Rational residuacity of primes

Mark Budden, Alex Collins, Kristin Ellis Lea and Stephen Savioli
Rational residuacity of primes

Mark Budden, Alex Collins, Kristin Ellis Lea and Stephen Savioli

(Communicated by Filip Saidak)

The most natural extensions to the law of quadratic reciprocity are the rational reciprocity laws, described using the rational residue symbol. In this article, we provide a reciprocity law from which many of the known rational reciprocity laws may be recovered by picking appropriate primitive elements for subfields of $\mathbb{Q}(\zeta_p)$. As an example, a new generalization of Burde’s law is provided.

1. Introduction

The law of quadratic reciprocity has played a central role in the development of number theory since Gauss published its first proof in 1801 (see [Lemmermeyer 2000] for the history of this important result). To state the law, assume that $a \in \mathbb{Z}$ is not divisible by an odd prime p and define the Legendre symbol by

$$\left(\frac{a}{p}\right) := \begin{cases} 1 & \text{if } x^2 \equiv a \pmod{p} \text{ is solvable}, \\ -1 & \text{if not}. \end{cases}$$

Then if p and q are distinct odd primes, we have

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}.$$

The remainder of the 1800s and early 1900s saw many generalizations of this result to higher powers, culminating in class field theory, in which generalized reciprocity laws were established. Making such generalizations requires one to leave the realm of the integers, introducing rings of integers in algebraic number fields and primes within these rings. Hence, the study of reciprocity laws can serve as a great topic for students interested in learning about field extensions and Galois theory.

While class field theory has succeeded in capturing the true essence of the higher reciprocity laws, the extensions to the law of quadratic reciprocity that are the most accessible to students are the rational reciprocity laws. Such laws make use of the
rational residue symbol, which only takes on the integer values ±1 and is defined on rational primes. The simplicity of the rational residue symbol is much more tangible to students than the power residue symbol, making such laws an excellent starting point for students in algebraic number theory. Like the law of quadratic reciprocity, the statements are often elementary, but the proofs elucidate the utility of Galois theory and the ramification theory of prime ideals in algebraic number fields.

We begin with a description of the quadratic residue symbol and the rational residue symbol. Let K be an algebraic number field and N the norm map of K over \mathbb{Q}. Let p be a prime ideal such that $p \nmid 2\mathcal{O}_K$, where \mathcal{O}_K is the ring of integers in K. For every $\alpha \in \mathcal{O}_K - p$, define the quadratic residue symbol $(\frac{\alpha}{p})$ by

$$
(\frac{\alpha}{p}) \equiv \alpha^{(N(p)-1)/2} \pmod{p}.
$$

In the case where $K = \mathbb{Q}$, our definition agrees with the Legendre symbol on the generator of the prime ideal $p = p\mathbb{Z}$.

Now let $a \in \mathbb{Z}$ and p be an odd prime satisfying $(a, p) = 1$ such that

$$
a^{(p-1)/n} \equiv 1 \pmod{p}.
$$

Then the $2n$-th rational residue symbol $(a/p)_{2n}$ is defined by

$$
(\frac{a}{p})_{2n} \equiv a^{(p-1)/(2n)} \pmod{p}.
$$

It is easily verified that this symbol only takes on the integer unit values ±1. It should also be noted that it agrees with the $2n$-th power residue symbol $(a/p)_{Q(\zeta_{2n})}$, where p is any prime ideal above p in $\mathbb{Q}(\zeta_{2n})$ and ζ_{2n} is the primitive $2n$-th root of unity $e^{\pi i/n}$.

An indispensable object used in the proofs of most reciprocity laws is the Galois group

$$
\text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}),
$$

defined to be the group of all automorphisms $\mathbb{Q}(\zeta_p) \to \mathbb{Q}(\zeta_p)$ that fix \mathbb{Q} pointwise (here, ζ_p is the primitive p-th root of unity $e^{2\pi i/p}$). By the fundamental theorem of Galois theory (see [Gallian 2010, Chapter 32], for instance), there is a one-to-one correspondence between the intermediate subfields of the extension $\mathbb{Q}(\zeta_p)/\mathbb{Q}$ and the subgroups of $\text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$. It is well known that

