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Given a surface of revolution with boundary, we study the extrinsic energy
of smooth tangent unit-length vector fields. Fixing continuous tangent unit-
length vector fields on the boundary of the surface of revolution, we ask if there
is a unique smooth tangent unit-length vector field continuously achieving the
boundary data and minimizing energy amongst all smooth tangent unit-length
vector fields also continuously achieving the boundary data.

1. Introduction

Let S be a surface of revolution given by the parametrization

8(θ, t)= (r(t) cos θ, r(t) sin θ, t), θ ∈ R, t ∈ (0, h),

where r(t)∈C∞([0, h]) is positive in [0, h]. Let X1(S) be the set of smooth tangent
unit-length vector fields on S. For V ∈X1(S) we define the extrinsic energy of V
to be

E(V )=
∫∫

S
|DV |2 d Area,

where DV is the differential of the map V : S→ R3. Using the parametrization
8, we get

E(V )=
∫ h

0

∫ 2π

0

(
r(t)√

1+ r ′(t)2

) ∣∣∣∣∂V
∂t

∣∣∣∣2+(
√

1+ r ′(t)2

r(t)

) ∣∣∣∣∂V
∂θ

∣∣∣∣2 dθ dt.

Suppose V0 and Vh are continuous unit-length tangent vector fields, defined
respectively on {8(θ, 0) : θ ∈ R} and {8(θ, h) : θ ∈ R}. For V ∈ X1(S), we

MSC2000: primary 53A05; secondary 49Q99.
Keywords: calculus of variations, energy, first variation, vector fields, surfaces of revolution.
This research was supported by National Science Foundation grant DMS-0739420.

435

http://msp.org
http://msp.org/involve/
https://doi.org/10.2140/involve.2010.3-4


436 DIGILOV/EGGERT/HARDT/HART/JAUCH/LEWIS/LOFTIS/MEHTA/PEREZ/ROSALES/SHAH/WOLF

write V |∂S = V0, Vh if V continuously achieves the boundary data V0, Vh on S.
Precisely, V |∂S = V0, Vh if for every ϑ ∈ R we have

lim
(θ,t)→(ϑ,0)

V (8(θ, t))= V0(8(ϑ, 0)), lim
(θ,t)→(ϑ,h)

V (8(θ, t))= Vh(8(ϑ, h)).

We pose the following question: Suppose V0 and Vh are continuous unit-length
tangent vector fields defined respectively on {8(θ, 0) : θ ∈R} and {8(θ, h) : θ ∈R}.
Does there exist a unique V ∈ X1(S) with V |∂S = V0, Vh so that E(V ) < E(Ṽ )
for any other Ṽ ∈ X1(S) with Ṽ |∂S = V0, Vh?

We give partial answers to the question of existence and uniqueness. Theorem
3.2 shows the existence of minimizers for a certain class of boundary data, and
Theorem 4.1 allows us to conclude uniqueness in a parametric sense in general,
and outright for the case of the unit cylinder with horizontal boundary data (see
Corollary 5.2). Only first-year graduate analysis is needed for most of the results,
although some references to regularity of weak solutions to ordinary differential
equations and approximations by smooth functions in W 1,2 is mentioned in the
proofs of Theorem 3.2 and Theorem 5.1.

We describe the effect of the shape of S on the minimizer. Observe that where
r ′(t) is large ∂V/∂t can be large in magnitude without paying much in energy.
Hence, we can seek to minimize energy by letting V not vary much from the
boundary data near t = 0, h, and then where r ′(t) is large we let V quickly change
to a vector field of low energy. In the case of the unit cylinder, Figure 2 (page 448)
shows that it is best to steadily homotopy between the boundary data. However,
for the surface given by r(t) = sin t + 2 (Figure 3, right), it is better to homotopy
to a vector field with low energy in the regions where r ′(t) is large, as suggested
by Figure 3, left. This illustrates that the ∂V/∂t term is important, and so we list
t-derivatives first in our calculations.

In case of the cylinder r(t)= 1 with height h, replacing DV with the covariant
derivative of V leaves us to study 2π -periodic harmonic functions defined over
R× (0, h). In general, intrinsic energy of unit vector fields is also called total
bending, and has been studied in the more general setting of Riemannian man-
ifolds of any dimension; see [Wiegmink 1995] for an introduction. In [Borrelli
et al. 2003], for example, it is shown that the infimum intrinsic energy in the odd-
dimensional sphere S2k+1 for k ≥ 2 is given by the energy of the horizontal tangent
unit vector field defined on S2k+1 except at two antipodal points {P,−P}. This
value, however, is not attained by any smooth tangent unit vector field over S2k+1

as shown in [Brito and Walczak 2000].
Minimizing the extrinsic energy over all smooth vector fields can be studied

using similar techniques, as will follow. Although the set of vector fields over
which we must minimize is larger, we avoid the difficulties arising in the unit-length
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case by the necessity to work with the angle functions ϕ introduced in Section 2.
Instead, denoting by V a tangent vector field on S and using the parametrization
V = a(θ, t)8t+b(θ, t)8θ , we work directly with the smooth functions a, b in the
general case.

