labels of the marked points. Since bi and b j each contains
n noncrossing chords, bi ◦ b∗j can have at most n closed curves. The resulting
diagram, denoted by bi ◦ b∗j , is a set of up to n closed curves in the 2-sphere
S2
= D2

∪ (D2)
∗ with four holes, X1, X2, Y1, Y2. (Since we glued along ∂D2, it is

no longer a boundary.) Each closed curve partitions the set S into two sets. Two
closed curves are of the same type if they partition S the same way.
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We define a pairing 〈 · , · 〉 over Bn by associating with bi , b j ∈ Bn a monomial
in the variables d, x1, x2, y1, y2, z1, z2, z3, as follows. The exponent of each vari-
able is obtained by counting the number of curves in bi ◦ b∗j that partition the set
{X1, X2, Y1, Y2} in the corresponding way, the correspondence being this:

x1 : {X1}, {X2,Y1,Y2} z1 : {X1, X2}, {Y1, Y2}

x2 : {X2}, {X1,Y1,Y2} z2 : {X1, Y1}, {X2, Y2}

y1 : {Y1}, {X1, X2,Y2} z3 : {X1, Y2}, {X2, Y1}

y2 : {Y2}, {X1, X2,Y1} d : ∅, {X1, X2,Y1,Y2}

Table 1. Indeterminates and partitions. In the monomial 〈bi , b j 〉,
the exponent of each variable is the number of curves in bi ◦ b∗j
that partition the set {X1, X2, Y1, Y2} in the given way.

Thus 〈bi , b j 〉 is a monomial of degree at most n. Some example paired diagrams,
with their corresponding monomials, are given in Figure 5.

We can now form the Gram matrix Gn = [gi j ] = [〈bi , b j 〉]1≤i, j≤(n+1)(2n
n )

of this
pairing. We write it explicitly for n = 1. Order the elements of B1 as in the first

Figure 4. Diagrams of six states b1, b2, b3, b4, b5, b6 ⊂ B3. The
indices are used in the examples, but are not intrinsic.

〈b2, b4〉= x1 〈b5, b2〉= x1x2 〈b6, b2〉=dz1 〈b1, b3〉= x2

Figure 5. Diagrams for bi ◦b j on S2 and the corresponding values
of 〈bi , b j 〉. Indices are as in Figure 4.
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Figure 6. Array of bi ◦ b∗j for bi , b j ∈ B1.

column of Figure 6 (we’re looking at the disk inside the dotted circle). Then we see
from the array of diagrams in Figure 6, each of which represents one pair (bi , b j ),
that the Gram matrix of the pairing is

G1 =


d y2 x2 z2

y1 z1 z3 x1

x1 z3 z1 y1

z2 x2 y2 d

 .
Therefore the Gram determinant is

det G1 = (dz1− z1z2− dz3+ z2z3− x1x2+ x2 y1+ x1 y2− y1 y2)

(dz1+ z1z2+ dz3+ z2z3− x1x2+ x2 y1− x1 y2+ y1 y2).

This paper is mostly devoted to exploring possible factorizations of det Gn , and
is the first step toward computing det Gn in full generality, which we conjecture to
have a nice decomposition.

Though the pairing (and hence the Gram matrix) is not symmetric, it is skew-
symmetric with respect to an certain involution of the ring R. (An involution is
isomorphism equal to its own inverse.) Specifically, given bi , b j ∈ Bn , we can
obtain b j ◦ b∗i from bi ◦ b∗j by inversion in the unit circle, which interchanges X1

with X2 and Y1 with Y2. Consequently, 〈b j , bi 〉 can be obtained from 〈bi , b j 〉

by interchanging x1 with x2 and y1 with y2, as these interchanges have the same
effect in the corresponding partition (see Table 1) as the hole interchange X1↔ X2,
Y1↔ Y2. Note that z1, z2, z3, and d are mapped to themselves under this variable
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Figure 7. Action of the embedding i0. Note the relabeling of the
boundary points: each ak on the left becomes ak+1 on the right,
and the two new points are labeled a0 and a2n+1.

swap, because their partitions are invariant under the interchange of holes. (See
also Theorem 3.3(4) below.)

To summarize, let ht be the involution of Gn that interchanges x1 with x2 and
y1 with y2. Then

〈bi , b j 〉 = ht(〈b j , bi 〉),

and the transpose of Gn is given by applying ht to each individual entry of Gn .

