
inv lve
a journal of mathematics

mathematical sciences publishers

Mapping the discrete logarithm
Daniel Cloutier and Joshua Holden

2010 vol. 3, no. 2

INVOLVE 3:2(2010)

Mapping the discrete logarithm
Daniel Cloutier and Joshua Holden

(Communicated by Carl Pomerance)

The discrete logarithm is a problem that surfaces frequently in the field of cryp-
tography as a result of using the transformation x 7→ gx mod n. Analysis of
the security of many cryptographic algorithms depends on the assumption that
it is statistically impossible to distinguish the use of this map from the use of
a randomly chosen map with similar characteristics. This paper focuses on a
prime modulus, p, for which it is shown that the basic structure of the functional
graph produced by this map is largely dependent on an interaction between g
and p− 1. We deal with two of the possible structures, permutations and binary
functional graphs. Estimates exist for the shape of a random permutation, but
similar estimates must be created for the binary functional graphs. Experimental
data suggest that both the permutations and binary functional graphs correspond
well to the theoretical predictions.

1. Introduction

Just a few decades ago, cryptography was considered a domain exclusive to na-
tional governments and militaries. However, the computer explosion has changed
that. Every day, millions of people trust that their privacy will be protected as
they make online purchases or communicate privately with a friend. Many of the
cryptographic algorithms they will use are built upon a common transformation,
namely

x 7→ gx mod n (1)

where gcd(g, n) = 1 and the transformation is considered as a function from
{1, . . . , n−1} to itself. (We will call functions of this form discrete exponentiation
maps.) For instance, Diffie–Hellman key exchange [Diffie and Hellman 1976],
RSA [Rivest et al. 1978], and the Blum–Micali pseudorandom bit generator [Blum
and Micali 1984] all use discrete exponentiation maps. In particular, if n is a prime
and g is a primitive root modulo that prime, then a discrete exponentiation map has

MSC2000: primary 11Y16; secondary 11-04, 94A60, 05A15.
Keywords: discrete logarithm problem, random map, functional graph.
Holden was supported in part by a Rose–Hulman Summer Professional Development Grant during
the summer of 2009.

197

198 DANIEL CLOUTIER AND JOSHUA HOLDEN

an inverse which is known as the discrete logarithm. The security of the Diffie–
Hellman protocol and the Blum–Micali generator both rely on the idea that the
discrete logarithm is difficult to calculate.

Furthermore, the analyses of the security of many algorithms rely on the idea
that not only is calculating the inverse of a discrete exponentiation map difficult,
but in fact that certain properties of discrete exponentiation maps and/or discrete
logarithms cannot be predicted better than a random guess. (It is not known to the
authors who first suggested this general idea; it may be folklore.) For example,
in [Blum and Micali 1984] the cryptographic security of a particular pseudoran-
dom bit generator relies on the hypothesis that a certain property of discrete ex-
ponentiation cannot be predicted better than a random guess. Similarly, [Boneh
1998] shows that if certain statistical properties of the Diffie–Hellman problem
cannot be guessed better than randomly then the Diffie–Hellman protocol can be
made much more efficient than otherwise. This paper will consider some statistics
of maps on {1, . . . , n − 1} such that the expected values of these statistics for a
randomly chosen map in a class containing the discrete exponentiation maps can be
calculated theoretically. We conjecture that the particular values of these statistics
for discrete exponentiation maps will resemble the expected values for the random
maps. Furthermore, we will collect experimental data on discrete exponentiation
maps for various values of g and n and compare them to our expected values to
give evidence for this conjecture.

Some readers might be familiar with other papers that look at the discrete expo-
nentiation map from a statistical point of view, such as [Canetti et al. 2000]. In both
cases n is fixed and “measurements” are taken from a (nonrandom) sample which is
derived from discrete exponentiation maps. The distribution of the measurements
on the sample is then compared with the distribution of measurements taken from
random samples of a certain population. In [Canetti et al. 2000], g is fixed, the
measurements are a specified set of bits from triples of numbers, the sample is
triples of the form (gx , gy, gxy) (with varying x and y), and the population is
all strings of bits. In this paper, the measurements are various graph-theoretic
properties of functional graphs (as defined below). The sample is maps of the
form (1) (with varying g) which have a certain property on their in-degrees and the
population is all functional graphs with that same property.

2. Terminology and background

Throughout this paper, φ denotes the Euler phi function. The letter n will stand
for an odd prime. We will examine mappings

f : S = {1, 2, . . . , p− 1} → S

MAPPING THE DISCRETE LOGARITHM 199

of the form x 7→ gx mod p, where p ≥ 3 is a prime modulus and gcd(g, p) = 1.
In some instances, it will prove to be useful to interpret the mappings as functional
graphs. A functional graph is a directed graph such that each vertex must have
exactly one edge directed out from it. The relationship between the mappings
which interest us and functional graphs is straightforward. Each element in S can
be interpreted as a vertex. The edges are defined such that an edge 〈a, b〉 is in the
graph if and only if f (a)= b.

There are a number of statistics of interest derived from functional graphs; in
particular, Flajolet and Odlyzko — henceforth abbreviated FO — have treated ran-
dom mappings in detail. Following the conventions in [FO 1990b], let f : S→ S be
the transition function so that the edges in the functional graph can be expressed as
the ordered pair 〈x, f (x)〉 for x, f (x) ∈ S. By applying the pigeonhole principle
and noting that the cardinality of S is p − 1 we can say that by starting at any
random point u0 and following the sequence u1 = f (u0), u2 = f (u1), . . . , there
must be a ui = u j after at most p iterations. Suppose ui occurs before u j in the
sequence of nodes. In this case, the tail length is the number of iterations of the
function from u0 to ui . The cycle length is the number of iterations from ui to u j .
In more natural graphical terms, the tail length is the number of edges involved in
the directed path from u0 to ui , and the cycle length is the number of edges (or
equivalently nodes) involved in the directed path from ui to itself. Additionally, a
terminal node is one with no preimage, or more formally, x is a terminal node if
f −1(x)=∅. A node is an image node if it is not a terminal node. Since each node
has an out-degree of exactly one, each cycle with the trees grafted onto its nodes
will form a connected component.

