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We consider the Stokes equation for a flow through a partially obstructed channel
and determine the relationship between Dirichlet boundary values (velocities)
and Neumann boundary values (forces) for the FEM discrete form. For the
steady state case we find a linear relationship. For the transient case the relation-
ship depends on the time stepping procedure and includes the relationship at
prior states. We resolve the issue for trapezoid and Adams–Bashford-2 time
stepping. Since Stokes flow may be considered as the startup phase of Navier–
Stokes flow, we give particular attention to a flow with a startup function.

1. Introduction

Our interest in boundary value questions for incompressible Stokes flow arises from
the following setting. Commonly, finite element methods (FEM) are used to derive
approximate solutions for the vector field of an incompressible fluid flow. These
techniques involve first rendering a discrete form of the Navier–Stokes equation
for the spatial variables via FEM and then employing finite difference techniques
(FDM) to realize the flow in time. In this context the nonlinearity of the Navier–
Stokes equations requires knowledge of the prior flow state at each time step. In
practice the flow is assumed to begin at rest and then pass through a Stokes phase
when the Reynolds number is small. The end step of this phase then provides the
initial step data for the time step FDM applied to the Navier–Stokes equations.
Authors often emphasize the importance of the Stokes phase to success in the
resulting calculations with the Navier–Stokes phase [Gresho and Sani 2000].

When setting up the linear system of equations for a flow problem, the boundary
values are initially applied in the Stokes phase then carried forward to the Navier–
Stokes phase. For the case of a channel flow past an obstruction, authors commonly
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set values for the velocity field at the inflow edge, that is, they set Dirichlet bound-
ary values. From a mathematical point of view, the flow problem could just as
well be set up by assuming values for the force at that edge, that is, Neumann
boundary values. This leads us to inquire how these two approaches differ if at
all. Indeed, in [Gresho et al. 1981] the authors demonstrate the calculated flow
vector field of an obstructed channel flow based on Neumann boundary values at
the inflow edge. Interestingly, the authors state that the Neumann values are derived
Dirichlet values. In particular they have postulated values for the velocity at the
inflow, converted these velocities to forces and then proceeded with the Neumann
boundary values.

In our investigation we determine a simple relationship between Neumann and
Dirichlet boundary values for the steady state case. Carrying this forward we con-
sider two common FDM techniques used for nonsteady or transient flows, trape-
zoid and Adams-Bashford-2. There are correspondences in the nonsteady case, but
they are more complicated. In this case it is clear that an initial setting of forces or
velocities result in very different outcomes. Indeed, by setting a startup function for
force and then calculating the corresponding startup function for velocity results
in a different startup velocity function at each applied node.

Although it is always mathematically possible to set Neumann boundary values
for a node at the flow, this is not the case for Dirichlet boundary values. Indeed, the
admissibility of Dirichlet boundary values lies in the physics not the mathematics.
As our investigation is mathematical or linear algebraic, we decided to define a
term to identify linear systems which admit Dirichlet boundary values.

In Section 2 we state the notation for the linear system arising from the Galerkin
FEM applied to an incompressible Stokes flow. We also use this section to intro-
duce an example. Later we use this example to demonstrate the results of Sections 3
and 4. In Section 3 we consider the steady state problem. Here we state results in
a manner which is applicable to the nonsteady case. Finally the nonsteady case is
handled in Section 4. Here we derive formulae relating Neumann boundary values
to Dirichlet values and vice-versa. In both sections we provide point plots which
demonstrate the formula for the example case.

We have included a note at the end to delineate the details of the example case.

2. Preliminaries

We begin by stating the governing equations for an incompressible Stokes flow. As
we are primarily concerned with laminar flow we state the equations is two spatial
dimensions.

Let Eu = Eu(t, x, y) = (u(t, x, y), v(t, x, y)) be a time dependent vector field in
R2, and P = P(t, x, y) be a real valued function. In addition EG = (g1, g2) is a
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time dependent vector field. In these equations Eu= (u, v) denotes the velocity field,
P is the pressure and EG represents external body forces such as gravity. Further
suppose that Eu and P are sufficiently differentiable to support the following.