Embedding Bn in Bn+1. Let i0 : Bn
→ Bn+1 be the embedding (injection) de-

fined as follows: for bi ∈ Bn , the image i0(bi ) ∈ Bn+1 is given by adding to bi a
noncrossing chord close to the outer boundary and joining two points between a0

and a2n−1, as suggested in Figure 7. The two new points on the edge become the
new a0 and a2n+1, and each of the old points ak becomes ak+1. This relabeling
explicitly makes i0(bi ) an element of Bn+1.

Another embedding we will need, denoted by i1 : Bn
→ Bn+1 and illustrated in

Figure 8, is defined by a construction similar to that of i0, but this time the added
chord joins two points between the old a0 and a1, rather than between a0 and a2n−1.
These two new points become a0 and a1, while the old a0 becomes a2n+1 and each
ak , for 1< k < 2n, becomes ak+1.

More formally, we define i1 in terms of i0 by using the notion of a Dehn twist,
borrowed from surface topology and knot theory. Fix an annulus in the complex
plane — the region between two concentric circles, say R′ ≤ |z| ≤ 1. Imagine
keeping the inner boundary circle fixed, while the outer one is rotated clockwise
by an angle α. The stuff in between also gets rotated, by an amount that depends
on how far it is from each circle. The resulting homeomorphism of the annulus is

Figure 8. Action of the embedding i1.
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Figure 9. A Dehn twist rα, with α = π/4.

called a Dehn twist through an angle α. As an explicit formula we can take

rα(z)= z exp
(

iα
|z|−R′

1− R′

)
,

which says the amount of rotation experienced by a point is proportional to the
distance to the inner circle, growing from 0 at |z| = R′ to the full angle α at |z| = 1.
Figure 9 gives a qualitative picture in the case α = π/4.

Now we get back to the disk with two holes, Fn
2 . If we choose R′ close enough

to 1 that the holes X1 and Y1 lie within the circle of radius R′, we can extend rα to
a homeomorphism of Fn

2 by setting rα(z)= z for |z| ≤ R′.
Moreover, if α=π/n, then rα takes each of the 2n marked points ak on the edge

of Fn
2 to the next such point ak+1; consequently, it takes a system of noncrossing

curves in Fn
2 to another such. This defines the action of rπ/n on Bn; it is a permu-

tation because the inverse of a Dehn twist is also a Dehn twist through the opposite
angle.2 The first arrow in Figure 10 illustrates the action of rπ/4−1 on a certain
element of B4, and the last arrow shows the action of rπ/5 on an element of B5.

We can now express i1 in terms of i0 and Dehn twists:

i1 = rπ/(n+1) ◦ i0 ◦ rπ/n
−1.

This is illustrated in Figure 10. Note that the two Dehn twists are not quite inverse
to each other, since their angles differ.

Figure 10. The embedding i1, illustrated in Figure 8, is obtained
from i0 (Figure 7) by composing with appropriate Dehn twists.

2Obviously the repeated application of k Dehn twists through α is a Dehn twist by kα, so any
rkπ/n also induces an action on Bn . Note that the Dehn twist by a full 2π , though it is not the identity
homeomorphism, gives the identity map on Bn ; an example of its action was shown in Figure 3.
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3. More properties of the Gram determinant

Theorem 3.1. det Gn 6= 0 for all integers n ≥ 1.

Lemma 3.2. 〈bi , b j 〉 is a monomial of maximal degree if and only if γ(bi )= γ(b j ).

Proof. Recall that 〈bi , b j 〉 has maximal degree if and only if bi ◦ b∗j has n closed
curves; this in turn is equivalent to having each closed curve made of exactly two
arcs, one in bi and one in b∗j . In this situation, any two points connected by a chord
in bi must also be connected by a chord in b j , so γ(bi )= γ(b j ). �

Proof of Theorem 3.1. Assume 〈bi , b j 〉 is a monomial of maximal degree consisting
only of the variables d and z1. Because γ(bi )=γ(b j ) by Lemma 3.2, it follows that
any two points connected in bi are also connected in b j . Each connection in bi can
be drawn in four different ways with respect to X and Y , since there are two ways
to position the chord relative to each hole. Because 〈bi , b j 〉 is assumed to consist
only of the variables d and z1, it follows that each pair of arcs that form a closed
curve in bi ◦ b∗j either separates {X1, X2} from {Y1, Y2} or has {X1, X2, Y1, Y2} on
the same side of the curve. One can check each of the four cases to see that this
condition implies that any two arcs that form a closed curve in bi ◦ b∗j must be
equal, so bi = b j . Using Laplacian expansion, this implies that the product of the
diagonal of Gn is the unique summand of degree n(n+1)

(2n
n

)
in det Gn consisting

only of the variables d and z1. �

We need the following notation for the next theorem: let f : α1↔ α2 denote a
function f which acts on the entries of Gn by interchanging variables α1 with α2.
We can extend the domain of f to Gn . Let f (Gn) denote the matrix formed by
applying f to all the individual entries of Gn .