When a functional graph is produced from a discrete exponentiation function,
we will call it a discrete exponentiation functional graph. The value of g plays a
major role in determining the basic structure of discrete exponentiation functional
graphs. In fact, as Theorem 1 formalizes, the interaction between g and p − 1
will effectively fix the in-degrees of the nodes in the graph. First, though, define
an m-ary functional graph to be a graph where each node has in-degree of exactly
zero or m. The proof of the following theorem is then straightforward.

Theorem 1. Let p be fixed and let m be any positive integer that divides p − 1.
Then as g ranges from 1 to p−1, there are φ((p−1)/m) different functional graphs
which are m-ary produced by maps of the form f : x 7→ gx mod p. Furthermore,
if r is any primitive root modulo p, and g ≡ ra mod p, then the values of g that
produce an m-ary graph are precisely those for which gcd(a, p− 1)= m.

Theorem 1 gives a strong indication that the graphs generated by (1) have to
be considered separately for different values of m. It should be noted, though,
that there are some values of m which lead to completely predictable graphs. For

200 DANIEL CLOUTIER AND JOSHUA HOLDEN

instance, there is one (p− 1)-ary graph that corresponds to g ≡ 1 mod p. There
is also one ((p− 1)/2)-ary graph that corresponds to g ≡−1 mod p. In general,
however, an m-ary discrete exponentiation functional graph is not trivially pre-
dictable. This paper will restrict its focus to unary functional graphs (which will
be referred to as permutations since they simply permute the numbers 1, . . . , p−1)
and binary functional graphs. As a consequence of Theorem 1, we can observe that
the values of g which produce a permutation are precisely those which are primitive
roots modulo p, and the values of g which produce a binary functional graph are
precisely those which are the squares of primitive roots modulo p.

In cryptography, it is common to look for primes where p− 1 has at least one
large prime factor. For instance, the pseudorandom bit generator described in [Gen-
naro 2005], which is a modification of the Blum–Micali generator mentioned in
Section 1, specifically requires the modulus to be of the form p = 2q+ 1 where q
is also prime. A prime of this form is known as a safe prime (q is also known as
a Sophie Germain prime). These primes are of interest here not only because of
their extensive use in cryptography, but also because p− 1 has only four divisors,
namely 1, 2, q = (p−1)/2 and 2q = p−1. In addition to the one (p−1)-ary and
one ((p− 1)/2)-ary graph mentioned above, there are φ(q) permutations and φ(q)
binary functional graphs which represent the remaining values of g (since φ(q) is
q − 1). Thus, not only do safe primes provide large numbers of permutations
and binary functional graphs, but every graph generated by a safe prime is either
trivial (the graphs where g is either 1 or −1) or fits into the theoretical framework
presented in Section 3.

We can now present the central conjecture of this paper, which as far as we know
has not been previously considered in this form:1

Conjecture 2. The average values of the following statistics are asymptotically
the same for m-ary discrete exponential functional graphs on n = p−1 nodes and
for random m-ary functional graphs on n nodes as n goes to infinity:

Number of components
Number of tail nodes Number of cyclic nodes
Number of image nodes Number of terminal nodes
Average cycle length Maximum cycle length
Maximum tail length Average tail length

(as seen from a random node) (as seen from a random node)

We are a long way from proving this conjecture but we will give some supporting
evidence for it in the cases of m = 1 and m = 2.

1Pollard [1978] considers functional graphs corresponding to a similar map when analyzing his
kangaroo method. That map takes x 7→ xg f (x) for some pseudorandom function f, however.

MAPPING THE DISCRETE LOGARITHM 201

3. Theoretical results

In Theorem 1, it is shown that the in-degree of each node is dependent on the value
of both g and p. This is clearly imposing a structure on any functional graphs
generated using (1). While most of the parameters that are of interest depend on
the exact graph generated, the number of image nodes can be computed directly
from the values of g and p. The proof is again straightforward.

Theorem 3. The number of image nodes in any m-ary graph is (p− 1)/m.

This fact helps quantify the repercussions of Theorem 1 and the restrictions on
in-degree in m-ary graphs. The number of image nodes is a direct function of
m which can greatly limit the shapes each graph can take on. None of the other
parameters appear to be strictly controlled by m in this fashion.

3.1. Permutations. Predicting the behavior of the permutations is, in many ways,
much easier than other m-ary graphs. The most important reason for this is that
there are no terminal nodes or tail nodes. This follows quickly from the definition
of a permutation as a unary functional graph and the fact that the sum of the in-
degrees must be the same as the sum of the out-degrees. Each node has an out-
degree of exactly one, and if any node were to have an in-degree of zero, then,
by the pigeon-hole principle, at least one node must have an in-degree of more
than one. This is not allowed so each node must have in-degree of exactly one.
Furthermore, since every tail must contain at least one terminal node, this also
implies that every node is cyclic. The parameters that can then be determined from
the definition of a permutation are:

Number of cyclic nodes n Number of tail nodes 0
Number of terminal nodes 0 Number of image nodes n
Average tail length 0 Maximum tail length 0

Theorem 4. The expected values for the number of components, the average cycle
length as seen from a random node and the maximum cycle length in a random
permutation of size n have the following asymptotic forms:

Number of components =
n∑

i=1

1
i
+ o(log n), (i)

Average cycle length =
n+ 1

2
+ o(1), (ii)

Maximum cycle length = n
∫
∞

0

[
1− exp

(
−

∫
∞

v

e−u du
u

)]
dv+ o(n) (iii)

≈ 0.62432965n+ o(n).