∂ Eu
∂t
+∇P − ν∇ · (∇Eu+ (∇Eu)T )− EG = 0, (2-1)

∇ · Eu = 0, (2-2)

Equation (2-1) is the Stokes equation. It is the Navier–Stokes equation with the
inertial or convection term removed. It applies to viscous fluid flows with small
Reynolds number. Equation (2-2) is referred to as the continuity equation. It
arises from the incompressibility assumption. Alternatively (2-1) and (2-2) may
be referred to as the Stokes equations governing an incompressible flow at low
Reynolds number. There are equivalent formulations for these equations [see 1]
that are derived from the given pair. Additionally, a fourth-order equation may
be derived from these. This equation states a relationship for velocity without
reference to pressure. The formulation given here is convenient for our purposes.

If � is the domain of the flow, then � is a connected compact set in R2. Take
[0, T ] as the time interval. When t is fixed, then P lies in L2

[�] = L2 and both u and
v are elements of H 1

={u :�→R :
∫
�
∇u ·∇u<∞}. Finally EG represents external

body forces such as gravity. Equation (2-1) restated in terms of the coordinate
functions yields

∂u
∂t
+
∂P
∂x
− ν

(∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂x2 +

∂2v

∂y∂x

)
− g1 = 0, (2-3)

∂v

∂t
+
∂P
∂x
− ν

(∂2v

∂x2 +
∂2v

∂y2 +
∂2u
∂x∂y

+
∂2v

∂y2

)
− g2 = 0. (2-4)

Below we suppose that the external body forces do not play a significant role in
the flow and will ignore this term.

A discrete form of the Stokes equation is derived from FEM techniques applied
to the spatial variables. If the flow is transient (∂ Eu/∂t 6= 0) then the resulting
discrete equations yield approximate solutions via finite difference techniques.

For the purposes of the theory and examples developed below, we base the FEM
on the (Q4

1,Q1
0)model. This model supposes the decomposition of the flow domain

into the union of rectangles. The vertices of the rectangles are velocity nodes and
centroids of the rectangles are the pressure nodes. For the succeeding examples
we use a channel flow obstructed by a square obstruction (see Figure 1).

Denoting the partition by �=
⋃s

e=1�
e, we define finite dimensional subspaces

V of H 1 and W of L2. V is defined as the linear space of first-order polynomials
{φe

i : i = 1, 2, 3, 4; e = 1, . . . , s}, where each φe
i is supported by �e and equal to

the i-th Lagrange polynomial on �e. In turn W is the span of constant functions,



462 JOHN LOUSTAU AND BOLANLE BOB-EGBE

10 15 20 25

4

6

8

10

Figure 1. Decomposition of an obstructed channel into rectangu-
lar elements.

{Pe
: e = 1, . . . ,m} supported by the elements. The Galerkin FEM proceeds by

seeking elements ũ and ṽ in V and P̃ in W so that the residual (Equations (2-1)
and (2-2) and evaluated at these functions) is L2 orthogonal to V . In particular,

(R1(ũ, ṽ, P̃), φe
i )=

∫
�

R1(ũ, ṽ, P̃)φe
i = 0, (2-5)

(R2(ũ, ṽ), φe
i )=�

∫
�

R2(ũ, ṽ)Pe
= 0. (2-6)

Expanding these equations and using the divergence theorem to linearize the
second-order term, we arrive at the following linear system for each element, e:

Me
1 0 0

0 Me
2 0

0 0 0





u̇1

u̇2

u̇3

u̇4

v̇1

v̇2

v̇3

v̇4

Ṗ


+

 K e
1 K 2

12 Le
1

K e
21 K e

2 Le
2

(Le
1)

T (Le
2)

T 0





u1

u2

u3

u4

v1

v2

v3

v4

P


=



f11

f12

f13

f14

f21

f22

f23

f24

g


,

where the dot represents differentiation with respect to t . The matrix entries are

Me
1(i, j)= Me

2(i, j)=
∫
�e
φe

i φ
e
j , K e

12(i, j)= K e
21( j, i)= ν

∫
�2

∂φe
i

∂y

∂φe
j

∂x
,

K e
1(i, j)= ν

∫
�e

2
∂φe

i

∂x

∂φe
j

∂x
+
∂φe

i

∂y

∂φe
j

∂y
, Le

1(i, 1)=−
∫
�e

∂φe
i

∂x
,

K e
2(i, j)= ν

∫
�e

∂φe
i

∂x

∂φe
j

∂x
+ 2

∂φe
i

∂y

∂φe
j

∂y
, Le

2(i, 1)=−
∫
�e

∂φe
i

∂y
.
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On the right hand side we have

f e
1i =

∫
0e

(
2
∂ ũ
∂x
,
∂ ũ
∂y
+
∂ṽ

∂x

)
φe

i · En, f e
2i =

∫
0e

(∂ṽ
∂x
+
∂ ũ
∂y
, 2
∂ṽ

∂y

)
φe

i · En,

from the application of the divergence theorem to (2-5). Whereas (2-6) yields

g =
∫
0e
(ũ, ṽ) · En.