Define involutions h1, h2, h3, ht acting on the entries of Gn as follows:

h1 : x1↔ y1 z1↔ z3

h2 : x2↔ y2 z1↔ z3

h3 = h1h2 : x1↔ y1 x2↔ y2

ht : x1↔ x2 y1↔ y2

Theorem 3.3.

(1) det h1(G1)=−det G1, and for n > 1, det h1(Gn)= det Gn .

(2) det h2(G1)=−det G1, and for n > 1, det h2(Gn)= det Gn .

(3) det h3(Gn)= det Gn .

(4) det ht(Gn)= det Gn .

Proof. For assertion (1), note that h1(Gn) corresponds to exchanging the positions
of the holes X1 and Y1 for all bi ∈ Bn . b∗j is unchanged, so h1 can be realized by
a permutation of rows. For states where X1 and Y1 lie in the same region, their
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corresponding rows are unchanged by h1. The number of such states is given by
|Bn
|/(n+1). Thus, the total number of row transpositions is equal to

1
2

(
|Bn
| −
|Bn
|

n+ 1

)
=

n
2

(
2n
n

)
=

n(n+1)
2

Cn.

It is known that Cn is odd if and only if n = 2m
− 1 for some m; see for instance

[Deutsch and Sagan 2006]. Hence, Cn being odd implies that

n(n+ 1)
2

=
2m(2m

− 1)
2

= 2m−1(2m
− 1),

which is even for all m > 1. Thus, h1(Gn) can be obtained from Gn by an even
permutation of rows for n > 1, so det h1(Gn)= det Gn . Similarly, h1(G1) is given
by an odd number of row transpositions on G1, so det h1(G1)=−det G1.

Assertion (2) can be shown using the same argument, except that h2 corresponds
to interchanging the positions of the holes X2 and Y2, rather than X1 and Y1.

Since h3= h1h2, it follows immediately that det h3(Gn)= det Gn for n> 1. The
sum of two odd permutations is even, so the equality also holds for n = 1, which
proves (3). Assertion (4) follows because det ht(Gn)= det tGn = det Gn . �

Theorem 3.4. det Gn is preserved under the following involutions:

g1 : x1↔−x1 x2↔−x2 z2↔−z2 z3↔−z3

g2 : y1↔−y1 y2↔−y2 z2↔−z2 z3↔−z3

g3 : x1↔−x1 y2↔−y2 z1↔−z1 z2↔−z2

g1g2 : x1↔−x1 x2↔−x2 y1↔−y1 y2↔−y2

g1g3 : x2↔−x2 y2↔−y2 z1↔−z1 z3↔−z3

g2g3 : x1↔−x1 y1↔−y1 z1↔−z1 z3↔−z3

g1g2g3 : x2↔−x2 y1↔−y1 z1↔−z1 z2↔−z2

Proof. We first show that g1 can be realized by conjugating the matrix Gn by a
diagonal matrix Pn of all diagonal entries equal to ±1. Define the diagonal entries
of Pn by

pi i = (−1)q(bi ,Fx ),

where q(bi , Fx) is the number of times bi intersects Fx modulo 2; see Figure 11,
where Fx , F∗x , Fy, F∗y and F̃x are defined. Fx and Fy touch the unit circle between
a0 and a2n−1.

This proves the result about g1, because curves corresponding to the variables
x1, x2, z2 and z3 intersect Fx ∪ Fx

∗ in an odd number of points, whereas curves
corresponding to the variables d , z2, y1 and y2 cut it an even number of times.
More precisely, for

gi j = 〈bi , b j 〉 = dnd x1
nx1 x2

nx2 y1
ny1 y2

ny2 z1
nz1 z2

nz2 z3
nz3 ,
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Figure 11. Toward the proof of Theorem 3.4(1).

the entry g′i j of PnGn Pn
−1 satisfies

g′i j = pi i gi j p j j = pi i p j j gi j = (−1)q(bi ,Fx )+q(b j ,Fx )gi j = (−1)nx1+nx2+nz2+nz3 gi j

= dnd (−x1)
nx1 (−x2)

nx2 y1
ny1 y2

ny2 z1
nz1 (−z2)

nz2 (−z3)
nz3 .