202 DANIEL CLOUTIER AND JOSHUA HOLDEN

Parts (i) and part (ii) are fairly well known. Part (iii) seems to have first been
solved in [Shepp and Lloyd 1966]. An alternative solution and proof more similar
to the methods used here is offered in [FO 1990a].

3.2. Binary functional graphs. While estimates for the parameters investigated
here exist in the literature for the random functional graphs and permutations,
it does not appear that estimates for binary functional graphs have ever been all
collected in one place. However, the methods in [FO 1990b] can be extended
to develop these estimates, and some of the following results have appeared in
various places already. Imitating those methods, we first need to convert our ideas
of a binary functional graph into corresponding generating functions. We first note
that a binary functional graph is a set of components. Each component is a cycle
of nodes with each node having an attached binary tree to bring its in-degree to
two. A binary tree is either a node (terminal node) or a node with two binary trees
attached. Finally, a node is simply an atomic unit. A moment’s reflection should
indicate that this natural specification does, in fact, specify a binary functional
graph.2

Imitating the transformations in [FO 1990b, Section 2.1], the generating func-
tions of interest are

f (z)= ec(z)
=

1
1−zb(z)

, (2)

c(z)= ln 1
1−zb(z)

, (3)

b(z)= z+ 1
2

zb2(z). (4)

Here f generates the number of binary functional graphs, c generates the number
of components, and b generates the number of binary trees of a given size. Solving
the quadratic formula for (4), we can produce the following formulas for f and c
which simplify some of the cases:

f (z)= 1
√

1−2z2
, c(z)= ln 1

√
1−2z2

(5)

See also [FO 1990b, (70)] and [Flajolet et al. 1991, Theorem 11].
To compute asymptotic forms of any of the statistics of interest, we must first

compute an asymptotic form for f to normalize results. The following derivations

2In the notation of [FO 1990b]:

BinFunGraph = set(Components),
Component = cycle(Node*BinaryTree),
BinaryTree = Node + Node*set(BinaryTree, cardinality = 2),
Node = Atomic Unit.

MAPPING THE DISCRETE LOGARITHM 203

give only a highlight of the methods used by Flajolet and Odlyzko. The interested
reader is encouraged to see [FO 1990a; 1990b] for detailed proofs.

From the formula for f (z) in (5) it is clear that there is a singularity at z=1/
√

2.
Performing a singularity analysis3 as in [FO 1990b, Section 2], the asymptotic form
for f falls out quickly as

f (z)∼ 2n/2
√
πn/2

. (6)

In at least one case, there are some important second-order interactions between
the error terms of the number of graphs and the appropriate statistic. In these cases,
a more exact form of (6) must be used. Expanding one more term in the expansion
of f gives

f (z)∼ 2n/2
√
πn/2

−
2n/2

4n
√
πn/2

=
2n/2(4n−1)
4n
√
πn/2

. (7)

In most cases, using this more precise expansion of f is not necessary and does
not change the results. Therefore, in all but the necessary cases, (6) will be used.

We begin by deriving the results for the simplest parameters.

Theorem 5. The expected values for the number of components, number of cyclic
nodes, number of tail nodes, number of terminal nodes and number of image nodes
in a random binary functional graph of size n, as n → ∞ have the following
asymptotic forms:

Number of components=
ln (2n)+ γ

2
+ o(1), (i)

Number of cyclic nodes=
√
πn/2− 1+ o(1), (ii)

Number of tail nodes= n−
√
πn/2+ 1+ o(1), (iii)

Number of terminal nodes= n/2, (iv)

Number of image nodes= n/2. (v)

In part (i), γ represents the Euler constant which is approximately 0.57721566.
The results for parts (iv) and (v) can in fact be shown to be exact and not merely
asymptotic. The highlights of the proofs as they differ from those in [FO 1990b]
follow.

Proof. As in [FO 1990b], the following bivariate generating functions need to
be defined with parameter u marking the elements of interest. The generating

3The analyses in this paper have been performed using the computer algebra program Maple
and the packages created as part of the Algorithms Project at INRIA, Rocquencourt, France. The
packages can be found online at http://algo.inria.fr/libraries/#down.

204 DANIEL CLOUTIER AND JOSHUA HOLDEN

functions for the number of components, number of cyclic nodes and number of
terminal nodes are respectively:

ξ1(u, z)= exp
(

u ln 1
1−zb(z)

)
, (8)

ξ2(u, z)= 1
1−uzb(z)

, (9)

ξ3(u, z)= 1
√

1−2uz2
. (10)

(Equation (9) may also be found in [Flajolet et al. 1991, Theorem 11].) Imitating
the methods in [FO 1990b], the mean value generating function, 4(z), is found by
taking the partial derivative of ξ(u, z) with respect to u and evaluating at u = 1.
This yields

41(z)=
1

1− zb(z)
ln

1
1− zb(z)

, (11)

42(z)=
zb(z)

(1− zb(z))2
, (12)

43(z)=
z2

(1− 2z2)3/2
. (13)

The forms in the statement of the theorem follow by expanding around the singu-
larity z = 1/

√
2, applying singularity analysis as in [FO 1990b], and normalizing

parts (i) and (ii) by (6) and (iv) by (7). Parts (iii) and (v) follow from parts (ii)
and (iv) respectively since the respective pairs must sum to n. Also note that
part (iv) can also be derived in an elementary fashion from the definition of the
binary functional graph. �

The asymptotic values for the average length of cycles and tails as seen from
a random point in the graph are also interesting. The asymptotic forms of these
values are given in Theorem 6.