In both cases 0e denotes the boundary of �e. Using standard processes [Huebner
et al. 2001] we assemble these s linear systems in a single (2m+ s)× (2m+ s)
system (where m is the number of nodes and s. is the number of elements). This
is done by first identifying the corresponding node for each vertex of a single
element. Then adding the linear equations which refer to a common node. The
resulting system can be expressed in compact form asM 0 0

0 M 0
0 0 0

 u̇
v̇

Ṗ

+(K L
LT 0

)u
v

P

= ( f
g

)
.

Here M is m×m symmetric, K is 2m×2m symmetric and positive definite (from
the underlying physics) and L is 2m× s.

3. Boundary values for the steady state problem

We begin our study of boundary values by considering the steady state problem.
In this case we need only consider the equation(

K L
LT 0

)u
v

P

= ( f
g

)
(3-1)

as the discrete form of the steady state Stokes equation. We assert that the coef-
ficient matrix of (3.1) is nonsingular. This assertion is equivalent to the statement
that the flow has a unique solution in the discrete form stated in (3.1). In general
this is not the case, but it may be achieved by imposition of boundary conditions
at the channel edges and at the obstruction, as well as by the choice of model. The
underlying physics assures us that the matrix K is symmetric and positive definite,
as well as sparse and diagonally dominant. L is sparse.

Our primary concern is with the entries of f for the nodes along the inflow
boundary. On the one hand we may designate a value for fi . In this case the
designated value implements driving forces applied along the inflow edge as is
evident from the expression for fi given in the previous section.These boundary
values are then called Neumann or natural. Alternatively we may designate the
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velocity components on this boundary. This alternative is implemented at the i-th
node by replacing the i-th row of the coefficient matrix to the i-th row of the identity
matrix, denoted Eei and then setting fi to the desired velocity. These boundary
values are referred to as Dirichlet or essential.

For simplicity of notation we write Equation (3-1) as AEu= Ef . Now since A is
nonsingular, then for any choice of Ef the system has a unique solution. Consider
the process, just described, used to set Dirichlet boundary values. For this to be
meaningful, the resulting coefficient matrix must be row-equivalent to A. Other-
wise the resulting linear system, B Eu= f̂ would no longer represent the discrete
form of the same differential equation. With this in mind we begin our analysis
with the following definition, where for a matrix A, A(i) denotes the i-th row of A.

Definition 3.1. Let AEu = Ef be an n-by-n linear system of equations and take i ,
1 ≤ i ≤ n. Then we say that a Dirichlet boundary condition at fi is algebraically
admissible provided A is row-equivalent to B where the A( j)= B( j) for each j 6= i
and B(i) = EeT

i .

From the definition it is apparent that a Dirichlet condition at fi is algebraically
admissible if there are elementary row matrices E0, E1, . . . , Em with

B =
(∏

j 6=i
E j

)
E0 A,

where E0 is type 2, representing the multiplication of row i of A by a nonzero
scalar, and for j 6= 0, E j is type-3, representing the operation of adding to the i-th
row a scalar multiple of some other row.

For the case at hand, a linear system arising from the FEM discrete form of the
steady state Stokes equation, the matrix K is positive definite symmetric, sparse
and diagonally dominant. Therefore for each i ≤ 2m,

EeT
i =

∑
j
α j K( j).

Since K is diagonally dominant, αi is not zero. If Eβs+t denotes the row operation
of adding β times the s-th row to the t-th row and Eβs denotes the elementary
operation of multiplying the s-th row by nonzero β, then

EeT
i =

(∏
j 6=i

Eα j j+i

)
Eαi i A.

Therefore, in this case a Dirichlet condition at fi is algebraically admissible for
each i ≤ 2m.