$$
\text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^\times
$$

is a cyclic group of order $p - 1$. So, whenever $p \equiv 1 \pmod{m}$, there exists a unique subfield K_m of $\mathbb{Q}(\zeta_p)$ that satisfies $[K_m : \mathbb{Q}] = m$.
Lemmermeyer [1994] showed that when \(p \equiv 1 \pmod{4} \), specific choices of \(A, B \in \mathbb{Z} \) so that \(K_4 = \mathbb{Q}(\sqrt{A + B\sqrt{p}}) \) result in the rational quartic reciprocity laws of Scholz [1934], Lehmer [1958; 1978], and Burde [1969]. His work simplified the all-encompassing rational quartic reciprocity law of Williams et al. [1985] as well as its simplification by Evans [1989]. The reader unfamiliar with these laws may consult Lehmer’s survey article [Lehmer 1978] and [Lemmermeyer 2000] for the relevant background.

When extending the known rational quartic reciprocity laws, it is natural to look for analogues that involve the \(2^t \)-th rational residue symbols \((p/q)_{2^t} \) and \((q/p)_{2^t} \) when \(p \equiv q \equiv 1 \pmod{2^t} \) are distinct primes. Such a generalization of Burde’s law was proved by Evans [1981], and Budden et al. [2007] recently proved such a generalization of Scholz’s law. In Section 2, we follow the approach of [Budden et al. 2007] to prove a \(2n \)-th reciprocity law (Theorem 1), from which many of the known rational reciprocity laws can be recovered. The approach is similar to that of [Lemmermeyer 1994] in that it compares the factorization of the prime ideal \(q\mathbb{Z} \) in \(\mathbb{Q}(\zeta_p) \) to its factorization in \(K_{2n} \). Additionally, the all-encompassing rational quartic law in this last reference may be viewed as a special case of the quartic version of the \(2n \)-th law presented here. Hence, all of the known rational quartic reciprocity laws may be recovered from Theorem 1.

Finally, as an application of Theorem 1, we give in Section 3 a \(2^t \)-th generalization of Burde’s law (Theorem 3), that differs from the known generalizations. In particular, our result is different from Williams’ octic version of Burde’s law [Williams 1976] when \(t = 3 \) (also proved independently by Wu [1975]), Leonard and Williams’ sixteenth version of Burde’s law when \(t = 4 \) [Leonard and Williams 1977], and Evans’ \(2^t \)-th generalization of Burde’s law [Evans 1981]. Interesting results follow from comparing the variations.

2. A \(2n \)-th rational reciprocity law

Now assume that \(p \equiv q \equiv 1 \pmod{2n} \) are distinct primes with \(n \geq 1 \) such that

\[
\left(\frac{p}{q} \right)_n = \left(\frac{q}{p} \right)_n = 1.
\]

Then the ideal \(q\mathcal{O}_{K_n} \) factors into prime ideals as

\[
q\mathcal{O}_{K_n} = \lambda_1 \lambda_2 \cdots \lambda_n,
\]

with all of the \(\lambda_i \) distinct. We obtain the following reciprocity law.

Theorem 1. Let \(p \equiv q \equiv 1 \pmod{2n} \) be distinct primes with \(n \geq 1 \) and assume

\[
\left(\frac{p}{q} \right)_n = \left(\frac{q}{p} \right)_n = 1.
\]
If $\beta \in \mathcal{O}_{K_n}$ is such that $K_{2n} = K_n(\sqrt{\beta})$, then $\left(\frac{q}{p}\right)_{2n} = \left(\frac{\beta}{\lambda}\right)$, where λ is any prime ideal above q in \mathcal{O}_{K_n}.

Proof. The cyclotomic polynomial $\Phi_p(x) = \prod_{k=1}^{p-1} (x - \zeta_p^k)$ splits over K_n, and we let $\varphi_p(x)$ be the irreducible factor

$$\varphi_p(x) = \prod_{1 \leq r \leq p-1, (r/p)_{2n} = 1} (x - \zeta_p^r).$$

Since $\Phi_p(x) \in \mathbb{Z}[\zeta_p][x]$, it follows that $\varphi_p(x) \in \mathcal{O}_{K_n}$. Furthermore, it has degree $(p-1)/n$ and splits further over K_{2n} into $\psi_p(x) = \psi_p(x) \cdot \tilde{\psi}_p(x)$, where

$$\psi_p(x) = \prod_{1 \leq r \leq p-1, (r/p)_{2n} = 1} (x - \zeta_p^r) \quad \text{and} \quad \tilde{\psi}_p(x) = \prod_{1 \leq t \leq p-1, (t/p)_{2n} = -1, (t/p)_{2n} = 1} (x - \zeta_p^t).$$