Theorem 6. The expected values for the cycle size and tail length as seen from
a random node in a random binary functional graph of size n have the following
asymptotic forms as n→∞:

Average cycle length =
√
πn/8+ o(

√
n), (i)

Average tail length =
√
πn/8+ o(

√
n). (ii)

Proof. In order to calculate the average cycle length and average tail length, the
generating functions must be manipulated to account for each node in the cycle
or tail. This can be done by using the same methods as in the previous proof, but
marking only one component or tail at a time. This is essentially the same as the

MAPPING THE DISCRETE LOGARITHM 205

strategy which is used to prove the result for average cycle size in [FO 1990b].
More background on the method can be found there.

Let ξ1(z) be the exponential generating function for the total cycle length over
all binary functional graphs and ξ2(z) be the exponential generating function for
the total tail length. Then, ξ1(z) can be defined as

ξ1(z)=
∂2

∂w∂u

[
1

1−
√

1− 2z2
ln
(

1

1− u
(
1−

√
1− 2(zw)2

))]
u=1,w=1

. (14)

In (14), u marks the cyclic nodes in the component we are considering andwmarks
all nodes in that component, so that each node in the component is weighted with
the number of nodes in the cycle. (In [Salvy 1997], the method of “decorated”
graphs is used to develop a generating function for a variation of this problem.)

In order to compute total tail length we need a version of the generating function
for binary trees which marks the edges along one tail. We can write that as

β(z, u)= z+ 1
2 zb2(z)+ uzb(z)β(z, u). (15)

Then solving (15) and plugging it in appropriately gives us

ξ2(z)=
∂

∂u

[
1

√
1− 2z2

1
√

1− 2z2

u(1−
√

1− 2z2)(
1− u(1−

√
1− 2z2)

)]
u=1
. (16)

Note that the first factor in (16) is for the unmarked components and the second
is for the unmarked trees in the marked components. (In [Salvy 1997] and [Fla-
jolet et al. 1989; Mishna 2004],4 the methods of “decorated” graphs and attribute
grammars, respectively, are used to develop the same generating function.)

Performing a singularity analysis of the two generating functions and normaliz-
ing by 2n/2/(n

√
πn/2), as done in the previous theorems, leads to the statement of

the theorem. The additional factor of n in the denominator is needed to compensate
for the fact that the parameters were estimated across all nodes in the graph and
the goal is to determine them from any single random node in the graph. �

The final parameters that needs to be calculated are the average maximum cycle
length and the average maximum tail length.

Theorem 7. The expected sizes of the largest cycle and the largest tail in a random
binary functional graph of size n have the following asymptotic forms as n→∞:

4According to [Flajolet et al. 1989], results from this analysis were first obtained by hand in
[Flajolet 1979].

206 DANIEL CLOUTIER AND JOSHUA HOLDEN

Largest cycle =
√
πn
2

∫
∞

0

[
1− exp

(
−

∫
∞

v

e−u du
u

)]
dv+ o(

√
n) (i)

≈ 0.78248
√

n+ o(
√

n);

Largest tail =
√

2πn ln 2− 3+ 2 ln 2+ o(1) (ii)

≈ 1.73746
√

n− 1.61371+ o(1).

Proof. The proof for part (i) result follows precisely the methods of [FO 1990b]
with substitution of the proper generating function f , and is therefore omitted.

The proof for part (ii) follows a combination of [FO 1990b, Theorem 6] and
[FO 1982, Sections 3–5]. Let b[h](z) be the exponential generating function for
the number of binary trees with height at most h and f [h](z) be the exponential
generating function for the number of binary functional graphs with maximum tail
length less than or equal to h, so that (as in [FO 1990b, Equations 41 and 42])

f [h](z)= 1
1−zb[h](z)

and

b[h+1](z)= z+ 1
2 z(b[h](z))2, b[0](z)= z.

Now, as in [FO 1982, Proposition 2], note that

b(z)− b[h+1](z)= 1
2 z(b(z)− b[h](z))(b(z)+ b[h](z)),

so if we let

eh(z)=
b(z)−b[h](z)

2b(z)
,

then

eh+1(z)= (1−
√

1− 2z2)eh(z)(1− eh(z)).

Now we want to approximate eh(z) with a function of h and some ε(z). If we
let ε =

√
1− 2z2 then we have

e j+1 = (1− ε)e j (1− e j); e−1 = 2.

This is essentially the same recursion as in [FO 1982]. As in Lemma 5 there, we
can then “normalize” and “take inverses” to get the approximation

eh ≈
(1−ε)h+1ε

1−(1−ε)h+1 . (17)

The details of the error bounds proceed as in [FO 1982]; we omit them here.

MAPPING THE DISCRETE LOGARITHM 207

The generating function associated to the average maximum tail length is, as in
[FO 1990b, Equation 43],

4(z)=
∑
h≥0

[1
1−zb(z)

−
1

1−zb[h](z)

]
,

and we proceed as in [FO 1990b, Equation 51] to write

4(z)=
2zb(z)

1− zb(z)

∑
h≥0

eh(z)
1−zb(z)+2eh(z)zb(z)

.

Putting this entirely in terms of ε and h, and shifting the index of summation
for convenience, we can write

4(z)≈ 2(1−ε)
ε

∑
h≥1

(1−ε)h

1+(1−2ε)(1−ε)h
. (18)

We approximate the sum with an integral, using Euler–Maclaurin summation. Tak-
ing the integral and noting that ln(1− ε)∼−ε as ε→ 0, we finally get

4(z)≈ 2(1−ε)
ε2(1−2ε)

ln(2− 3ε+ 2ε2). (19)

The next step is to substitute ε =
√

1− 2z2 into (19) and do the singularity
analysis, which gives us the statement of the theorem. �

4. Observed results

In [Holden 2002; Holden and Moree 2004; 2006], heuristics and observed values
for the number of small cycles (fixed points and two-cycles) in discrete exponenti-
ation graphs are given. Our methods build on this to generate experimental data for
the parameters described by the theoretical predictions in Section 3. The method of
data collection was straightforward. A prime was chosen as the modulus and then
for each g ∈ {1, 2, 3, . . . , p−1}, the corresponding discrete exponentiation binary
functional graph or permutation was generated. The results were then computed
as average statistics over all p− 1 graphs observed. The permutations and binary
functional graphs were noted and their results were also tabulated separately. In
this manner, the data can be examined in its complete form over all graphs and
individually over the permutations and binary functional graphs. The generation
and analysis of each of the graphs was handled by C++ code written by the first
author.