Theorem 3.1. Let AEu = Ef be an n-by-n linear system of equations and take i ,
with 1 ≤ i ≤ n. Suppose that a Dirichlet boundary condition at fi is algebraically
admissible. Then there exists a nonsingular linear transformation N such that
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the Dirichlet assumption for ui is the i-th coordinate of N Ef . Further all other
coordinates of N Ef are unchanged.

Proof. From the comment following Definition 3.1, it suffices to set

N =
(∏

j 6=i
E j

)
E0.

Now the remaining assertions are immediate. �

Next, supposing that A is nonsingular, we can get a specific representation for
the elementary row operations. First we set up the notation. Set E0 = Eαi i and
E j = Eαkk+i . Now we may suppose that N has n factors by setting E j = Eα j j+i

for each j 6= i where α j = 0 if row j is not involved in reducing the i-th row of A.
Finally define the column n-tuple Eα = α( j).

Corollary 3.2. If A is nonsingular, then Eα = (AT )−1
Eei , is the i-th column of

(AT )−1.

Proof. With the notation just introduced,

(Eαi i A)(i) = αi A(i) and (Eα j j+i A)(i) = α j A( j)+ A(i).

Therefore,
(N A)(i) =

∑
j 6=i
α j A( j)+αi A(i) =

∑
j
α j A( j).

Restating this as an expression for (Eei )
T we get

(Eei )
T
=
∑

j
α j A( j) =

(∑
j
(AT )( j)α j

)T
= (AT

Eα)T . �

This yields the desired expression for Eα = (AT )−1
Eei , which is indeed the i-th

column of (AT )−1.

In the case of (3-1), A is symmetric and we have:

Corollary 3.3. If A is the coefficient matrix for the FEM discrete form of the Stokes
equation, then Eα is the i-th column of A−1.

Next we turn to the relationship between the Neumann boundary value Ef and
the Dirichlet boundary value ui at the i-th node.

Corollary 3.4. Suppose that A is nonsingular and algebraically admits a Dirichlet
condition at fi then the Dirichlet value, ui is related to Ef via ui = Eα · Ef where
Eα = (AT )−1

Eei . (Here Eα · Ef denotes the ordinary inner product in Rn.)

Proof. The relation
AEu = Ef

yields,
ui = Eei · Eu = EeT

i Eu = (A
T
Eα)T Eu = (Eα)T AEu = (Eα)T Ef = Eα · Ef . �
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We end this section by considering the following problem. Given a linear system
with Dirichlet conditions applied, what is the corresponding linear system without
Dirichlet boundary conditions, but rather Neumann boundary conditions.

Theorem 3.5. Let A be an n-by-n matrix, which algebraically admits a Dirichlet
boundary condition on the i-th row. Suppose that B is row-equivalent to A via the
nonsingular matrix N as in Theorem 3.1 Consider a linear system B Eu = f̂ , then
the equivalent linear system AEu= Ef satisfies f j = f̂ j for each j 6= i and fi = Eβ · f̂ ,
where Eβ = (BT )−1(A(i))T .

Proof. With the notation of Equation (3-1), Take N nonsingular so that B = N A
and f̂ = N Ef . Now N is a product of elementary row matrices. Hence the same is
true of N−1. In particular,

N−1
=

((∏
j 6=i

Eα j j+i

)
Eαi i

)−1
= (Eαi i )

−1
(∏

j 6=i
Eα j j+i

)−1
=

(∏
j 6=i

Eβ j j+i

)
Eβi i ,

where βi = α
−1
i and β j =−α j/αi otherwise. Setting Eβ = (βi ), it now follows that

Eβ · f̂ = fi . In turn

A(i) = (N−1 B)(i) =
∑

j
β j B( j) =

∑
j
(BT )( j)β j = (BT Eβ)T . �

So (A(i))T = BT Eβ or (BT )−1(A(i))T = Eβ. The following point plots show first
a set of given forces at points along the inflow edge of the example flow (Figure
2, left). We used B-splines to fit a continuous function to the given data. With this
function we were able to infer forces at the inflow nodes and compute f via one
point quadrature. Then we used Corollary 3.4 to compute the velocities shown in
the second plot (Figure 2, right). As indicated by the mathematics, the calculated
flow using either the Neumann or the Dirichlet boundary values produces identical
velocity fields.