Define the polynomial $\vartheta(x) = \psi_p(x) - \tilde{\psi}_p(x) \in \mathcal{O}_{K_{2n}}[x]$ and consider the automorphism $\sigma_q \in \text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^\times$, defined by $\sigma_q(\zeta_p) = \zeta_p^q$. Since the group $(\mathbb{Z}/p\mathbb{Z})^\times$ is cyclic, it has unique cyclic subgroups of orders dividing $p-1$, implying that

$$\text{Gal}(\mathbb{Q}(\zeta_p)/K_n) \cong (\mathbb{Z}/p\mathbb{Z})^{\times n} \quad \text{and} \quad \text{Gal}(\mathbb{Q}(\zeta_p)/K_{2n}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times 2n}. $$

Under the assumption $(q/p)_n = 1$, the automorphism σ_q is contained in the Galois group $\text{Gal}(\mathbb{Q}(\zeta_p)/K_n)$. Its restriction to K_{2n} must agree with either the identity automorphism $I \in \text{Gal}(K_{2n}/K_n)$, or the nontrivial automorphism $\alpha(\sqrt{\beta}) = -\sqrt{\beta}$. It follows that

$$\sigma_q|_{K_{2n}} = I \iff (q/p)_{2n} = 1.$$

Since

$$\alpha(\sqrt{\beta}) \vartheta(x) = \sqrt{\beta} \vartheta(x)$$

and the coefficients in $\vartheta(x)$ come from $\mathcal{O}_{K_{2n}}$, every coefficient must be an element in \mathcal{O}_{K_n} multiplied by $\sqrt{\beta}$ so that we can write

$$\vartheta(x) = \sqrt{\beta} \phi(x), \quad \text{for some } \phi(x) \in \mathcal{O}_{K_n}[x].$$

We have also assumed that $(p/q)_n = 1$, so that the ideal $q\mathcal{O}_{K_n}$ splits completely in \mathcal{O}_{K_n} (i.e., $q\mathcal{O}_{K_n} = \lambda_1 \lambda_2 \cdots \lambda_n$, a product of distinct prime ideals). If λ is any such prime ideal in \mathcal{O}_{K_n}, then $\mathcal{O}_{K_n}/\lambda \cong \mathbb{Z}/q\mathbb{Z}$. We have the congruence

$$\vartheta(x)^q = (\psi_p(x) - \tilde{\psi}_p(x))^q \equiv \left(\frac{q}{p}\right)_{2n} (\psi_p(x^q) - \tilde{\psi}_p(x^q)) \pmod{\lambda}.$$
On the other hand, we also have
\[(\vartheta(x))^q = (\sqrt{\beta} \phi(x))^q \equiv \beta^{(q-1)/2} \sqrt{\beta} \phi(x^q) \pmod{\lambda}\]
\[\equiv \left(\frac{\beta}{\lambda}\right)(\psi_p(x^q) - \tilde{\psi}_p(x^q)) \pmod{\lambda}.
\]
We will obtain the desired result from the congruence
\[\left(\frac{q}{p}\right)_2n (\psi_p(x^q) - \tilde{\psi}_p(x^q)) \equiv \left(\frac{\beta}{\lambda}\right)(\psi_p(x^q) - \tilde{\psi}_p(x^q)) \pmod{\lambda}\]
once we show that \(\psi_p(X) \not\equiv \tilde{\psi}_p(X) \pmod{\lambda}\); note that if \(\psi_p(X) \equiv \tilde{\psi}_p(X) \pmod{\lambda}\), then \(\varphi_p(X) \equiv \psi(X)^2 \pmod{\lambda}\). Applying Kummer’s theorem [Janusz 1996, Theorem 7.4], the polynomial \(\Phi_p(X)\) factors in exactly the same way in
\[(\mathbb{Z}/q\mathbb{Z})[X] \cong (\mathbb{C}_{K_n}/\lambda)[X],\]
as \(q\mathbb{Z}[\zeta_p]\) factors in \(\mathbb{Z}[\zeta_p]\). However, the distinctness of the primes \(p\) and \(q\) implies that \(q\mathbb{Z}[\zeta_p]\) does not ramify, giving a contradiction. Thus, we conclude that
\[\left(\frac{q}{p}\right)_2n \equiv \left(\frac{\beta}{\lambda}\right) \pmod{\lambda},\]
which reduces to an equality since the residue symbols only take on the values \(\pm 1\).