The results about g2 and g3 follow by the same argument, but using Fy and
Fy ∪ Fy

∗ for g2 and F̃x and F̃x ∪ Fy
∗ for g3. The statements about compositions

follow directly from the first three. �

4. Terms of maximal degree in det Gn

Theorem 3.1 proves that the product of the diagonal entries of Gn is the unique
term of maximal degree, n(n+1)

(2n
n

)
, in det Gn consisting only of the variables d

and z1. More precisely, the product of the diagonal of Gn is given by

δ(n)=
∏

bi∈Bn

〈bi , bi 〉 = dα(n)zβ(n)1 ,

with α(n)+β(n)= n(n+ 1)
(2n

n

)
. The value of δ(n) for the first few n are

δ(1)= d2z2
1, δ(2)= d20z16

1 , δ(3)= d144z96
1 , δ(4)= d888z512

1 .

Computing the general formula for δ(n) can be reduced to a purely combinato-
rial problem. We conjectured that β(n)= (2n)4n−1 and this was proven by Louis
Shapiro (personal communication, 2008) using an involved generating function
argument. The result is stated formally below.

Theorem 4.1. δ(n)= dn(n+1)(2n
n )−(2n)4n−1

z(2n)4n−1

1 .

Let h(det Gn) denote the truncation of det Gn to terms of maximal degree, that
is, of degree n(n+1)

(2n
n

)
. Each term is a product of (n+1)

(2n
n

)
entries in Gn , each

of which is a monomial of degree n. By Lemma 3.2, 〈bi , b j 〉 has degree n if and
only if bi and b j have the same underlying Catalan state. Divide Bn into subsets
corresponding to underlying Catalan states, that is, into subsets A1, . . . , ACn , such
that for all bi , b j ∈ Ak , γ(bi )= γ(b j ). Then from Lemma 3.2 we have:
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Proposition 4.2. For 1≤ k≤Cn , let Ik be the set of indices such that Ak ={bi }i∈Ik ,
and let 〈Ak, Ak〉 be the submatrix of Gn whose rows and columns are indexed by
Ik . Then

h(det Gn)=

Cn∏
k=1

det〈Ak, Ak〉.

Note that the 〈Ak, Ak〉 are simply blocks in Gn , and their determinants can
be multiplied together to give the highest terms in det Gn . Finding the terms of
maximal degree in det Gn can give insight into the decomposition of det Gn for
large n.

Example 4.3. B1 corresponds to the single Catalan state in B1
0 . Thus, det G1 =

h(det G1), a homogeneous polynomial of degree 4 (given on page 154).

Example 4.4. We can divide B2 into two sets, corresponding to the two Catalan
states in B2

0 . Thus h(det G2) can be found by computing two 9×9 block determi-
nants. The two Catalan states in B2

0 are equivalent up to rotation, so the two block
determinants are equal. Specifically, we have:

h(det G2)= d6(x1x2+ x2 y1+ x1 y2+ y1 y2− dz1− z1z2− dz3− z2z3)
4

(−x1x2+ x2 y1+ x1 y2− y1 y2+ dz1− z1z2− dz3+ z2z3)
4

(−x1x2z1− y1 y2z1+ dz1
2
+ x2 y1z3+ x1 y2z3− dz3

2)2

(−2x1x2 y1 y2+ dx1x2z1+ dy1 y2z1− d2z1
2
+ dx2 y1z3+ dx1 y2z3− d2z3

2)2

= d6det G1
4(−x1x2z1− y1 y2z1+ dz1

2
+ x2 y1z3+ x1 y2z3− dz3

2)2

(−2x1x2 y1 y2+ dx1x2z1+ dy1 y2z1− d2z1
2
+ dx2 y1z3+ dx1 y2z3− d2z3

2)2.

Example 4.5. B3 can be divided into five subsets, corresponding to the five Catalan
states in B3

0 . We can thus find h(det G3) by computing the determinants of five
blocks in B3. The determinant of each block gives a homogeneous polynomial of
degree 240/5= 48. B3

0 forms two equivalence classes up to rotation, so there are
only two unique block determinants. The result is

h(det G3)

= h(det G2)
6det G1

−9d30w3w̄3

= d66(−x1x2+x2 y1+x1 y2−y1 y2+dz1−z1z2−dz3+z2z3)
15

(−x1x2−x2 y1−x1 y2−y1 y2+dz1+z1z2+dz3+z2z3)
15

(−x1x2z1−y1 y2z1+dz2
1+x2 y1z3+x1 y2z3−dz3

2)12

(2x1x2 y1 y2−dx1x2z1−dy1 y2z1+d2z1
2
−dx2 y1z3−dx1 y2z3+d2z3

2)12

(x1x2 y1 y2z1−dx1x2z1
2
−dy1 y2z1

2
+d2z1

3
−x1x2 y1 y2z3+dx2 y1z3

2
+dx1 y2z3

2
−d2z3

3)3

(x1x2 y1 y2z1−dx1x2z2
1−dy1 y2z2

1+d2z1
3
+x1x2 y1 y2z3−dx2 y1z3

2
−dx1 y2z3

2
+d2z3

3)3.
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5. det Gn−1 divides det Gn