4. Boundary values for the transient flow

In this section we modify our results of the section to the case of a nonsteady
Stokes flow. Our particular concern with Stokes flows is their application as the
initial phase of a Navier–Stokes flow. In this setting it is natural to suppose that
there is a velocity or force startup function, v(t) with tε(0, T ], implemented at the
inflow edge. In this section we will consider the discrete case of the nonsteady
Stokes equation and determine the relationship between a velocity startup and a
force startup.

For the nonsteady Stokes flow the spatial problem is realized via finite element
techniques while the time dependent problem is developed via finite difference
techniques. There are several competing finite difference techniques. For each, the



NEUMANN–DIRICHLET COMPARISON FOR INCOMPRESSIBLE STOKES FLOW 467

4 6 8

4

6

8

10

12

4 6 8 10

-1

1

2

3

4

Figure3.2: ComputedVelocitiesattheInflowEdge

Figure 2. Left: derived forces on inflow edge. Right: computed
velocities at the inflow edge.

function relating forces to velocities and pressures is distinct. We will develop two
cases, the trapezoid (TR) method and the Adam-Bashford-2 (AB-2) method. We
begin with TR. Here we use superscripts to designate time steps.

(
M + 1

21t K 1t L
1
21t LT 0

)un

vn

Pn


=

(
M − 1

21t K −1t L
−

1
21t LT 0

)un−1

vn−1

Pn−1

+
 1t f n

tgn−1
−

1
21t LT

(
un−1

vn−1

) , (4-1)

where

gn
= LT

(
un

vn

)
.

The term on the right, f , which is related to force is superscripted as we may
suppose it varies with time. Further we suppose that the fluid starts at rest, so for
t = t1, u0

= v0
= P0

= 0. Hence (4-1) becomes(
M + 1

21t K 1t L
1
21t LT 0

)u1

v1

P1

= (1t f n

0

)
. (4-2)

As in Section 3, we use a notationally simplified version of these equations:

AEun
= C Eun−1

+1t
(

f n

gn−1

)
. (4-3)
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For N nonsingular, we have

N AEun
= NC Eun−1

+ N1t
(

f n

gn−1

)
. (4-4)

As in the steady state case, restriction of these two equations to the example flow
assures us that A is nonsingular and that the Dirichlet boundary condition is alge-
braically admissible at each inflow edge node. Assuming that the fluid starts at rest
implies that Equation (4-3) reduces to

1
1t

AEu1
=

(
f 1

0

)
at n = 1.

This equation is essentially the same as the one considered in Section 3 except that
the coefficient matrix is not symmetric. Nevertheless, Corollary 3.4 and Theorem
3.5 apply to the present setting.

Theorem 4.1. Consider the TR time step development of the nonsteady Stokes flow
represented by (4-3). Suppose that A is nonsingular and that Neumann boundary
values are set at t = tn via the coordinates of f n . Then a boundary value f n

i may
be replaced by a Dirichlet boundary value

un
i = (NC)(i)Eun−1

+ Eα ·

(
f n

0

)
,

where Eα = 1t (AT )−1
Eei . Hence, Eα is 1t times the i-th column of (AT )−1. In

addition
N =

(∏
j 6=i

Eα j j+i

)
Eαi i .

Proof. The assertion for t = t1 follows immediately from Corollary 3.4. For n> 1,
we need to first let

C Eun−1
+

(
f n

gn−1

)
take the role of Ef in Corollary 3.4 to get

un
i = (NC)(i)Eun−1

+ N
(

f n

gn−1

)
= NC(i)Eun−1

+ Eα ·

(
f n

gn−1

)
= (NC)(i)Eun−1

+ Eα ·

(
f n

0

)
. (4-5)

The final equality holds since if the upper left hand block of A is k-by-k then
α j = 0 for j > k. Indeed, the upper left block is itself nonsingular, so by Dirichlet
admissibility, the i-th row is row-equivalent to the i-th row of the k-by-k identity
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matrix. Finally, since the lower right block of A is zero, it now follows that

Eα ·

(
f n

gn−1

)
= Eα ·

(
f n

0

)
.