208 DANIEL CLOUTIER AND JOSHUA HOLDEN

100043 100057 106261

Permutations 50020 30240 21120
Binary functional graphs 50020 15120 10560
Total functional graphs 100042 100056 106260

Table 1. The number of permutations, binary functional graphs
and total discrete exponentiation functional graphs associated with
p = 100043, p = 100057, and p = 106260.

The primes chosen for these calculations were

100043= 2 · 50021+ 1,

100057= 23
· 3 · 11 · 379+ 1,

106261= 22
· 3 · 5 · 7 · 11 · 23+ 1.

The total number of graphs, permutations and binary functional graphs can be
computed using Theorem 1 and are shown in Table 1.

In Section 4.1, the observed results for the discrete exponentiation permuta-
tions will be compared to the theoretical results for random permutations given
in Theorem 4. Finally, the observed results for the discrete exponentiation binary
functional graphs will be examined in Section 4.2. Theorems 5 through 7 will
provide the theoretical predictions for these values on random binary functional
graphs. Since the terminal nodes and tail nodes can be directly computed from
the image nodes and cyclic nodes, including them in the collected data does not
add any insight. For this reason, they have both been excluded from the analysis
conducted in the following sections. The Appendix gives some of the interesting
extremal data such as the longest cycle observed for each prime. More information
on the data and how they were computed may be found in [Cloutier 2005].

4.1. Permutation results. The results of looking at only the values of g that were
a primitive root modulo p (and thus produced permutation discrete exponentiation
graphs) can be found in Table 2.

The percent error here is nearly zero in every instance. This seems to indicate
that there are no obvious structural differences between a random permutation and
a permutation generated by the process used here.

4.2. Binary functional graph results. The binary functional graphs should prove
more interesting than the permutations examined in the previous section. Unlike
permutations, binary functional graphs do not appear to have been previously
studied in detail. The statistics derived from the binary discrete exponentiation

MAPPING THE DISCRETE LOGARITHM 209

functional graphs and the error when compared to the results derived for random
binary functional graphs in Section 3.2 can be found in Table 3.

The number of image nodes came out exactly as expected and predicted by
Theorem 3. However, in many other cases the results were nearly as good. The
relative size of the error decreases as the number of binary discrete exponentiation
functional graphs increases over the different primes. This is especially worth
noting for p = 100043 which has over fifty thousand binary functional graphs
while 100057 and 106261 have approximately fifteen thousand and ten thousand
respectively. Since having more graphs appears to push the results closer to those
derived in Section 3.2, this seems to further support the claim that any binary
functional graph produced by our mapping does in fact resemble a randomly chosen
binary functional graph.

5. Conclusions and future work

The transformation used here to generate functional graphs is an exceedingly im-
portant transformation in cryptography. If the output of the function were to fall
into a predictable pattern, it could be an exploitable flaw in many algorithms con-
sidered secure today. For instance, the average cycle length seems particularly im-
portant for pseudorandom bit generators since, in many cases, it relates directly to
the predictability of the pseudorandom bit generator. As Theorem 1 demonstrates,
the use of (1) repeatedly forces a nontrivial structure onto the graphs generated.
This is certainly worth investigating as any imposed structure may be open to an
exploit.

The advantage of using a safe prime is that every nontrivial graph can be an-
alyzed by the theoretical framework laid out in this paper. Their use is also very
prevalent in cryptographic applications. As mentioned above, the pseudorandom
bit generator specified in [Gennaro 2005] requires the use of a safe prime to defend
against other attacks. However, the methods used for binary functional graphs in
Section 3.2 can and should be extended to larger values of m. (This is currently un-
derway in the case m= 3 and some results may be found in [Brugger and Frederick

100043 100057 106261

Observed Error Observed Error Observed Error

Components 12.081 0.083% 12.054 0.306% 12.126 0.205%
Avg cycle 49980.551 0.082% 50191.352 0.326% 53105.104 0.048%
Max cycle 62395.488 0.102% 62627.745 0.256% 66245.807 0.144%

Table 2. Observed results for the three primes over the permuta-
tion discrete exponentiation graphs, with corresponding errors.

210 DANIEL CLOUTIER AND JOSHUA HOLDEN

100043 100057 106261

Observed Error % Observed Error % Observed Error %

Components 6.389 0.047 6.364 0.437 6.370 0.810
Cyclic nodes 395.303 0.029 395.858 0.105 408.433 0.217
Image nodes 50021 0 50028 0 53130 0
Avg cycle 198.319 0.056 197.766 0.230 202.651 0.795
Avg tail 197.961 0.125 197.550 0.339 202.422 0.907
Max cycle 247.261 0.094 247.302 0.082 256.986 0.754
Max tail 541.827 1.115 549.588 1.145 566.370 1.744

Table 3. The observed results for the three primes over all binary
discrete exponentiation functional graphs generated and the corre-
sponding percent errors.

2007; Brugger 2008].) In an ideal case, they should be extended to the general case
of an m-ary graph, which can be specified as a set of components, each of which
is a cycle of nodes with each node having an attached m-ary tree.5 The associated
generating functions for these functional graphs would be

f (z)= ec(z), c(z)= ln
(

1− z
(m−1)!

tm−1(z)
)−1

, t (z)= z+ z
m!

tm(z),

where f (z) is the exponential generating function associated to the functional
graphs, c(z) is the exponential generating function associated to the connected
components and t (z) is associated to the trees. The methods in Section 3.2 could
also be extended to obtain values for additional parameters such as the average and
maximum tree size.