While this reciprocity law may not appear to be rational, given the existence of the quadratic residue symbol, it can be identified with a Legendre symbol. Namely, the element \(\beta\) is a coset representative in \(\mathbb{C}_{K_n}/\lambda \cong \mathbb{Z}/q\mathbb{Z}\), and since \(0, 1, \ldots, q - 1\) represent distinct cosets in \(\mathbb{C}_{K_n}/\lambda\), we have \(\beta \equiv a \pmod{\lambda}\) for some unique element \(a \in \{1, 2, \ldots, q - 1\}\). Thus, we have
\[\left(\frac{\beta}{\lambda}\right) = \left(\frac{a}{\lambda}\right),\]
and since Theorem 1 is independent of the choice of prime \(\lambda\) above \(q\), we may write
\[\left(\frac{\beta}{\lambda}\right) = \left(\frac{a}{q}\right)\]In this capacity, Theorem 1 may be viewed as a rational reciprocity law.

We chose the polynomial-based proof given for Theorem 1 because it highlights the significance of Kummer’s theorem, relating the factoring of minimal polynomials in function fields to that of prime ideals in number fields. We note that Theorem 1 can also be proved in an analogous way to Lemmermeyer’s proof of the all-encompassing rational quartic reciprocity law in [Lemmermeyer 1994].
3. Generalizing Burde’s law

Since Theorem 1 is a generalization of the all-encompassing rational quartic reciprocity law in [Lemmermeyer 1994], the rational quartic laws of Scholz [1934], Lehmer [1958; 1978] and Burde [1969] all follow by picking appropriate primitive elements for K_4. In this section, we show that Theorem 1 implies a generalization of Burde’s law that differs from the known generalizations. Before giving the general case, we recall Lemmermeyer’s proof [2000] of Burde’s law for motivation.

Assume that $p \equiv q \equiv 1 \pmod{4}$ are distinct primes, so we can write $p = a^2 + b^2$ and $q = A^2 + B^2$ with $2 \nmid aA$. We also assume that $(p/q) = 1$. A few simple consequences of these conditions that can be checked directly are

$$\left(\frac{A}{q}\right) = 1 \quad \text{and} \quad \left(\frac{2B}{q}\right) = 1.$$

Lemmermeyer argued that $K_4 = \mathbb{Q}(\sqrt{\beta_4})$, where

$$\beta_4 = pq + (b(A^2 - B^2) + 2aAB)\sqrt{p}.$$

Then we see that

$$\left(\frac{\beta_4}{q}\right) \equiv \beta_4^{(q-1)/2} \equiv (b(A^2 - B^2) + 2aAB)^{(q-1)/2}p^{(q-1)/4} \pmod{q}$$

$$\equiv (-2bB^2 + 2aAB)^{(q-1)/2}\left(\frac{p}{q}\right)_4 \pmod{q}$$

$$\equiv (-2B(b-bA))^{(q-1)/2}\left(\frac{p}{q}\right)_4 \pmod{q}$$

$$\equiv \left(\frac{-2B}{q}\right)\left(\frac{b-bA}{q}\right)^{(q-1)/2}\left(\frac{p}{q}\right)_4 \pmod{q}$$

$$\equiv \left(\frac{b-bA}{q}\right)\left(\frac{p}{q}\right)_4 \pmod{q}.$$

Thus, from Theorem 1, we obtain Burde’s law:

$$\left(\frac{p}{q}\right)_4 \left(\frac{q}{p}\right)_4 = \left(\frac{b-bA}{q}\right).$$

Note that Burde’s law is independent of the choices of signs of a, b, A, and B.

We now describe a primitive element for K_{2^t}, when $t \geq 2$, analogous to $\sqrt{\beta_4}$ used above for K_4.

Theorem 2. Let $p \equiv q \equiv 1 \pmod{2^t}$ be distinct primes with $t \geq 2$ such that $p = a^2 + b^2$ and $q = A^2 + B^2$ with $2 \nmid aA$. If $\beta_4 = pq + (b(A^2 - B^2) + 2aAB)\sqrt{p}$, then a primitive element for K_{2^t} can be defined recursively for $t > 2$ by

$$\beta_{2^t} = (q\sqrt{p} + (b(A^2 - B^2) + 2aAB))\sqrt{\beta_{2^{t-1}}},$$

with $K_{2^t} = \mathbb{Q}(\sqrt{\beta_{2^t}})$.
Proof. Our proof proceeds by using (weak) induction on \(t \geq 2 \) following Lemmermeyer’s approach [Lemmermeyer 1994] in the quartic case (and as our starting point when \(t = 2 \)). Assume that the theorem holds for the \(2^{t-1} \) case with \(K_{2^{t-1}} = \mathbb{Q}(\sqrt[2]{\beta_{2^{t-1}}}) \) and let

\[
\alpha_{2^t} = q\sqrt{p}\sqrt{\beta_{2^{t-1}}}, \quad \gamma = (b(A^2 - B^2) + 2aAB), \quad \delta = (a(A^2 - B^2) - 2bAB).
\]