2. First variation

We derive a partial differential equation which a minimizing V must solve, using
a standard technique from the calculus of variations. First, given V ∈ X1(S) we
can find a function ϕ(θ, t) so that

V (θ, t)=

(
− sin θ cosϕ
cos θ cosϕ

0

)
+

1√
1+ r ′(t)2

( r ′(t) cos θ sinϕ
r ′(t) sin θ sinϕ

sinϕ

)
.

Thus, ϕ(θ, t)measures the angle between V (θ, t) and the horizontal tangent vector
field (− sin θ, cos θ, 0). Our choice of angle function ϕ is not unique, and may be
chosen to be discontinuous. This occurs for example in the proof of Theorem 5.1.
Choosing ϕ continuous may require us to make |ϕ| large. However, sinϕ, cosϕ,
and sin 2ϕ will be smooth in R×(0, h), continuous even at t=0, h, and independent
of ϕ. Using smoothness of sinϕ, cosϕ we can define ϕt , ϕθ smooth in R× (0, h)
and independent of ϕ. Whenever V is given by an angle function ϕ, we shall write
V = V (ϕ).

For V = V (ϕ), we can write the energy E(V )= E(ϕ) in terms of ϕ:

E(ϕ)=
∫ h

0

∫ 2π

0
T (t)(ϕt)

2
+2(t)(ϕθ )2 dθ dt

+

∫ h

0

∫ 2π

0
Pc(t) cos2 ϕ+ Ps(t) sin2 ϕ+ Q(t) dθ dt (2-1)

where

T (t)=
r(t)√

1+ r ′(t)2
, 2(t)=

1+ r ′(t)2(3+ 3r ′(t)2+ r ′(t)4)
r(t)(1+ r ′(t)2)5/2

,

Pc(t)=
1+ 4r ′(t)2+ 2r ′(t)4

r(t)(1+ r ′(t)2)5/2
, Ps(t)=

2r(t)2r ′′(t)2

r(t)(1+ r ′(t)2)5/2
,

and Q(t)=
r ′(t)2

r(t)
√

1+ r ′(t)2
.

If V = V (ϕ) minimizes energy on S with respect to the boundary data V0, Vh ,
then let η ∈C∞c ((0, 2π)×(0, h)) (that is, a smooth function with compact support
in (0, 2π)× (0, h)). We then let V s

∈X1(S) be the vector field given by the angle
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function ϕ+ sη. Then E(V s) achieves a minimum at s = 0, and so

d
ds

E(V s)

∣∣∣
s=0
= 0.

Differentiating (2-1) under the integral with respect to s gives:∫ h

0

∫ 2π

0
2T (t)ϕtηt + 22(t)ϕθηθ − ((Pc(t)− Ps(t)) sin 2ϕ)η dθ dt = 0.

Since η has compact support in (0, 2π)× (0, h), we may use integration by parts
in the first and second terms to get∫ h

0

∫ 2π

0
[−2(T (t)ϕt)t − 2(2(t)ϕθ )θ − (Pc(t)− Ps(t)) sin 2ϕ]η dθ dt = 0.

We thus have that ϕ must satisfy the second-order partial differential equation:

(T (t)ϕt)t + (2(t)ϕθ )θ + (Pc(t)− Ps(t))
(sin 2ϕ

2

)
= 0, (2-2)

which we call the Euler–Lagrange equation associated to the energy E(ϕ).
In case of the cylinder C with r(t)= 1 and height h, the energy (2-1) becomes

E(ϕ)=
∫ h

0

∫ 2π

0
(ϕt)

2
+ (ϕθ )

2
+ cos2 ϕ dθ dt.

Equation (2-2) in this case is

ϕt t +ϕθθ +
sin 2ϕ

2
= 0,

for which the only constant solutions are ϕ = kπ/2 with k ∈ Z. Although when
k is odd E(kπ/2) = 0, we can show by example that for large h the horizontal
vector field ϕ = π is not a minimizer. Corollary 5.2 will show that for h <

√
8 the

horizontal vector field is a minimizer, and it remains to find the largest h0 so that
this true for all h < h0.

The equation

ϕt t +ϕθθ +
sin 2ϕ

2
= 0

is a special case of a form of equations called the sine-Gordon equations, which
arise in differential geometry and various areas of physics. This particular form
arises in the study of ferromagnetics in physics; see [Chen et al. 2004] for example,
and in the study of harmonic maps in differential geometry, see [Hu 1982].
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3. Existence

In this section we aim to prove the existence of minimizers with boundary data
V0,Vh which make a constant angle with the horizontal vector field (−sin θ,cos θ,0).