We defined in Section 2 the embeddings i0, i1 : Bn
→ Bn+1. We now introduce

inverses of sort for these two maps.
Given bi ∈ Bn , imagine adding to bi a noncrossing chord connecting a0 and

a2n−1 outside the circle, and then pushing this chord inside the circle, together
with the points a0 and a2n−1; see Figure 12. With the removal of these two points
from the boundary, we relabel the remaining ones so the old ak becomes ak−1, for
0 < k < 2n − 1. So now there are 2n − 2 marked points on the boundary; this
establishes a projection Bn

→ Bn−1, with one caveat soon to be discussed. We
denote this projection by p0.

The procedure we’ve described works fine so long as bi does not include a chord
joining a0 and a2n−1. Indeed, if a0 and a2n−1 are connected respectively to a j and
ak in bi , the added exterior chord ends up, in p0(bi ), as part of a chord joining
a j−1 to ak−1 (see again Figure 12). However, a problem arises when bi has a
chord from a0 to a2n−1. In this case, the procedure creates a closed curve inside
the disc, coming from the two chords joining the old a0 to a2n−1, one internal and
one external. One could imagine erasing this loop to obtain an element of Bn−1,
but the loop carries information — it may enclose an arbitrary subset of {X1, Y1}.
So we keep it at present, and we make p0 take values in the set Bn−1 of equivalence
classes of diagrams in Fn−1

2 consisting of n − 1 chords joining marked points on
the boundary together with an optional closed loop disjoint from the boundary.

These observations can be summarized as follows:

Lemma 5.1. An element bi ∈ Bn is taken under p0 : Bn
→ Bn−1 to an element of

Bn−1 if and only if bi contains no chord connecting a0 and a2n−1.

A bit of experimentation will persuade the reader of the correctness of the next
result — which, incidentally, justifies our decision to expand the range of p0 to
include diagrams with a loop.

Proposition 5.2. For any bi ∈ Bn and b j ∈ Bn−1, we have

bi ◦ i0(b j )
∗
= p0(bi ) ◦ b∗j ,

where the equivalence relation implicit in this equality consists of isotopies of the
four-holed sphere, not necessarily preserving the unit disk.

Figure 12. Action of the projection p0.
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We’re gearing up toward a demonstration that the Gram determinant for n − 1
chords divides the Gram determinant for n chords. We need one more lemma.

Lemma 5.3. Fix bi ∈ Bn . There exists an element bα(i) ∈ Bn−1 and a monomial
q ∈ {1, d, x1, y1, z2} such that

〈p0(bi ), b j 〉 = q 〈bα(i), b j 〉 for all b j ∈ Bn−1.

Proof. If p0(bi )∈ Bn−1 we can take bα(i)= p0(bi ) and q= 1. Otherwise, it follows
from Lemma 5.1 that bi contains a chord connecting a0 and a2n−1, and p0(bi ) is
the union of some bα(i) ∈ Bn−1 with a loop enclosing a subset of {X1, Y1}. Let q
be the variable corresponding to the partition of the holes effected by extra loop,
according to Table 1. Then 〈p0(bα(i)), b j 〉 = q 〈bα(i), b j 〉 for any b j . �

For the remainder of the paper we adopt the following notation: if B and B ′ are
subsets of Bn , let

〈B, B ′〉 :=
[
〈bi , b j 〉

]
i : bi∈B
j : b j∈B ′

be the submatrix of Gn whose rows correspond to the elements of B and whose
columns correspond to the elements of B ′.

Theorem 5.4. For n > 1, det Gn−1 divides det Gn .

Proof. We use the easily checked equality (also proved in detail as Lemma 6.1)

〈i0(bi ), i1(b j )〉 = 〈i1(bi ), i0(b j )〉 = 〈bi , b j 〉 for all bi , b j ∈ Bn−1.

In the notation defined before the theorem, this means that 〈bi , Bn−1
〉 (the i-th row

of Gn−1) coincides with the row in the submatrix 〈Bn, i0(Bn−1)〉 of Gn given by
〈i1(bi ), i0(Bn−1)〉.