This paper has focused on the graphs generated when the modulus is prime. In
practice, though, this is not always the case. For this reason, it could be worthwhile
to attempt to extend the type of analysis done here to a composite modulus. Some
work in this direction may be found in [Mace 2009].

While the data generated for this project appears to confirm that the graphs do
tend toward the shape and structure of a random graph of the appropriate type, no
data were collected on the distribution of the different parameters. This data could
help to give a clearer picture of how closely individual graphs may be expected to
exhibit the characteristics of a random graph, especially given the observation that
primes with a larger number of binary functional graphs seem to conform better to

5In the notation of [FO 1990b]:

FunctionalGraph = set(Components),
Component = cycle(Node*Set(Tree, cardinality = m− 1)),
Tree = Node + Node*set(Tree, cardinality = m),
Node = Atomic Unit.

MAPPING THE DISCRETE LOGARITHM 211

prediction on the average. The methods used in [Flajolet et al. 1993] would seem
to be potentially helpful here. In addition, finding the standard deviation for the
parameters of interest across all graphs of the appropriate type would allow us to
do a more sophisticated analysis of the observed errors. Initial work along these
lines has been done for permutations in [Hoffman 2009] and for binary functional
graphs in [Lindle 2008].

Appendix: Extremal data

For p = 100043, the longest cycle observed was 100042 which occurred for two
different values of g. They were g = 20812 and g = 94034. The longest tail had
a length of 1448 and was observed when g = 89339. There were five instances
where the graphs contained no cycles longer than one which occurred for g = 1,
72116, 91980, 95997, and 100042.

The graphs generated by p = 100057 had an overall longest cycle of 100052
when g = 58303. The longest tail observed was 1589 when g = 18115. There
were also 26 different values of g that produced a graph that did not have a cycle
longer than one.

The largest cycle observed in graphs generated using p = 106261 was 106257
when g = 102141. The longest tail was 35822 when g = 1480. There were 92
different values of g that produced graphs with no cycles longer than a fixed point.

Acknowledgments

The authors thank the anonymous referee for advice on how to improve the clarity
of the paper.

References

[Blum and Micali 1984] M. Blum and S. Micali, “How to generate cryptographically strong se-
quences of pseudorandom bits”, SIAM J. Comput. 13:4 (1984), 850–864. MR 86a:68021

[Boneh 1998] D. Boneh, “The decision Diffie–Hellman problem”, pp. 48–63 in Algorithmic number
theory (Portland, OR, 1998), edited by J. P. Buhler, Lecture Notes in Comput. Sci. 1423, Springer,
Berlin, 1998. MR 2000k:94024 Zbl 1067.94523

[Brugger 2008] M. F. Brugger, Exploring the discrete logarithm with random ternary graphs, senior
thesis, Oregon State University, 2008, available at http://hdl.handle.net/1957/8777.

[Brugger and Frederick 2007] M. Brugger and C. Frederick, “The discrete logarithm problem and
ternary functional graphs”, Rose-Hulman Undergraduate Mathematics Journal 8:2 (2007).

[Canetti et al. 2000] R. Canetti, J. Friedlander, S. Konyagin, M. Larsen, D. Lieman, and I. Shpar-
linski, “On the statistical properties of Diffie–Hellman distributions”, Israel J. Math. 120:part A
(2000), 23–46. MR 2001k:11258 Zbl 0997.11066

[Cloutier 2005] D. R. Cloutier, Mapping the discrete logarithm, senior thesis, Rose-Hulman Insti-
tute of Technology, 2005, available at http://www.csse.rose-hulman.edu/images/docs/theses/
DanielCloutier2005.pdf.

212 DANIEL CLOUTIER AND JOSHUA HOLDEN

[Diffie and Hellman 1976] W. Diffie and M. E. Hellman, “New directions in cryptography”, IEEE
Trans. Information Theory IT-22:6 (1976), 644–654. MR 55 #10141

[Flajolet 1979] P. Flajolet, Analyse d’algorithmes de manipulation d’arbres et de fichiers, Ph.D.
thesis, Université de Paris-Sud, Orsay, 1979.

[Flajolet et al. 1989] P. Flajolet, B. Salvy, and P. Zimmermann, “Lambda-upsilon-omega: The 1989
cookbook”, Technical Report RR1073, Institut National de Recherche en Informatique et en Au-
tomatique, 1989, available at http://www.inria.fr/rrrt/rr-1073.html.

[Flajolet et al. 1991] P. Flajolet, B. Salvy, and P. Zimmermann, “Automatic average-case analysis of
algorithms”, Theoret. Comput. Sci. 79:1, (Part A) (1991), 37–109. MR 92k:68049 Zbl 0768.68041

[Flajolet et al. 1993] P. Flajolet, Z. Gao, A. Odlyzko, and B. Richmond, “The distribution of heights
of binary trees and other simple trees”, Combin. Probab. Comput. 2:2 (1993), 145–156. MR 94k:
05061 Zbl 0795.05042

[FO 1982] P. Flajolet and A. Odlyzko, “The average height of binary trees and other simple trees”,
J. Comput. System Sci. 25:2 (1982), 171–213. MR 84a:68056 Zbl 0499.68027

[FO 1990a] P. Flajolet and A. Odlyzko, “Singularity analysis of generating functions”, SIAM J.
Discrete Math. 3:2 (1990), 216–240. MR 90m:05012 Zbl 0712.05004

[FO 1990b] P. Flajolet and A. M. Odlyzko, “Random mapping statistics”, pp. 329–354 in Advances
in cryptology (Houthalen, Belgium, 1989), edited by A. J. Menezes and S. A. Vanstone, Lecture
Notes in Comput. Sci. 434, Springer, Berlin, 1990. MR 1083961 Zbl 0747.05006

[Gennaro 2005] R. Gennaro, “An improved pseudo-random generator based on the discrete loga-
rithm problem”, J. Cryptology 18:2 (2005), 91–110. MR 2007c:94124 Zbl 1084.68046

[Hoffman 2009] A. Hoffman, “Statistical investigation of structure in the discrete logarithm”, Rose-
Hulman Undergrad. Math. J. 10:2 (2009).