Lemma 3.1. Suppose V0, Vh are continuous tangent unit-length boundary data on
∂S such that each can be written using a constant angle function. Let V ∈ X1(S)

with V |∂S=V0, Vh and V =V (ϕ). If ϕθ 6≡ 0, then there is a vector field Ṽ ∈X1(S)

with Ṽ |∂S = V0, Vh so that E(Ṽ ) < E(V ), and so that we can write Ṽ = Ṽ (ϕ̃)
where ϕ̃ ∈ C([0, h])∩C∞((0, h)) and ϕ̃(0) ∈ [0, 2π).

Proof. Suppose E(V )<∞, otherwise we simply take Ṽ = Ṽ (ϕ0+(t/h)(ϕh−ϕ0))

where ϕ0 ∈ [0, 2π), ϕh are constants so that the boundary data V0 = V0(ϕ0) and
Vh = Vh(ϕh). Let V = V (ϕ), we thus have

∫ h
0

∫ 2π
0 2(t)(ϕθ )2 dθ dt > 0. Consider

the integrable function

f (θ)=
∫ h

0
T (t)(ϕt)

2
+ Pc(t) cos2 ϕ+ Ps(t) sin2 ϕ+ Q(t) dt.

We then have infθ∈[0,2π) f (θ) <∞. Choose θ0 ∈ [0, 2π) so that

f (θ0) < inf
θ∈[0,2π)

f (θ)+
1

2π

∫ h

0

∫ 2π

0
2(t)(ϕθ )2 dθ dt.

Define ϕ̃(θ, t)= ϕ(θ0, t), and let Ṽ = Ṽ (ϕ̃) ∈X1(S). Evidently Ṽ |∂S = V0, Vh

and

E(V )=
∫ 2π

0
f (θ) dθ+

∫ h

0

∫ 2π

0
2(t)(ϕθ )2 dθ dt >

∫ 2π

0
f (θ0) dθ = E(ϕ̃)= E(Ṽ ).

Since ϕ̃ only depends on t , we can redefine ϕ̃ so that

ϕ̃ ∈ C([0, h])∩C∞((0, h)).

We can also translate by some 2πk with k ∈Z, without changing the energy E(ϕ̃),
so that ϕ̃(0) ∈ [0, 2π). �

Theorem 3.2. Suppose V0 = V0(ϕ0), Vh = Vh(ϕh) are continuous tangent unit-
length boundary data on ∂S, where ϕ0, ϕh are constants. Then there exists

V ∈ X1(S), with V |∂S = V0, Vh,

minimizing energy. Moreover,

V = V (ϕ), with ϕ ∈ C∞([0, h]).
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Proof. The argument follows the proof of the existence of minimizers to the Dirich-
let energy using weak compactness [Evans 1998, Section 8.2]. Let

E = inf{E(V ) : V ∈ X1(S), V |∂S = V0, Vh},

note that E <∞. Define CE+1 to be the set of ϕ ∈ C([0, h])∩C∞((0, h)) with
energy E(ϕ) ≤ E + 1 and ϕ(0) ∈ [0, 2π) so that V (ϕ)|∂S = V0, Vh . By Lemma
3.1 it suffices to show E = infϕ∈CE+1 E(ϕ) is attained. Let C E+1 be the closure of
CE+1 in L2([0, h]).

Lemma 3.3. Every ϕ ∈ C E+1 is continuous in [0, h] with a weak derivative in
L2([0, h]). Moreover, we can find a sequence ϕk ∈ CE+1 converging uniformly
to ϕ.

Proof. Take a sequence ϕk ∈ CE+1. Let Tmin = mint∈[0,h] T (t). It follows that the
ϕk are equicontinuous in [0, 1], since by Cauchy–Schwartz

|ϕk(x)−ϕk(y)| =
∣∣∣∫ y

x
(ϕk)t dt

∣∣∣≤√|x − y|
(∫ h

0
((ϕk)t)

2 dt
)1/2

=
√
|x − y|

(∫ h

0

T (t)
Tmin
· ((ϕk)t)

2 dt
)1/2
≤

√
E+1
Tmin
·
√
|x − y|.

Since 0 ≤ ϕk(0) < 2π , there is by Arzelà–Ascoli a subsequence of the ϕk having
a uniformly convergent subsequence. Therefore C E+1 ⊆ C([0, h]).

Let η ∈ C∞c ((0, 1)) and ϕ ∈ C E+1 with ϕk ∈ CE+1 converging uniformly to ϕ.
Then ∫ h

0
ϕηt dt = lim

k→∞

∫ h

0
ϕkηt dt =− lim

k→∞

∫ h

0
(ϕk)tη dt.