It is easily checked that \(\alpha_{2^t}, \gamma, \) and \(\delta \) are pairwise relatively prime and that

\[
\alpha_{2^t}^2 = \beta_{2^{t-1}}(\gamma^2 + \delta^2).
\]

From the identity

\[
2(\alpha_{2^t} + \gamma \sqrt{\beta_{2^{t-1}}})(\alpha_{2^t} + \delta \sqrt{\beta_{2^{t-1}}}) = (\alpha_{2^t} + \gamma \sqrt{\beta_{2^{t-1}} + \delta \sqrt{\beta_{2^{t-1}}}})^2,
\]

we see that

\[
K_{2^t} := \mathbb{Q}\left(\sqrt{\alpha_{2^t} + \gamma \sqrt{\beta_{2^{t-1}}}}\right) = \mathbb{Q}\left(\sqrt{2(\alpha + \delta \sqrt{\beta_{2^{t-1}}}}\right).
\]

Thus, the only primes that can possibly ramify in \(K_{2^t}/K_{2^{t-1}} \) are \(2 \) and any common divisors of

\[
\alpha_{2^t}^2 - \beta_{2^{t-1}}\gamma^2 = \beta_{2^{t-1}}\delta^2 \quad \text{and} \quad \alpha_{2^t}^2 - \beta_{2^{t-1}}\delta^2 = \beta_{2^{t-1}}\gamma^2.
\]

Since \(\delta \) and \(\gamma \) are relatively prime, the only odd primes that can ramify are divisors of \(\beta_{2^{t-1}} \). However, any such prime would have to have ramified in \(\mathbb{Q}(\sqrt[2]{\beta_{2^{t-1}}}) \) and by our inductive hypothesis, only \(p \) ramified there. Thus, \(p \) is the only odd prime that ramifies in \(K_{2^t}/K_{2^{t-1}} \).

Finally, we must argue that \(2 \) does not ramify. Lemmermeyer [1994] showed the case \(t = 2 \), that is, \(\beta_4 \equiv 1 \pmod{4} \). As our inductive hypothesis, we assume that \(\beta_{2^{t-1}} \equiv 1 \pmod{4} \). Then the congruences

\[
\sqrt{\beta_{2^{t-1}}} \equiv \pm 1 \pmod{4}, \quad \sqrt{p} \equiv \pm 1 \pmod{4}, \quad q \equiv 1 \pmod{4}
\]

and the fact that \(\gamma \) is even show that \(\beta_{2^t} \equiv \sqrt{\beta_{2^{t-1}}}(q\sqrt{p} + \gamma) \equiv \pm 1 \pmod{4} \). By Stickelberger’s discriminant relation [Ribenboim 2001, Section 6.3], the discriminant of an algebraic number field is 0, 1 \(\pmod{4} \). Thus, \(\beta_{2^t} \equiv 1 \pmod{4} \) and we conclude that \(2 \) does not ramify in \(K_{2^t}/K_{2^{t-1}} \). Since \(p \) is the only prime that ramifies in the abelian Galois extension \(K_{2^t}/\mathbb{Q} \), \(K_{2^t} \) is the unique subfield of \(\mathbb{Q}(\zeta_p) \) of degree \(2^t \) over \(\mathbb{Q} \) by the theorem of Kronecker and Weber [Ribenboim 2001, Section 15.1].

