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We say that a tree is a spider if it has at most one branch point. We prove the
existence of a family of graceful labelings for spiders all of whose legs are equal
in length.

1. Introduction

Let G= (V, E) be a (simple, undirected) graph. A labeling of G is a map from the
set V of vertices to the set of nonnegative integers. A labeling φ induces a labeling
on the edge set E by assigning to e = {u, v} the value φ(e)= |φ(u)−φ(v)|.

A labeling is said to be graceful if its labels take values in {0, 1, . . . , |V | − 1},
it has no repeated labels, and its induced edge labeling has no repeated labels.

A graph is graceful if there is some graceful labeling of its vertices. Graceful
labelings were first defined by Rosa as he considered problems involving decompo-
sitions of graphs; see [Rosa 1967], in which various sorts of labelings are defined.
Golomb [1972] was the first to use the term graceful labeling.

There is a long-standing conjecture that every tree — that is, every connected
acyclic graph — is graceful. Known as the Ringel–Kotzig conjecture, it seems to
have first been published as Problem 25, p. 162 in a collection of open problems
in [Fiedler 1964]. See [Edwards and Howard 2006; Gallian 1997–2009] for more
information on this conjecture and hundreds of related results. We note that proofs
of gracefulness for general classes of trees are hard to come by.

We call the graph T a spider if it has at most one branch point — that is, at most
one vertex v such that the degree d(v) satisfies d(v)≥ 3. Let v∗ denote the unique
branch point of a spider T , if this point exists. We call this point the center of the
graph T . A leg of the spider T is any one of the paths from v∗ to a leaf of T . We
will prove the following result in Section 2:

Theorem 1. Let T be a spider with l legs, each of which has length in {m,m+1}
for some m ≥ 1. Then T is graceful.
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Theorem 1 is not a new result. It follows from [Poljak and Sûra 1982], but our
proof also shows gracefulness for any tree formed by appending an extra leg of
any length to an odd-legged spider with legs of lengths in {m,m+1}. A general-
ization of the construction, given in Section 3, leads to further interesting labelings:
specifically, for spiders having an odd number of legs, all of equal length m, we
construct for each positive divisor d of m a graceful labeling associated with d.
This construction can be used to generate graceful labelings of many trees that are
not spiders, as shown in [Bahls 2008].

2. Proof of the main theorem

We may assume that l ≥ 3, as otherwise T is a path, which is known to be graceful.
(For example, see [Aldred et al. 2003], in which an estimate is obtained for the
number of graceful labelings on a path of a given length.)

Proof of Theorem 1 for l odd. Let l = l0 + l1, where li is the number of legs of
length m+i for i ∈ {0, 1}. Note that T has n+1= lm+l1+1 vertices, to be labeled
by the set {0, 1, . . . , n}. Label the legs by L1, L2, . . . , L l so that L1, . . . , L l1 have
length m + 1 and L l1+1, . . . , L l have length m. Let v∗ denote the branch point of
T and denote by vi, j the vertex in L i of distance j from v∗.

Let φ be the labeling defined as follows:

(i) φ(v∗)= 0;

(ii) if i and j are both odd,

φ(vi, j )= n− i−1
2
−
( j−1)l

2
;

(iii) if i and j are both even;

φ(vi, j )= n− l−1
2
−

i
2
−
( j−2)l

2
;

(iv) if i is even and j is odd,

φ(vi, j )=
i
2
+
( j−1)l

2
;

(v) if i is odd and j is even,

φ(vi, j )=
l−1

2
+

i+1
2
+
( j−2)l

2
.

The labeling φ places 0 at the spider’s center and, traversing the longer legs first,
alternates between the highest and the lowest remaining unused labels, spiraling
away from the center. This is illustrated in Figure 1, in which l0 = 2, l1 = 3, and
m = 4.
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Figure 1. The labeling φ for l0 = 2, l1 = 3, and m = 4.

To help compute the induced edge labels, we note that the local maxima of φ
occur at vi, j for which i and j have the same parity — that is, i ≡ j (mod 2), For
such i and j , we have

φ(vi, j )−φ(vi, j+1)= n− l−1
2
− i + (1− j)l > 0, (1)

φ(vi, j )−φ(vi, j−1)= n− l−1
2
− i + (2− j)l > 0. (2)

Suppose, to obtain a contradiction, that there are two distinct edges that share
the same label. By considering the indexes of the vertices at both ends end of these
edges, we see that we can choose distinct pairs of indexes (i, j) and (i ′, j ′) such
that i and j have the same parity, i ′ and j ′ likewise have the same parity, and an
edge incident on vi, j shares the same label as a different edge incident on vi ′, j ′ ,
that is, one of these three cases occur:

φ(vi, j )−φ(vi, j+1)= φ(vi ′, j ′)−φ(vi ′, j ′+1), (3)

φ(vi, j )−φ(vi, j+1)= φ(vi ′, j ′)−φ(vi ′, j ′−1), (4)

φ(vi, j )−φ(vi, j−1)= φ(vi ′, j ′)−φ(vi ′, j ′−1). (5)

Consider first the case where (3) holds. From (1), we obtain i−i ′+( j− j ′)l=0,
which shows that j 6= j ′, since otherwise i = i ′ as well, contrary to the assumption
that (i, j) 6= (i ′, j ′). We therefore can write

l = i−i ′

j ′− j
.
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Thus |i − i ′|< l and | j − j ′| ≥ 1, and

l =
∣∣∣∣ i−i ′

j ′− j

∣∣∣∣< l
1
= l,

a contradiction.
Similar contradictions arise when (4) or (5) hold. Thus no two distinct edges

bear the same labels, and φ is graceful. �

Proof of Theorem 1 for l even. Without loss of generality assume L l is a leg of
length m. Remove it, resulting in a tree T0 with an odd number of legs, l− 1. The
construction above yields a graceful labeling φ0 of T0 such that φ0(v

∗) = 0. Let
|V (T0)|=n′+1. We define a new graceful labeling, φ′0, on T0 by φ′0(v)=n′−φ0(v)

for all v.
Construct a new tree T1 by appending a new vertex, w1, to T0’s center. Define

φ1 on V (T1) by φ1(w1)= 0 and φ1(v)= φ
′

0(v)+1 for all v ∈ V (T0). Define φ′1 on
T1 by φ′1(v)= n′+ 1−φ1(v) for all v; note that φ′1(w1)= n′+ 1.