Reorder the elements of Bn so that 〈i0(Bn−1), i0(Bn−1)〉 forms the upper left
block of Gn and 〈i1(Bn−1), i0(Bn−1)〉 forms a block directly underneath it:

Gn =



〈i0(Bn−1), i0(Bn−1)〉 ∗ ∗ ∗ ∗ ∗

〈i1(Bn−1), i0(Bn−1)〉 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗


=



〈i0(Bn−1), i0(Bn−1)〉 ∗ ∗ ∗ ∗ ∗

Gn−1 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗


.

Lemma 5.3 implies that every row of 〈Bn, i0(Bn−1)〉 is a multiple of some row
in Gn−1. Let j1, . . . , jk denote the indices of all rows of 〈Bn, i0(Bn−1)〉 other
than those in 〈i1(Bn−1), i0(Bn−1)〉. Let G ′n be the matrix obtained by properly
subtracting multiples of rows in 〈i1(Bn−1), i0(Bn−1)〉 from rows j1, . . . , jk of Gn
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so that the submatrix obtained by restricting G ′n to rows j1, . . . , jk and columns
corresponding to states in i0(Bn−1) is equal to 0:

G ′n =



0 ∗ ∗ ∗ ∗ ∗

Gn−1 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗


.

Thus, G ′n restricted to the columns corresponding to states in i0(Bn−1) contains
precisely n

(2n−2
n−1

)
nonzero rows, each equal to some unique row of Gn−1. The

determinant of this submatrix is equal to det Gn−1. Since det Gn−1 divides det G ′n
and det G ′n = det Gn , this completes the proof. �

6. Further relations between det Gn−1 and det Gn

As noted in the previous proof, there is a submatrix of Gn equal to Gn−1. We
will now focus on identifying multiple nonoverlapping submatrices in Gn equal to
multiples of Gn−1. This will help in simplifying the computation of det Gn . We
start with a detailed justification of the first assertion in the proof of Theorem 5.4:

Lemma 6.1. For any bi , b j ∈ Bn−1, 〈i0(bi ), i1(b j )〉 = 〈i1(bi ), i0(b j )〉 = 〈bi , b j 〉.

Proof. We begin with the equality 〈i1(bi ), i0(b j )〉 = 〈bi , b j 〉. By Proposition 5.2,
i1(bi ) ◦ i0(b j )

∗
= p0i1(bi ) ◦ b∗j , so it suffices to prove that

p0i1(bi )= p0rπ/n i0rπ/(n−1)
−1(bi )= bi .

This is demonstrated pictorially in Figure 13.

Figure 13. Proof that p0 B i1 is the identity.
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Thus, 〈i1(bi ), i0(b j )〉 = 〈bi , b j 〉. Recall that 〈bi , b j 〉 = ht(〈b j , bi 〉). From this
and the previous equality, it follows that

〈i0(bi ), i1(b j )〉 = ht(〈i1(b j ), i0(bi )〉)= ht(〈b j , bi 〉)= ht
2(〈bi , b j 〉)= 〈bi , b j 〉. �

Corollary 6.2. 〈i0(Bn−1), i1(Bn−1)〉 = 〈i1(Bn−1), i0(Bn−1)〉 = Gn−1.

Lemma 6.3. For any bi , b j ∈ Bn−1,

〈i0(bi ), i0(b j )〉 = 〈i1(bi ), i1(b j )〉 = d〈bi , b j 〉.

Proof. i0(bi ) ◦ i0(b j )
∗ is composed of bi ◦ b∗j in addition to a chord close to the

boundary glued with its inverse. These two chords form a trivial loop. Thus,
〈i0(bi ), i0(b j )〉 = d〈bi , b j 〉 for all bi , b j ∈ Bn−1.

By symmetry, 〈i1(Bn−1), i1(Bn−1)〉 = dGn−1. �

Corollary 6.4. 〈i0(Bn−1), i0(Bn−1)〉 = 〈i1(Bn−1), i1(Bn−1)〉 = dGn−1.

Using these facts, we can construct from Gn a (|Bn|−2|Bn−1|)×(|Bn|−2|Bn−1|)

matrix whose determinant is equal to

det Gn

(1− d2)n(
2n−2
n−1 )

(det Gn−1)
2.

This allows us to compute det Gn with greater ease, assuming we know det Gn−1.
This process is shown in the next theorem.

Theorem 6.5. There is a nonnegative integer3 k such that, for all integers n > 1,

det Gn−1
2 divides det Gn(1− d2)k .

Proof. Order the elements of Bn (or equivalently, the rows and columns of Gn), as
shown in Theorem 5.4. Apply the procedure from Theorem 5.4 to construct G ′n ,
whose form is roughly

G ′n =



0 (1−d2)Gn−1 ∗ ∗ ∗ ∗

Gn−1 dGn−1 ∗ ∗ ∗ ∗

0
0
0
0

∗

∗

∗

∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗


.