The remaining assertions follow as in Section 3. �

Notice that for n > 1, the calculation of the Dirichlet boundary value requires
the prior state. Therefore the results for the steady state problem do not carry over
directly to the nonsteady flow. In particular even if f n

i is fixed for each n > 1, un
i

will vary with n.
We now particularize Theorem 4.1 to the case of a startup function for the force

along the inflow edge. For this purpose we need to develop some notation. First
(4-3) becomes

AEun
= C Eun−1

+1t
(
ϕ(tn) f
gn−1

)
, (4-6)

where ϕ : (0, T ]→ (0, 1] designates the startup function and f = ( fi ) with fi = 0
for each node which is not on the inflow edge and fi = 1 at the inflow edge. In
turn (4-5) becomes

un
i = (Ni C)(i) Eu

n−1
+1tϕ(tn)−→α · f

= (Ni C)(i) Eu
n−1
+1tϕ (tn)

(
(AT )−1)

(i) f, (4-7)

where N is now subscripted to identify the row operations applied to the i-th row of
A. Next we define u = ui and ui =

(
(AT )−1

)
(i) f as in Section 3. We can consider

a corresponding startup function for Dirichlet boundary values at the inflow edge.

Corollary 4.2. Suppose that ϕ : (0, T ] → (0, 1] denotes a startup function for the
force along the inflow edge of the transient Stokes flow. Let ν be a second function
defined on the time steps and taking values in R`, where ` designates the number
of nodes on the inflow edge. If ν is defined by

ν(tn)i =
1
ui
(Ni C)(i)Eun−1

+1tϕ(tn),

then ν(tn)i ui = un
i .

Proof. The result follows immediately from (4-7). �

The startup force function results in separate velocity startup functions, one
defined at each of designated nodes. We illustrate this result in the following plots.
Figure 3 shows a burst startup function ϕ(t) = 1− e−t/0.1. The subsequent three
point plots (Figure 4) show the corresponding velocity plots at selected nodes: 2, 6
and 12 along the inflow edge (see Figure 1). Note that the velocity startup functions
though distinct are very similar. Indeed they appear linear. Lastly, Figure 5 shows
the final value (t = 0.5) for the velocity startup function at each node. This plot is
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Figure 3. Burst startup function.
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Figure 4. TR: Dirichlet values at nodes 2, 6, 12 (left to right).
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Figure 5. TR: inflow velocities at t = 0.5.

symmetric. The differences from node to node appear consistent with incompress-
ibility as the flow reacts to the obstruction.

The next result considers the reverse setting where we begin with a Dirichlet
boundary value and derive the corresponding Neumann value.

Theorem 4.3. Consider the TR time step development of the nonsteady Stokes
flow represented by (4-3). Suppose that A is nonsingular and algebraically admits
Dirichlet boundary values along the inflow edge. Suppose for t = tn that Dirichlet
boundary values are set on this edge via the coordinates of un to yield

D AEun
=

(
un

1t L Pn−1
+ gn−1

)
,
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where D is a product of matrices N as described in Section 2. Fix a node i , then
the corresponding Neumann boundary value at the i-th node is

fi = Eβ · f̂ , where Eβ = (BT )−1(A(i))T and B = N A.

Proof. We proceed as in Theorem 3.5. First we set

N =
(∏

j 6=i
Eα j j+i

)
Eαi i ,

as in Theorem 3.1 and

N−1
=

((∏
j 6=i

Eα j j+i

)
Eαi i

)−1
= (Eαi i )

−1
(∏

j 6=i
Eα j j+i

)−1
=

(∏
j 6=i

Eβ j j+i

)
Eβi i ,

where βi = α
−1
i and β j =−α j/αi otherwise. Setting Eβ = (βi ), it now follows that

Eβ · un
= fi and

A(i) = (N−1 B)(i) =
∑

j
β j B( j) =

∑
j
(BT )( j)β j = (BT Eβ)T . �

We turn next to the case of AB-2. This FDM procedure computes the current
velocity field in terms of the weighted average of the prior two time steps via

(
M 3

21t L
LT 0

) un

vn

Pn−1


=

(
−

3
21t K +M 0

0 0

)un−1

vn−1

Pn−1

+(1
21t K 1

21t L
0 0

)un−2

vn−2

Pn−2

(1t f n

gn−1

)
, (4-8)

where

gn
= LT

(
un

vn

)
= Pn.