However, note that the sequence (ϕk)t is a bounded sequence in L2([0, h]). By
Alaoglu’s theorem, a subsequence of the (ϕk)t converges weakly to some

ϕt ∈ L2([0, h]).

We therefore have ∫ h

0
ϕηt dt =−

∫ h

0
ϕtη dt,

and so ϕ has weak derivative ϕt in L2([0, h]). �

Returning to the proof of Theorem 3.2, given ϕ ∈C E+1 we can define the energy
E(ϕ) by

E(ϕ)= 2π
∫ h

0
T (t)(ϕt)

2
+ Pc(t) cos2 ϕ+ Ps(t) sin2 ϕ+ Q(t) dt,
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where ϕt is the weak derivative in L2([0, h]) of ϕ. Also define

EC E+1
= inf
ϕ∈C E+1

E(ϕ),

so that EC E+1
≤ E .

We show there is a ϕ ∈C E+1 with E(ϕ)= EC E+1
. Take a sequence ϕk ∈C E+1 so

that E(ϕk)↘ EC E+1
. The sequence ϕk will also be equicontinuous with ϕk(0) ∈

[0, 2π), and hence a subsequence will converge uniformly to some ϕ ∈ C E+1.
Arguing as in Lemma 3.3, we can show (ϕk)t→ϕt weakly in L2([0, h]), and since
T (t) is bounded in [0, h], we have T (t)

1
2 (ϕk)t→ T (t)

1
2ϕt weakly in L2([0, h]) as

well. From this it follows that∫ h

0
T (t)(ϕt)

2 dt ≤ lim
k→0

∫ h

0
T (t)((ϕk)t)

2 dt,

and since ϕk→ ϕ uniformly, we can show∫ h

0
Pc(t) cos2 ϕk + Ps(t) sin2 ϕk dt→

∫ h

0
Pc(t) cos2 ϕ+ Ps(t) sin2 ϕ dt.

We therefore have E(ϕ)≤ limk→∞ E(ϕk)= EC E+1
, and so E(ϕ)= EC E+1

.
Now, taking ϕ, let η ∈C∞c ((0, h)) and consider ϕs = ϕ+ sη. Although we may

not have ϕs ∈ C E+1, observe that ϕ still minimizes the energy over the closure in
L2([0, h]) of the set of functions ϕ as in CE+1 except with E(ϕ) ≤ E + 2. We
can thus conclude E(ϕ) ≤ E(ϕs) for all sufficiently small s. As in computing the
Euler–Lagrange equation (2-2), we have that ϕ is a weak solution to the second-
order ODE in (0, h):

(T (t)ϕt)t + (Pc(t)− Ps(t))
sin 2ϕ

2
= 0,

meaning that for any η ∈ C∞c ((0, h)) we have∫ h

0
T (t)ϕt · ηt + (Pc(t)− Ps(t))

sin 2ϕ
2
· η dt = 0.

Using standard regularity theory [Evans 1998, Section 6.3, Theorems 1 and 2], we
conclude that ϕ ∈ C∞([0, h]). �

4. Uniqueness

The following theorem will allow us to conclude uniqueness in certain circum-
stances. Let

Tmin = min
t∈[0,h]

T (t),2min = min
t∈[0,h]

2(t), Pc−s = sup
t∈[0,h]

|Pc(t)− Ps(t)|.
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Theorem 4.1. Let 0< h <
√

8(Tmin+2min)

Pc−s
, and suppose that

ϕ ∈ C1(R×[0, h])∩C2(R× (0, h))

is 2π -periodic in θ and satisfies the Euler–Lagrange equation (2-2) in (0, 2π)×
(0, h). Then ϕ is uniquely determined by its boundary values ϕ(θ, 0), ϕ(θ, h).

The requirement that ϕ(θ, t) is 2π -periodic in θ geometrically means that for
each fixed t ∈ [0, h], as θ increases from 0 to 2π the vector field V = V (ϕ(θ, t))
spins clockwise as many times as it does counterclockwise as measured from the
horizontal vector field (− sin θ, cos θ, 0).

To prove the theorem we need first the following Poincaré inequality:

Lemma 4.2. Suppose ϕ ∈ C1(R× [0, h]) satisfies ϕ(θ, 0) = ϕ(θ, h) = 0 for each
θ ∈ R. Then ∫ h

0

∫ 2π

0
ϕ2 dθ dt ≤

h2

8

∫ h

0

∫ 2π

0
(ϕt)

2
+ (ϕθ )

2 dt dθ.

Proof. Writing

ϕ(θ, t)=
∫ t

0

∂

∂s
ϕ(θ, s) ds =−

∫ h

t

∂

∂s
ϕ(θ, s) ds,∫ h

0
ϕ2 dt =

∫ h/2

0
ϕ2 dt +

∫ h

h/2
ϕ2 dt,

we have ∫ h

0
ϕ2 dt =

∫ h/2

0

(∫ t

0

∂ϕ

∂s
ds
)2

dt +
∫ h

h/2

(∫ h

t

∂ϕ

∂s
ds
)2

dt.