[Holden 2002] J. Holden, “Fixed points and two-cycles of the discrete logarithm”, pp. 405–415 in
Algorithmic number theory (Sydney, 2002), edited by C. Fieker and D. R. Kohel, Lecture Notes in
Comput. Sci. 2369, Springer, Berlin, 2002. “Addenda and corrigenda” at arXiv:math.NT/0208028.
MR 2005h:11277 Zbl 1058.11073

[Holden and Moree 2004] J. Holden and P. Moree, “New conjectures and results for small cy-
cles of the discrete logarithm”, pp. 245–254 in High primes and misdemeanours, edited by A.
van der Poorten and A. Stein, Fields Inst. Commun. 41, Amer. Math. Soc., Providence, RI, 2004.
MR 2005d:11005 Zbl 1100.11005

[Holden and Moree 2006] J. Holden and P. Moree, “Some heuristics and results for small cycles of
the discrete logarithm”, Math. Comp. 75:253 (2006), 419–449. MR 2006i:11145 Zbl 1116.11004

[Lindle 2008] N. Lindle, A statistical look at maps of the discrete logarithm, senior thesis, Rose-
Hulman Institute of Technology, 2008, available at http://www.csse.rose-hulman.edu/images/
docs/theses/NathanLindle2008.pdf.

[Mace 2009] M. L. Mace, “Discrete logarithm over composite moduli”, REU technical report, Rose-
Hulman Institute of Technology, 2009, available at http://www.rose-hulman.edu/~holden/REU/
Reports/mace.pdf.

[Mishna 2004] M. Mishna, “How to use attribute grammars with ease and pleasure”, 2004, available
at http://www.math.sfu.ca/~mmishna/Publications/cook2.ps.

[Pollard 1978] J. M. Pollard, “Monte Carlo methods for index computation (mod p)”, Math. Comp.
32:143 (1978), 918–924. MR 58 #10684 Zbl 0382.10001

[Rivest et al. 1978] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems”, Comm. ACM 21:2 (1978), 120–126. MR 83m:94003
Zbl 0368.94005

MAPPING THE DISCRETE LOGARITHM 213

[Salvy 1997] B. Salvy, “Pollard’s rho algorithm”, worksheet, 1997, available at http://algo.inria.fr/
libraries/autocomb/pollard-html/pollard1.html.

[Shepp and Lloyd 1966] L. A. Shepp and S. P. Lloyd, “Ordered cycle lengths in a random permuta-
tion”, Trans. Amer. Math. Soc. 121 (1966), 340–357. MR 33 #3320 Zbl 0156.18705

Received: 2009-10-17 Revised: Accepted: 2010-06-19

Daniel.R.Cloutier@alumni.rose-hulman.edu
Rose–Hulman Institute of Technology,
Terre Haute, IN 47803, United States

holden@rose-hulman.edu Rose–Hulman Institute of Technology,
Department of Mathematics, CM #125, 5500 Wabash Ave.,
Terre Haute, IN 47803, United States
http://www.rose-hulman.edu/~holden

involve
pjm.math.berkeley.edu/involve

EDITORS
MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

John V. Baxley Wake Forest University, NC, USA
baxley@wfu.edu

Arthur T. Benjamin Harvey Mudd College, USA
benjamin@hmc.edu

Martin Bohner Missouri U of Science and Technology, USA
bohner@mst.edu

Nigel Boston University of Wisconsin, USA
boston@math.wisc.edu

Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA
budhiraj@email.unc.edu

Pietro Cerone Victoria University, Australia
pietro.cerone@vu.edu.au

Scott Chapman Sam Houston State University, USA
scott.chapman@shsu.edu

Jem N. Corcoran University of Colorado, USA
corcoran@colorado.edu

Michael Dorff Brigham Young University, USA
mdorff@math.byu.edu

Sever S. Dragomir Victoria University, Australia
sever@matilda.vu.edu.au

Behrouz Emamizadeh The Petroleum Institute, UAE
bemamizadeh@pi.ac.ae

Errin W. Fulp Wake Forest University, USA
fulp@wfu.edu

Andrew Granville Université Montréal, Canada
andrew@dms.umontreal.ca

Jerrold Griggs University of South Carolina, USA
griggs@math.sc.edu

Ron Gould Emory University, USA
rg@mathcs.emory.edu

Sat Gupta U of North Carolina, Greensboro, USA
sngupta@uncg.edu

Jim Haglund University of Pennsylvania, USA
jhaglund@math.upenn.edu

Johnny Henderson Baylor University, USA
johnny henderson@baylor.edu

Natalia Hritonenko Prairie View A&M University, USA
nahritonenko@pvamu.edu

Charles R. Johnson College of William and Mary, USA
crjohnso@math.wm.edu

Karen Kafadar University of Colorado, USA
karen.kafadar@cudenver.edu

K. B. Kulasekera Clemson University, USA
kk@ces.clemson.edu

Gerry Ladas University of Rhode Island, USA
gladas@math.uri.edu

David Larson Texas A&M University, USA
larson@math.tamu.edu

Suzanne Lenhart University of Tennessee, USA
lenhart@math.utk.edu

Chi-Kwong Li College of William and Mary, USA
ckli@math.wm.edu

Robert B. Lund Clemson University, USA
lund@clemson.edu

Gaven J. Martin Massey University, New Zealand
g.j.martin@massey.ac.nz

Mary Meyer Colorado State University, USA
meyer@stat.colostate.edu

Emil Minchev Ruse, Bulgaria
eminchev@hotmail.com

Frank Morgan Williams College, USA
frank.morgan@williams.edu

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
moslehian@ferdowsi.um.ac.ir