For a fluid starting at rest we have for n = 1(
M 3

21t L
LT 0

)u1

v1

P1

= (1t f 1

0

)
. (4-9)

As before it is convenient to restate (4-8) in a simplified form:

B Eun
= DEun−1

+ E Eun−2
+

(
1t f n

gn−1

)
. (4-10)

For N nonsingular,

N B Eun
= N DEun−1

+ N E Eun−2
+ N

(
1t f n

gn−1

)
. (4-11)
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The next results are analogous to Theorem 4.1, Corollary 4.2 and Theorem 4.3.

Theorem 4.4. Consider the AB-2 time step development of the nonsteady Stokes
flow given by (4-8), (4-10). Suppose that Neumann boundary values are set at time
step t = tn via the coordinates of f n . Then the boundary value f n

i may be replaced
by a Dirichlet boundary value

un
i = (N D)(i)Eun−1

+ (N E)(i)Eun−2
+ Eα ·

(
f n

0

)
,

where

Eα =1t (BT )−1
Eei and N =

(∏
j 6=i

Eα j j+i

)
Eαi i .

Hence, Eα is 1t times the i-th column of (BT )−1.

Proof. The expression for un
i follows from (4-11) and the given decomposition of

N as a product of elementary matrices. The given expression results from∑
i
αi B(i)= (N B)(i) = EeT

i .

The final statement is immediate. �

Turning to a startup function for force we have:

Corollary 4.5. Suppose the setting of Theorem 4.4 and suppose that

γ (0, T ] :→ (0, 1]

denotes a startup function for the force along the inflow edge of the transient Stokes
flow. Determine a second function, δ, defined at the time steps and taking values in
R`, where ` designates the number of nodes in the inflow edge by

δ(tn)i =
1
ui
(Ni D)(i)Eun−1

+
1
ui
(Ni E)(i)Eun−2

+1tγ (tn).

Then δ(tn)i ui = un
i , where ui = ((BT )−1)(i) f .

Proof. As in the TR case we now particularize (4-11) for the startup function, γ ,
the product of elementary operations associated to the i-th inflow edge node, Ni ,
and then consider the i-th entry of the result to get

Eun
i = (Ni D)(i)Eun−1

+ (Ni E)(i)Eun−2
+1tγ (tn)((BT )−1)(i) f.

The result is now immediate. �

Finally we consider the reverse case.
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Theorem 4.6. Consider the AB-2 time step development of the nonsteady Stokes
flow represented by (4-10). Suppose that for t = tn Dirichlet boundary values are
set along the inflow edge via the corresponding coordinates of un to yield

F B Eun =

(
un

gn−1

)
,

where F is a product of matrices N as described in Theorem 4.4. Fix a node i , then
the corresponding Neumann boundary value at the i-th node is fi = Eβ · f̂ , where
Eβ = (GT )−1(B(i))T and G = N B.

Proof. We proceed as with Theorem 4.3. First we set N =
(∏

j 6=i
Eα j j+i

)
Eαi i , as in

Theorem 3.1, then resolve

N−1
=

(∏
j 6=i

Eβ j j+i

)
Eβi i ,

where βi = α
−1
i and β j =−α j/αi otherwise. Setting Eβ = (βi ), we have fi = Eβ · f̂ .

Finally,
B(i) = (N−1G)(i) =

∑
j
β j G( j) = (GT Eβ)T ,

which yields the desired expression for Eβ. �

The plots in Figures 6 and 7 show output for AB-2. They are analogous to
Figures 4 and 5.
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Figure 6. AB-2: Dirichlet values at nodes 2, 6 and 12 (left to right).
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Figure 7. AB-2: inflow velocities at t = 0.5.
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A note on the illustrations

All programming was done in Mathematica.

Geometry. Channel: lower left vertex at (1, 1); upper right vertex at (26, 10).
Obstruction: lower left vertex at (5, 5); upper right vertex at (6, 6).

FEM. 976 elements: 1052 velocity nodes; 976 pressure nodes; 2104+976 degrees
of freedom; max x increment = 1.0; min x increment = 0.25; max y increment =
0.5; min y increment = 0.125.

FDM. 1t = 0.05.

Fluid. water, ν = 0.89.

Boundary values. All surfaces are nonslip and nonpenetrating. Dirichlet boundary
values are set to zero. The outflow edge is included in the Neumann boundary with
values set to zero. Transient flows are started at rest.
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