Using Cauchy–Schwartz,∫ h

0
ϕ2dt ≤

∫ h/2

0
t
(∫ t

0

(∂ϕ
∂s

)2
ds
)

dt +
∫ h

h/2
(h− t)

(∫ h

t

(∂ϕ
∂s

)2
ds
)

dt

≤

∫ h/2

0
(ϕt)

2
+ (ϕθ )

2 dt
∫ h/2

0
t dt +

∫ h

h/2
(ϕt)

2
+ (ϕθ )

2 dt
∫ h

h/2
(h− t) dt,

which gives
∫ h

0 ϕ
2 dt ≤ 1

8 h2
∫ h

0 ϕ
2
t + ϕ

2
θ dt . Integrating with respect to θ gives the

result. �

Proof of Theorem 4.1. Suppose ϕ1, ϕ2 ∈ C1(R × [0, h]) ∩ C2(R × (0, h)) are
solutions to (2-2), both 2π -periodic in θ and satisfying

ϕ1(θ, 0)= ϕ2(θ, 0), ϕ1(θ, h)= ϕ2(θ, h).
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Multiplying

(T (t)(ϕ1−ϕ2)t)t + (2(t)(ϕ1−ϕ2)θ )θ + (Pc(t)− Ps(t))
(sin 2ϕ1

2
−

sin 2ϕ2

2

)
= 0

by ϕ1−ϕ2 and integrating gives∫ h

0

∫ 2π

0

[
(T (t)(ϕ1−ϕ2)t)t + (2(t)(ϕ1−ϕ2)θ )θ

]
(ϕ1−ϕ2)

+(Pc(t)− Ps(t))
(sin 2ϕ1

2
−

sin 2ϕ2

2

)
(ϕ1−ϕ2) dθ dt = 0.

Since (ϕ1− ϕ2)(θ, 0)= (ϕ1− ϕ2)(θ, h)= 0 and ϕ1, ϕ2 are 2π -periodic in θ , then
integration by parts gives:∫ h

0

∫ 2π

0
T (t)((ϕ1−ϕ2)t)

2
+2(t)((ϕ1−ϕ2)θ )

2 dθ dt

=

∫ h

0

∫ 2π

0
(Pc(t)− Ps(t))

(sin 2ϕ1

2
−

sin 2ϕ2

2

)
(ϕ1−ϕ2) dθ dt.

We now use the inequality | sin x − sin y| ≤ |x − y| to get

(Tmin+2min)

∫ h

0

∫ 2π

0
((ϕ1−ϕ2)t)

2
+ ((ϕ1−ϕ2)θ )

2 dθ dt

≤ Pc−s

∫ h

0

∫ 2π

0
(ϕ1−ϕ2)

2 dθ dt.

Lemma 4.2 now implies∫ h

0

∫ 2π

0
((ϕ1−ϕ2)t)

2
+ ((ϕ1−ϕ2)θ )

2 dθ dt

≤
Pc−s

(Tmin+2min)

h2

8

∫ h

0

∫ 2π

0
((ϕ1−ϕ2)t)

2
+ ((ϕ1−ϕ2)θ )

2 dθ dt.

When

h <

√
8(Tmin+2min)

Pc−s

we see that ϕ1 = ϕ2 must occur. �

Theorem 4.1 together with Lemma 3.1 imply the following corollary:

Corollary 4.3. Let

h <

√
8(Tmin+2min)

Pc−s

and take boundary data V0, Vh each with constant angle function. Suppose V =
V (ϕ) and Ṽ = Ṽ (ϕ̃) are minimizers with ϕ, ϕ̃ ∈ C∞([0, h]). If ϕ(0) = ϕ̃(0) and
ϕ(h)= ϕ̃(h), then ϕ = ϕ̃ and so V = Ṽ .
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For the boundary data V0 = V0(π/2) and Vh = Vh(−π/2), if V = V (ϕ) is
a minimizer then so is Ṽ = Ṽ (π − ϕ) 6= V . In the next section we show that
uniqueness holds without reference to the angle functions in certain cases.

5. Twisting in the unit cylinder

Recall that in a cylinder or in a frustum of a cone the vector field V = V (kπ/2)
with k odd minimizes energy over all vector fields in X1(S). This allows us to
show that minimizers ought not to “twist” too much, if the boundary data does not.
We show the case of the cylinder.

Theorem 5.1. Let V0 = V0(ϕ0) and Vh = Vh(ϕh) be continuous boundary data on
∂C. Suppose for some n ∈ Z and all θ ∈ R we have

nπ
2
−
π

2
< ϕ0(θ), ϕh(θ) <

nπ
2
+
π

2
.