We now append a vertex w2 to w1 and construct graceful labelings φ2 from φ′1,
φ′2 from φ2, and so forth, until we have reconstructed L l = {w1, w2, . . . , wm},
recovering T . �

The argument in the case of l even actually shows this:

Theorem 2. Let T be a spider with l legs, where l is even. Suppose each leg,
except possibly one, has length in {m,m+1} for some m ≥ 1. Then T is graceful.

3. A family of graceful labelings

Now assume that T is a spider with an odd number l of legs, each of length m. Let
d be any fixed positive divisor of m; we define a graceful labeling φd corresponding
to d .

We retain the notation vi, j from the previous section. Given a pair (i, j), set
t = d j/de and r = j − (t − 1)d . Roughly, t gives the “tier” of length d inside
the i-th leg in which the vertex vi, j lies, and r gives its position relative to that
tier. The value of φd(vi, j ) will depend on the parity of each of d, i , t , and r , so we
consider the vector Evi, j = (d, i, t, r) as an element of Z4

2 by reducing all coordinates
modulo 2.

Let φd(v
∗)= 0, as before. The following formula gives φd(vi, j ):

(i) if Evi, j ∈ {(0, 1, 1, 1), (1, 1, 1, 1)},

φd(vi, j )= ml − (t−1)ld
2

−
(i−1)d

2
−

r−1
2
;
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(ii) if Evi, j ∈ {(0, 1, 1, 0), (1, 1, 1, 0)},

φd(vi, j )=
(t−1)ld

2
+
(i−1)d

2
+

r
2
;

(iii) if Evi, j ∈ {(0, 0, 1, 1), (1, 0, 1, 1)},

φd(vi, j )=
(t−1)ld

2
+

id
2
−

r−1
2
;

(iv) if Evi, j ∈ {(0, 0, 1, 0), (1, 0, 1, 0)},

φd(vi, j )= ml − (t−1)ld
2

−
id
2
+

r
2
;

(v) if Evi, j ∈ {(1, 1, 0, 1), (0, 1, 0, 0)},

φd(vi, j )=
⌈ ld

2

⌉
+
(t−2)ld

2
+
(i−1)d

2
+

⌊r
2

⌋
;

(vi) if Evi, j ∈ {(1, 0, 0, 1), (0, 0, 0, 0)},

φd(vi, j )= ml −
⌊ ld

2

⌋
−
(t−2)ld

2
−

id
2
+

⌊r
2

⌋
.

(vii) if Evi, j ∈ {(1, 1, 0, 0), (0, 1, 0, 1)},

φd(vi, j )= ml −
⌈ ld

2

⌉
−
(t−2)ld

2
−
(i−1)d

2
−

⌈r
2

⌉
+ 1;

(viii) if Evi, j ∈ {(1, 0, 0, 0), (0, 0, 0, 1)},

φd(vi, j )=
⌊ ld

2

⌋
+
(t−2)ld

2
+

id
2
−

⌈r
2

⌉
+ 1.

That this yields a graceful labeling can be proved in a manner similar to the
proof of Theorem 1.

Like the labeling introduced in the proof of Theorem 1, this labeling proceeds by
alternating between the greatest and least labels yet unused, spiraling outward from
the center. Now, however, d vertices on each leg are labeled before proceeding to
the next leg, and the direction in which the labeling proceeds within this length-d
segment (inward or outward relative to the center) alternates from one leg to the
next. An example is shown in Figure 2.

In the special case d = 1, we obtain the labeling constructed in the proof of
Theorem 1. In this case t = j and r = 1, so our labeling depends only on the
parities of i and j , and indeed after reduction the corresponding formulas in the
above list, namely (i), (iii), (v), and (vi), coincide precisely with those in the proof
of Theorem 1.

The labelings φd have the property that the edges

{v∗, vi,1}, {vi,d , vi,d+1}, {vi,2d , vi,2d+1}, . . . , {vi,m−d , vi,m−d+1}
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Figure 2. The labeling φd for l = 5, m = 6, and d = 3.

have labels divisible by d . This fact enables us to “deflate” the labeling φd and
obtain a labeling φ′d on the spider T ′ with l legs, each of length m/d . This new
labeling is defined inductively as follows, spiraling outward from the center v′ of
T ′, where we denote by v′i, j the vertex in T ′ in position (i, j) as before and let
vi,0 = v

∗, v′i,0 = v
′:

(i) φ′d(v
′)= 0;

(ii) φ′d(v
′

i,1)= φd(vi,1)/d;

(iii) assuming φ′d(v
′

i, j ) has been defined, let

φ′d(v
′

i, j+1)= φ
′

d(v
′

i, j )+ (−1)l+ j+1φd({vi, jd , vi, jd+1})

d
.

This process acts as an inverse to the process of edge subdivision considered in
[Bahls 2008], in which each edge of a given gracefully labeled tree is subdivided
a fixed number of times, yielding a new graph that can be gracefully labeled by
making use of the labeling on the original tree.
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