Consider the block in G ′n whose columns correspond to states in i1(Bn−1) and
whose rows correspond to states in neither i0(Bn−1) nor i1(Bn−1) (boxed above).
Every row in this submatrix is a linear combination of two rows from Gn−1. More

3Clearly this integer is bounded above by (n+ 1)
(2n

n
)
, or even better, by |Bn

| − 2|Bn−1
|. Better

bounds are possible, but we do not address them in this paper.
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precisely, each row is of the form a1l1− a2dl2, where l1 and l2 are two rows, not
necessarily distinct, in Gn−1, and a1, a2 ∈ {1, d, x1, y1, z2}. If we assume 1− d2

is invertible in our ring (for example, if we consider a ring of rational functions),
then each row is a linear combination of two rows from (1− d2)Gn−1. We then
simplify G ′n as follows.

Let G ′′n be the matrix obtained by properly subtracting linear combinations of
the first n

(2n−2
n−1

)
rows of G ′n from the rows which correspond to states in neither

i0(Bn−1) nor i1(Bn−1) so that the submatrix obtained by restricting G ′′n to columns
corresponding to states in i1(Bn−1) and rows corresponding to states in neither
i0(Bn−1) nor i1(Bn−1) is equal to 0:

G ′′n =



0 (1− d2)Gn−1 ∗ ∗ ∗ ∗

Gn−1 dGn−1 ∗ ∗ ∗ ∗

0
0
0
0

0
0
0
0

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗


.

The block decomposition so far proves that det G ′′n equals (1−d2)n(
2n−2
n−1 )(det Gn−1)

2

times the determinant of the boxed block, which we denote by Gn . The latter
contains a power of (1− d2)−1, whose degree is unspecified. Thus,

det Gn−1
2 divides det G ′′n(1− d2)k,

for some integer k ≥ 0. We remind the reader that G ′′n is obtained from G ′n via
determinant-preserving operations, and hence det G ′n = det Gn . �

Note that if det Gn has fewer than n
(2n−2

n−1

)
powers of (1− d2)−1, then

det Gn−1
2 divides det Gn.

It remains an open problem as to whether the former is true. For an example of
this decomposition, we mention the equality

det G2 =
det G2

(1− d2)4det G1
2 .

7. Future directions

In this section, we discuss briefly generalizations of the Gram determinant and
present a number of open questions and conjectures.

The case of a disk with k holes. We can generalize our setup by considering Fn
k , a

unit disk with k holes, in addition to 2n points, a0, . . . , a2n−1, arranged in a similar
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way to points in Fn
2 . For bi , b j ∈ Bn

k , let bi◦b∗j be defined in the same way as before.
Each paired diagram bi ◦b∗j consists of up to n closed curves on the 2-sphere with
2k holes. Let S denote the set of all 2k holes. We differentiate between the closed
curves based on how they partition S. We define a bilinear form by counting the
multiplicities of each type of closed curve in the paired diagram. In the case k = 2,
we assigned to each paired diagram a corresponding element in a polynomial ring
of eight variables, each variable representing a type of closed curve. In the general
case, the number of types of closed curves is equal to

2|S|

2
=

22k

2
= 22k−1,

so we can define the Gram matrix of the bilinear form for a disk with k holes
and 2n points with (n+ 1)k−1

(2n
n

)
× (n+ 1)k−1

(2n
n

)
entries, each belonging to a

polynomial ring of 22k−1 variables. We denote this Gram matrix by G Fk
n . For n= 1

and k= 3, we can easily write this 8×8 Gram matrix. For purposes of notation, let
us denote the holes in Fn

0,3 by ∂1, ∂2 and ∂3, and their inversions by ∂−1, ∂−2 and
∂−3, respectively. Hence, each closed curve in the surface encloses some subset
of S= {∂1, ∂−1, ∂2, ∂−2, ∂3, ∂−3}. Let xa1,a2,a3 denote a curve separating the set of
holes {∂a1, ∂a2, ∂a3} from S−{∂a1, ∂a2, ∂a3}. We can similarly define xa1,a2 and xa1 .
The Gram matrix is then

G F3
1 =



d x−3 x−2 x−2,−3 x−1 x−1,−3 x−1,−2 x1,2,3

x3 x3,−3 x−2,3 x1,−1,2 x−1,3 x1,2,−2 x1,2,−3 x1,2

x2 x2,−3 x2,−2 x1,−1,3 x−1,2 x1,−2,3 x1,3,−3 x1,3

x2,3 x1,−1,−2 x1,−1,−3 x1,−1 x1,−2,−3 x1,−2 x1,−3 x1

x1 x1,−3 x1,−2 x1,−2,−3 x1,−1 x1,−1,−3 x1,−1,−2 x2,3

x1,3 x1,3,−3 x1,−2,3 x−1,2 x1,−1,3 x2,−2 x2,−3 x2

x1,2 x1,2,−3 x1,2,−2 x1,−3 x1,−1,2 x−2,3 x3,−3 x3

x1,2,3 x−1,−2 x−1,−3 x−1 x−2,−3 x−2 x−3 d


.