Then for any ε > 0 and V ∈ X1(C) with V |∂C = V0, Vh and E(V ) < ∞, there
is Ṽ ∈ X1(C) with Ṽ |∂C = V0, Vh , E(Ṽ ) < E(V )+ ε, and so that we can write
Ṽ = Ṽ (ϕ̃) using an angle function ϕ̃ with nπ/2−π/2< ϕ̃ < nπ/2+π/2.

We remark that the calculation cos2(ϕ±nπ)= cos2(ϕ) is used in the proof; the
argument as given cannot be used in case ϕ0, ϕh have values in a period of length
π centered at an angle not of the form nπ/2 with n ∈ Z.

Proof. Take a vector field V ∈ X1(C) with boundary data V0, Vh , and write V =
V (ϕ) using an angle function satisfying nπ/2−π ≤ ϕ < nπ/2+π . We choose ϕ
to be smooth at all points where ϕ 6= nπ/2− π , so that in particular ϕ is smooth
near t = 0, h.

Suppose {(θ, t) : |ϕ(θ, t)−nπ/2| ≥ π/2} = {(θ, t) : cos(ϕ(θ, t)−nπ/2)≤ 0} is
a nonempty set. Applying Sard’s theorem to the smooth function cos(ϕ−nπ/2) in
[0, 2π ]×[0, h], we can choose θ1<π/2 so that |ϕ0(θ)−nπ/2|, |ϕh(θ)−nπ/2|<θ1

for all θ ∈ [0, 2π ] and so that {(θ, t) ∈ [0, 2π ]× [0, h] : |ϕ(θ, t)−nπ/2| = θ1} is a
finite collection of closed Jordan curves together with Jordan arcs with endpoints
at {0, 2π}× (0, h). See Figure 1 for example.

Let
A<θ1 = {(θ, t) ∈ (0, 2π)× (0, h) : |ϕ− nπ/2|< θ1}.

Necessarily, ϕ is smooth in A<θ1 . Also let A>θ1 = {(θ, t) ∈ (0, 2π) × (0, h) :
|ϕ− nπ/2|> θ1}. We then have A>θ1 ⊂ [0, 2π ]× (0, h) (see the shaded region in
Figure 1 for example).

Define the function

Rθ1 :

[nπ
2
−π,

nπ
2
+π

)
→

[nπ
2
− θ1,

nπ
2
+ θ1

]
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Figure 1. Sard’s theorem for ϕ(θ, t)− nπ/2 = ±θ1. In this case
ϕ is discontinuous in the shaded region, which is A>θ1 .

by

Rθ1(x)=



−
θ1

π − θ1

(
x −

(nπ
2
−π

))
+

nπ
2

for x ∈
[nπ

2
−π,

nπ
2
− θ1

]
,

x for x ∈
(nπ

2
− θ1,

nπ
2
+ θ1

]
,

−
θ1

π − θ1

(
x −

(nπ
2
+π

))
+

nπ
2

for x ∈
(nπ

2
+ θ1,

nπ
2
+π

)
.

Considering Rθ1(ϕ(θ, t)), we see that Rθ1 ◦ ϕ = ϕ for (θ, t) ∈ A<θ1 . Furthermore,
we can immediately see that Rθ1 ◦ ϕ is Lipschitz near every point with ϕ(θ, t) 6=
nπ/2−π . However, note that the function defined by{

ϕ(θ, t)+π if ϕ(θ, t) < nπ/2,

ϕ(θ, t)−π if ϕ(θ, t) > nπ/2,

is smooth at points where ϕ(θ, t) = nπ/2 − π . Hence, Rθ1 ◦ ϕ is Lipschitz in
(0, 2π)× (0, h).

Next, since Rθ1 ◦ ϕ is Lipschitz, it is differentiable almost everywhere [Evans
1998, Theorem 6, Section 5.8], and we may still define the energy of Rθ1 ◦ϕ by

E(Rθ1 ◦ϕ)=

∫ h

0

∫ 2π

0
((Rθ1 ◦ϕ)t)

2
+ ((Rθ1 ◦ϕ)θ )

2
+ cos2 Rθ1 ◦ϕ dθ dt.

Observe then that

E(Rθ1 ◦ϕ)=

∫
A<θ1

(ϕt)
2
+ (ϕθ )

2
+ cos2 ϕ dθ dt

+

( θ1

π − θ1

)2
∫

A>θ1

(ϕt)
2
+ (ϕθ )

2 dθ dt +
∫

A>θ1

cos2 Rθ1 ◦ϕ dθ dt.
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Choose a sequence θk ↗ π/2 so that we have regions A<θk , A>θk as above
(Sard’s theorem says this can be done for almost every θ near π/2). Note that
the sets A<θk → {|ϕ − (nπ/2)| < π/2}, A>θk → {|ϕ − (nπ/2)| ≥ π/2}, and the
functions Rθk◦ϕ→ Rπ/2◦ϕ pointwise. Since E(V )<∞we have, by the dominated
convergence theorem

lim
k→∞

E(Rθk ◦ϕ)=

∫
{|ϕ−(nπ/2)|<π/2}

(ϕt)
2
+ (ϕθ )

2
+ cos2 ϕ dθ dt

+

∫
{|ϕ−(nπ/2)|≥π/2}

(ϕt)
2
+ (ϕθ )

2 dθ dt +
∫
{|ϕ−(nπ/2)|≥π/2}

cos2 Rπ/2 ◦ϕ dθ dt.