Using the reciprocity law given in Theorem 1 with the choice of primitive element for \(K_{2^t} \) given in Theorem 2, we obtain the following \(2^t \)th generalization of Burde’s law, which is also independent of the choices of signs of \(a, b, A, \) and \(B \).
Theorem 3. Let $p \equiv q \equiv 1 \pmod{2^t}$ be distinct primes with $t \geq 2$ such that
\[p = a^2 + b^2 \quad \text{and} \quad q = A^2 + B^2, \]
with $2 \nmid aA$. If
\[(\frac{p}{q})_{2^{t-1}} = (\frac{q}{p})_{2^{t-1}} = 1, \]
then
\[(\frac{p}{q})_{2^t} \cdot (\frac{q}{p})_{2^t} = (\frac{2B(bB - aA)}{q})_{2^{t-1}}. \]

Proof. Once again, we use an inductive argument with Lemmermeyer’s proof of Burde’s law as a starting point. With regard to Theorem 1, assuming that Theorem 3 is true for the $t - 1$ case is equivalent to assuming that
\[(\frac{\beta_{2^{t-1}}}{q}) = (\frac{2B(bB - aA)}{q})_{2^{t-2}} (\frac{p}{q})_{2^{t-1}}. \]
Letting $(\frac{p}{q})_{2^{t-1}} = (\frac{q}{p})_{2^{t-1}} = 1$, we then obtain, for $t > 2$,
\[(\frac{q}{p})_{2^t} = \beta_{2^t}^{(q-1)/2} = \beta_{2^t}^{(q-1)/4}(b(A^2 - B^2) + 2aAB)^{(q-1)/2} \pmod{q} \]
\[\equiv \left(\frac{2B(bB - aA)}{q}\right)_{2^{t-1}} (\frac{p}{q})_{2^t} \left(\frac{2B(bB - aA)}{q}\right) \pmod{q} \]
\[\equiv \left(\frac{2B(bB - aA)}{q}\right)_{2^{t-1}} (\frac{p}{q})_{2^t} \pmod{q}. \]
Since all of the rational residue symbols take on only the values ± 1, we may drop the congruence and conclude the statement of Theorem 3. \qed

Perhaps the other known generalizations of Burde’s law also follow as consequences of Theorem 1. At this time, we have not been able to find suitable primitive elements to prove such implications.

References

RATIONAL RESIDUACITY OF PRIMES

Received: 2009-04-27 Accepted: 2010-09-20

mrbudden@email.wcu.edu Department of Mathematics and Computer Science, Western Carolina University, Cullowhee, NC 28723, United States

ac0428@students.armstrong.edu Department of Mathematics, Armstrong Atlantic State University, 11935 Abercorn St., Savannah, GA 31419, United States

ke3203@students.armstrong.edu Department of Mathematics, Armstrong Atlantic State University, 11935 Abercorn St., Savannah, GA 31419, United States

ss7965@students.armstrong.edu Department of Mathematics, Armstrong Atlantic State University, 11935 Abercorn St., Savannah, GA 31419, United States
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gracefulness of families of spiders</td>
<td>Patrick Bahls, Sara Lake and Andrew Wertheim</td>
<td>241</td>
</tr>
<tr>
<td>Rational residuacity of primes</td>
<td>Mark Budden, Alex Collins, Kristin Ellis Lea and Stephen Savioli</td>
<td>249</td>
</tr>
<tr>
<td>Coexistence of stable ECM solutions in the Lang–Kobayashi system</td>
<td>Ericka Mochan, C. Davis Buenger and Tamás Wiandt</td>
<td>259</td>
</tr>
<tr>
<td>A complex finite calculus</td>
<td>Joseph Seaborn and Philip Mummert</td>
<td>273</td>
</tr>
<tr>
<td>$\zeta(n)$ via hyperbolic functions</td>
<td>Joseph D’Avanzo and Nikolai A. Krylov</td>
<td>289</td>
</tr>
<tr>
<td>Infinite family of elliptic curves of rank at least 4</td>
<td>Bartosz Naskręcki</td>
<td>297</td>
</tr>
<tr>
<td>Curvature measures for nonlinear regression models using continuous</td>
<td>Timothy O’Brien, Somsri Jamroenpinyo and Chinnaphong Bumrungsup</td>
<td>317</td>
</tr>
<tr>
<td>applications to optimal experimental design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical semigroups from open intervals</td>
<td>Vadim Ponomarenko and Ryan Rosenbaum</td>
<td>333</td>
</tr>
<tr>
<td>Distinct solution to a linear congruence</td>
<td>Donald Adams and Vadim Ponomarenko</td>
<td>341</td>
</tr>
<tr>
<td>A note on nonresidually solvable hyperlinear one-relator groups</td>
<td>Jon P. Bannon and Nicolas Noblett</td>
<td>345</td>
</tr>
</tbody>
</table>