Zuhair Nashed University of Central Florida, USA
znashed@mail.ucf.edu

Ken Ono University of Wisconsin, USA
ono@math.wisc.edu

Joseph O’Rourke Smith College, USA
orourke@cs.smith.edu

Yuval Peres Microsoft Research, USA
peres@microsoft.com

Y.-F. S. Pétermann Université de Genève, Switzerland
petermann@math.unige.ch

Robert J. Plemmons Wake Forest University, USA
plemmons@wfu.edu

Carl B. Pomerance Dartmouth College, USA
carl.pomerance@dartmouth.edu

Bjorn Poonen UC Berkeley, USA
poonen@math.berkeley.edu

James Propp U Mass Lowell, USA
jpropp@cs.uml.edu

Józeph H. Przytycki George Washington University, USA
przytyck@gwu.edu

Richard Rebarber University of Nebraska, USA
rrebarbe@math.unl.edu

Robert W. Robinson University of Georgia, USA
rwr@cs.uga.edu

Filip Saidak U of North Carolina, Greensboro, USA
f saidak@uncg.edu

Andrew J. Sterge Honorary Editor
andy@ajsterge.com

Ann Trenk Wellesley College, USA
atrenk@wellesley.edu

Ravi Vakil Stanford University, USA
vakil@math.stanford.edu

Ram U. Verma University of Toledo, USA
verma99@msn.com

John C. Wierman Johns Hopkins University, USA
wierman@jhu.edu

PRODUCTION

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor Cover design: ©2008 Alex Scorpan

See inside back cover or http://pjm.math.berkeley.edu/involve for submission instructions.
The subscription price for 2010 is US $100/year for the electronic version, and $120/year (+$20 shipping outside the US) for print
and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to
Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of
California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

Involve peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://www.mathscipub.org
A NON-PROFIT CORPORATION

Typeset in LATEX
Copyright ©2010 by Mathematical Sciences Publishers

http://pjm.math.berkeley.edu/involve
mailto:berenhks@wfu.edu
mailto:baxley@wfu.edu
mailto:benjamin@hmc.edu
mailto:bohner@mst.edu
mailto:boston@math.wisc.edu
mailto:budhiraj@email.unc.edu
mailto:pietro.cerone@vu.edu.au
mailto:scott.chapman@shsu.edu
mailto:corcoran@colorado.edu
mailto:mdorff@math.byu.edu
mailto:sever@matilda.vu.edu.au
mailto:bemamizadeh@pi.ac.ae
mailto:fulp@wfu.edu
mailto:andrew@dms.umontreal.ca
mailto:griggs@math.sc.edu
mailto:rg@mathcs.emory.edu
mailto:sngupta@uncg.edu
mailto:jhaglund@math.upenn.edu
mailto:johnny_henderson@baylor.edu
mailto:nahritonenko@pvamu.edu
mailto:crjohnso@math.wm.edu
mailto:karen.kafadar@cudenver.edu
mailto:kk@ces.clemson.edu
mailto:gladas@math.uri.edu
mailto:larson@math.tamu.edu
mailto:lenhart@math.utk.edu
mailto:ckli@math.wm.edu
mailto:lund@clemson.edu
mailto:g.j.martin@massey.ac.nz
mailto:meyer@stat.colostate.edu
mailto:eminchev@hotmail.com
mailto:frank.morgan@williams.edu
mailto:moslehian@ferdowsi.um.ac.ir
mailto:znashed@mail.ucf.edu
mailto:ono@math.wisc.edu
mailto:orourke@cs.smith.edu
mailto:peres@microsoft.com
mailto:petermann@math.unige.ch
mailto:plemmons@wfu.edu
mailto:carl.pomerance@dartmouth.edu
mailto:poonen@math.berkeley.edu
mailto:jpropp@cs.uml.edu
mailto:przytyck@gwu.edu
mailto:rrebarbe@math.unl.edu
mailto:rwr@cs.uga.edu
mailto:f_saidak@uncg.edu
mailto:andy@ajsterge.com
mailto:atrenk@wellesley.edu
mailto:vakil@math.stanford.edu
mailto:verma99@msn.com
mailto:wierman@jhu.edu
http://pjm.math.berkeley.edu/involve
http://www.mathscipub.org
http://www.mathscipub.org

inv lve
a journal of mathematics

involve
2010 vol. 3 no. 2

129Recursive sequences and polynomial congruences
J. LARRY LEHMAN AND CHRISTOPHER TRIOLA

149The Gram determinant for plane curves
JÓZEF H. PRZYTYCKI AND XIAOQI ZHU

171The cardinality of the value sets modulo n of x2
+ x−2 and x2

+ y2

SARA HANRAHAN AND MIZAN KHAN

183Minimal k-rankings for prism graphs
JUAN ORTIZ, ANDREW ZEMKE, HALA KING, DARREN NARAYAN AND MIRKO
HORŇÁK

191An unresolved analogue of the Littlewood Conjecture
CLARICE FEROLITO

197Mapping the discrete logarithm
DANIEL CLOUTIER AND JOSHUA HOLDEN

215Linear dependency for the difference in exponential regression
INDIKA SATHISH AND DIAWARA NOROU

223The probability of relatively prime polynomials in Zpk [x]
THOMAS R. HAGEDORN AND JEFFREY HATLEY

233G-planar abelian groups
ANDREA DEWITT, JILLIAN HAMILTON, ALYS RODRIGUEZ AND JENNIFER DANIEL

1944-4176(2010)3:2;1-F

involve
2010

vol.3,
no.2

	
	
	