Since

cos2
(
−

(
ϕ−

(nπ
2
−π

))
+

nπ
2

)
= cos2

(
−

(
ϕ−

(nπ
2
+π

))
+

nπ
2

)
= cos2 ϕ,

we have cos2 Rπ/2 ◦ϕ = cos2 ϕ. Thus limk→∞ E(Rθk ◦ϕ)= E(V ).
Note that Rθk ◦ϕ is Lipschitz with derivatives in L2

loc(R×[0, h]). In other words,

Rθk ◦ϕ ∈W 1,2
loc (R×[0, h])

(see [Evans 1998, Section 5.2.2]) and we can find a θ -periodic function

ϕ∞ ∈ C(R×[0, h])∩C∞(R× (0, h)),

so that ‖(Rθk ◦ ϕ) − ϕ
∞
‖W 1,2([0,2π ]×[0,h]) is as small as we please. For this, see

[Evans 1998, Section 5.3]; in particular we can apply Theorem 3 of Section 5.3.3
to a bounded smooth region U ⊂ R× (0, h) containing (0, 2π)× (0, h), and we
can ensure our approximating functions are θ -periodic.

However, ϕ∞ may not have the correct boundary data, and so we fix ϕ∞ as
follows. Choose σ > 0 so that Rθk ◦ ϕ = ϕ for t ∈ [0, 2σ) ∪ (h − 2σ, h]. Pick
a smooth function g with 0 ≤ g ≤ 1 so that g(t) = 1 for t ∈ [0, σ ) ∪ (h − σ, h],
g(t)= 0 for t ∈ (2σ, h− 2σ), and |g′(t)| ≤ 2/σ . Define

ϕ̃(θ, t)= g(t)Rθk (ϕ(θ, t))+ (1− g(t))ϕ∞(θ, t).

We now compute E(ϕ̃). First,

ϕ̃t = (ϕ
∞)t + gt((Rθk ◦ϕ)−ϕ

∞)+ g((Rθk ◦ϕ)−ϕ
∞)t .

By the inequality (x + y)2 ≤ (1+ ε)x2
+ ((ε+ 1)/ε)y2 we have

(ϕ̃t)
2
≤ (1+ ε)((ϕ∞)t)2+

(ε+ 1
ε

)(
gt((Rθk ◦ϕ)−ϕ

∞)+ g((Rθk ◦ϕ)−ϕ
∞)t

)2
.

Then (x + y)2 ≤ 2x2
+ 2y2 along with |gt | ≤ 2/σ imply

(ϕ̃t)
2
≤ (1+ε)((ϕ∞)t)2+

(ε+ 1
ε

)( 8
σ 2 ((Rθk ◦ϕ)−ϕ

∞)2+2(((Rθk ◦ϕ)−ϕ
∞)t)

2
)
.
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Second, we similarly have

(ϕ̃θ )
2
≤ (1+ ε)((ϕ∞)θ )2+

(ε+ 1
ε

)
(((Rθk ◦ϕ)−ϕ

∞)θ )
2.

Third, since |cos2 x − cos2 y| ≤ 2|x − y|, we have

cos2 ϕ̃ ≤ cos2 ϕ∞+ 2|(Rθk ◦ϕ)−ϕ
∞
|.

We therefore have by the definition of ‖(Rθk ◦ϕ)−ϕ
∞
‖W 1,2([0,2π ]×[0,h])

E(ϕ̃)≤ (1+ε)E(ϕ∞)+
[(
ε+1
ε

)( 8
σ 2 +3

)
+2

]
‖(Rθk ◦ϕ)−ϕ

∞
‖

2
W 1,2([0,2π ]×[0,h]).

Given ε > 0, we can choose Rθk ◦ ϕ so that E(Rθk ◦ ϕ) < E(ϕ) + ε. We can
then choose ϕ∞ with ‖(Rθk ◦ ϕ)− ϕ

∞
‖

2
W 1,2([0,2π ]×[0,h]) sufficiently small so that

E(ϕ∞) < E(ϕ)+ ε as well. Since σ depends only on ϕ, we can make E(ϕ̃) as
close to E(ϕ) as we like. �

We remark that even given Theorem 5.1, we cannot immediately argue as in
Theorem 3.2 to show the existence of a minimizer in case the boundary data does
not twist too much. To see this, take a sequence ϕk as in Theorem 5.1 with E(ϕk)

converging to the infimum energy. Unlike in the proof of Theorem 3.2, it is unclear
whether the sequence ϕk is equicontinuous. Although we can conclude the ϕk

converge to some function ϕ weakly in L2, it is not clear whether the sequence
cosϕk converges weakly to cosϕ. Thus, we cannot conclude that E(ϕ) is the
infimum energy.