It would be tempting to conjecture that the determinant of the matrix above has
a straightforward decomposition of the form (u + v)(u − v). We found that this
is the case when any two variables of the form xa1 and xa1,a2 are replaced by 0;
explicitly, we have, with a1, a2 ∈ {−3,−2,−1, 1, 2, 3},

det G F3
1 |xa1=xa1,a2=0

=−(d − x1,2,3)(d + x1,2,3)

× (x1,2,−2x1,−1,3x1,−1,−2+ x1,3,−3x1,−1,2x1,−1,−3− x1,2,−3x1,−1,3x1,−1,−3

− x1,−1,−2x1,−1,−2x1,−2,3− x1,2,−2x1,3,−3x1,−2,−3+ x1,2,−3x1,−2,3x1,−2,−3)
2.

In general, however, preliminary calculations suggest that det G F3
n may be an irre-

ducible polynomial.
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Finally, we observe that many of the results we have proved for det G F2
n also

hold for general det G Fk
n . For example, det G Fk

n is nonzero and divides det G Fk+1
n .

In the specific case of det G F3
n , we conjecture that the diagonal term is of the form

δ(n)= dα(n)(x1,−1x2,−2x3,−3)
β(n), where

α(n)+ 3β(n)= n(n+ 1)2
(2n

n

)
and β(n)= n(n+ 1)4n−1.

Speculation on the factorization of det Gn. Section 5 establishes that

det Gn−1 divides det Gn,

but we conjecture that there are many more powers of det Gn−1 in det Gn . Indeed,
even in the base case, det G1

k divides det G2 for k up to 4. Finding the maximal
power of det Gn−1 in det Gn in the general case is an open problem and can be
helpful toward computing the full decomposition of det Gn .

Examining the terms of highest degree in det Gn , that is, h(det Gn) may also
yield helpful hints toward the full decomposition. In particular, we note that

det G1
4 divides h(det G2) and

h(det G2)
6

det G1
9 divides h(det G3).

We can conjecture that (det G2
6)/(det G1

9) divides det G3, from which it fol-
lows that det G1

15 divides det G3. We therefore offer the following conjecture:

Conjecture 7.1. det G1
( 2n

n−1) divides det Gn for n ≥ 1.

The next conjecture is motivated by observations of det G1 and det G2.

Conjecture 7.2. Let Hn denote the product of factors of det Gn not in det Gn−1.
Then Hn−1

2n divides det Gn .

Conjecture 7.3. Let, as before, R = Z[d, x1, x2, y1, y2, z1, z2, z3], and let R1 be
the subgroup of R of elements invariant under h1, h2, ht , and g1, g2, g3. Similarly,
let R2 be the subgroup of R composed of elements w ∈ R such that

h1(w)= h2(w)=−w and ht(w)= g1(w)= g2(w)= g3(w).

Then:

(1) det Gn = u2
− v2, where u ∈ R1 and v ∈ R2.

(2) det Gn =
∏
α(u

2
α−v

2
α), where uα ∈ R1 and vα ∈ R2, and uα−vα and uα+vα

are irreducible polynomials.

(3) det Gn =
∏n

i=1(ui
2
− vi

2)(
2n

n−i), where ui ∈ R1 and vi ∈ R2.

Notice that if w1 = u2
1− v

2
1 and w2 = u2

2− v
2
2 , then

w1w2 = (u1u2+ v1v2)
2
− (u1v2+ u2v1)

2.
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We have little confidence in Conjecture 7.3(3). It is closely, maybe too closely,
influenced by the case of det G F1

n , the Gram determinant of type B:

Theorem 7.4 [Martin and Saleur 1993; Chen and Przytycki 2009].

det G F1
n =

n∏
i=1

(
Ti (d)2− a2)( 2n

n−i) ,

where Ti (d) is the Chebyshev polynomial of the first kind (recursively defined by
T0 = 2, T1 = d, Ti = d Ti−1−Ti−2), and d and a correspond to the trivial and the
nontrivial curves in the annulus F1, respectively.
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