Corollary 5.2. The minimizer V with horizontal boundary data on C is unique for
h <
√

8.

Proof. Let V = V (ϕ) be a minimizer, so ϕ must be θ -independent, and we can
write ϕ(0) = 0. Now, if ϕ(h) = 0, then by Theorem 4.1 we get ϕ = 0. If instead,
suppose ϕ(h)= 2π , then let

t0 = inf
{

t ∈ [0, h] : ϕ(t)=
π

2

}
and t1 = sup

{
t ∈ [0, h] : ϕ(t)=

5π
2

}
.

Define ϕ̃(t) = −ϕ(t) for 0 ≤ t < t0, ϕ̃(t) = −(π/2) for t0 ≤ t < t1, and ϕ̃(t) =
ϕ(t)−2π for t1 ≤ t ≤ h. In this case note E(ϕ̃) < E(ϕ), and we can smooth ϕ̃ and
still conclude the same. This is a contradiction, and so we must have ϕ = 0. �

6. Computer approximations

In this section we present two numerical approximations of solutions to (2-2) for
two surfaces of revolution. To sidestep the possibility of suffering Runge’s phe-
nomenon [Runge 1901], our numerical approximations sample Chebyshev points;
these are points which cluster near the boundary of [0, 2π ] × [0, h]. To handle
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Figure 2. Left: plot of ϕ(θ, t) for ϕ(θ, 0)= sin θ, ϕ(θ, 1)= cos θ .
Right: plot of V (ϕ) for the same ϕ.

Figure 3. Left: plot of ϕ(θ, t) for r(t)= sin(t)+2. Right: plot of
V (ϕ) for the same ϕ.

periodicity in the θ variable, we borrow some theory about Fourier discretization
matrices from [Trefethen 2000]. These matrices allow us to solve our differential
equation on the interior of the cylinder (R mod 2π) × [0, h] while leaving the
boundary conditions fixed.

Our program allows us to input a height h, a radius function r(t), and two
functions ϕ0(θ) and ϕh(θ) that describe the boundary conditions, and finds a very
close approximation of a function ϕ(θ, t) which satisfies (2-2) with boundary data
ϕ0, ϕh over [0, 2π ]× [0, h].

First, we take the unit cylinder with unit height, and we take boundary data
ϕ0(θ) = sin(θ) and ϕ1(θ) = cos(θ). We plot the solution ϕ(θ, t) and also V =
V (ϕ) in Figure 2. Second, we take the surface with r(t) = sin(t) + 2, and set
ϕ0(θ)= sin(θ), ϕ12(θ)= cos(θ). We again plot ϕ(θ, t) and V = V (ϕ) in Figure 3.
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7. Future projects

There are a number of projects well-suited for future VIGRE at Rice internships
for undergraduates. We mention a few.

The first problem is to extend Theorem 3.2 to the case when the boundary data
V0, Vh cannot be written using constant angle functions. A preliminary challenge
is to show the existence of V ∈ X1(S) with V |∂S = V0, Vh in the case of general
continuous boundary data. (When V0, Vh are smooth, this can be done using an
argument similar to the end of the proof of Theorem 5.1.) Theorem 5.1 provides a
first step in showing the existence of minimizers, at least if we assume V0, Vh do
not twist too much.

Related to Theorem 5.1 is finding the largest h0 so that Corollary 5.2 continues
to hold with h < h0. This is related to the analogous question for Theorem 4.1
and Lemma 4.2, and similar to the well-studied question of finding the optimal
constant in the usual Poincaré inequality [Bebendorf 2003].

Another direction is to consider the following inverse problem: given an angle
function ϕ(θ, t), find the surface of revolution S such that V = V (ϕ) minimizes
energy with respect to the boundary data V (ϕ(θ, 0)), V (ϕ(θ, h)). A different prob-
lem with a similar flavor is to find, given an angle function ϕ(θ, t), which surface
of revolution S is such that E(ϕ) is the least.

The torus of revolution also provides a fountain of projects, by asking which
smooth tangent unit-length vector field minimizes energy. Some work has been
done by the authors in this direction [Rosales et al. 2010], most notably in com-
puting the relationship between the radii of the tube and the distance to the center
of the tube of the torus with the energies of the normalizations of the coordinate
vector fields, when the torus is given the usual parametrization.
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