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The arithmetic of trees
Adriano Bruno and Dan Yasaki

(Communicated by Robert W. Robinson)

The arithmetic of the natural numbers N can be extended to arithmetic oper-
ations on planar binary trees. This gives rise to a noncommutative arithmetic
theory. In this exposition, we describe this arithmetree, first defined by Loday,
and investigate prime trees.

1. Introduction

J.-L. Loday [2002] published a paper Arithmetree, in which he defines arithmetic
operations on the set Y of groves of planar binary trees. These operations extend
the usual addition and multiplication on the natural numbers N in the sense that
there is an embedding N ↪→ Y, and the multiplication and addition he defines
become the usual ones when restricted to N. Loday’s reasons for introducing these
notions have to do with intricate algebraic structures known as dendriform algebras
[Loday et al. 2001].

Since the arithmetic extends the usual operations on N, one can ask many of the
same questions that arise in the natural numbers. In this exposition, we examine
notions of primality, specifically studying prime trees. We will see that all trees of
prime degree must be prime, but many trees of composite degree are also prime.
One should not be misled by the idea that arithmetree is an extension of the usual
arithmetic on N. Indeed, away from the image of N in Y, the arithmetic operations
+ and × are noncommutative. Both operations are associative, but multiplication
is only distributive on the left with respect to+. In the end it is somewhat surprising
that there is a very natural copy of N inside Y.

The paper is organized as follows. Sections 2–6 summarize without proofs the
results that we need from [Loday 2002]. Specifically, basic definitions are given
in Section 2 to set notation. The embedding N ↪→ Y is given in Section 3, and
Section 4 discusses the basic operations on groves. Sections 5 and 6 define the

MSC2000: primary 05C05; secondary 03H15.
Keywords: arithmetree, planar binary trees.
These results grew out of an REU project in the summer of 2007 at the University of Massachusetts
at Amherst; the authors are grateful for this support.
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2 ADRIANO BRUNO AND DAN YASAKI

arithmetic on Y. Finally, Section 8 discusses some new results and Section 9 gives
a few final remarks.

2. Background

In this section, we give the basic definitions and set notation.

Definition 2.1. A planar binary tree is an oriented planar graph drawn in the plane
with one root, n+ 1 leaves, and n interior vertices, all of which are trivalent.

Henceforth, by tree, we will mean a planar binary tree. We consider trees to
be the same if they can be moved in the plane to each other. Thus we can always
represent a tree by drawing a root and then having it “grow” upward. The degree
is the number of internal vertices. Here is an example of a tree of degree four, with
five leaves:

Let Yn be the set of trees of degree n. For example,

Y0 = { }, Y1 = {!}, Y2 = {",#}, Y3 = {$,%,&,',)}.

One can show that the cardinality of Yn is given by the n-th Catalan number,

cn =
1

n+ 1

(
2n
n

)
=

(2n)!
(n+ 1)!n!

.

The Catalan numbers arise in a variety of combinatorial problems [Stanley 2007].1

Definition 2.2. A nonempty subset of Yn is called a grove. The set of all groves
of degree n is denoted by Yn .

For example,

Y0 = { }, Y1 = {!}, Y2 = {",#,"∪#}.

Notice that we are omitting the braces around the sets in Yn and use instead ∪ to
denote the subsets. For example we write "∪# as opposed to {",#} to denote
the grove in Y2 consisting of both trees of degree 2. Let Y =

⋃
n∈N Yn denote the

set of all groves. By definition groves consist of trees of the same degree; hence
we get a well-defined notion of degree

deg : Y→ N. (1)

1He currently gives 161 combinatorial interpretations of cn .
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n #Yn #Yn

1 1 1
2 2 3
3 5 31
4 14 16383
5 42 4398046511103
6 132 5444517870735015415413993718908291383295
7 429 ∼ 1.386× 10129

Table 1. Number of trees and groves of degree n ≤ 7.

The Catalan numbers cn grow rapidly. Since Yn is the set of subsets of Yn , we
see that the cardinality #Yn = 2cn−1 grows extremely fast (Table 1), necessitating
the use of computers even for computations on trees of fairly small degree.

3. The natural numbers

In this section we give an embedding of N into Y. There is a distinguished grove
for each degree given by set of all trees of degree n.

Definition 3.1. The total grove of degree n is defined by n =
⋃

x∈Yn
x .

For example,

0= , 1=!, 2=#∪", 3=$∪'∪)∪%∪&.

This gives an embedding N ↪→ Y. It is clear that the degree map is a one-sided
inverse in the sense that deg(n) = n for all n ∈ N. We will see in Section 7 that
under this embedding, arithmetree can be viewed as an extension of arithmetic on
N.

4. Basic operations

In this section we define a few operations that will be used to define the arithmetic
on Y.

4.1. Grafting.

Definition 4.1. We say that a tree z is obtain as the graft of x and y (notation:
z = x ∨ y) if z is gotten by attaching the root of x to the left leaf and the root of y
to the right leaf of !.

For example, "=!∨ and &=!∨!. It is clear that every tree x of degree
greater than 1 can be obtained as the graft of trees x l and xr of degree less than n.
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Specifically, we have that x = x l
∨ xr . We refer to these subtrees as the left and

right parts of x .
Given a tree x of degree n, then one can create a tree of degree n+1 that carries

much of the structure of x by grafting on 0= . Indeed, there are two such trees,
x ∨ 0 and 0∨ x . We will say that such trees are inherited.

Definition 4.2. A tree x is said to be left-inherited if xr
= 0 and right-inherited if

x l
= 0. A grove is left-inherited (resp. right-inherited) if each of its member trees

is left-inherited (resp. right-inherited).

We single out two special sequences of trees Ln and Rn .

Definition 4.3. Let L1= R1= 1. For n> 1, set Ln = Ln−1∨0 and Rn = 0∨ Rn−1.
We will call such trees primitive.

Notice that Ln is the left-inherited tree such that L l
n = Ln−1. Similarly, Rn is

the right-inherited tree such that Rr
n = Rn−1.

4.2. Over and under.

Definition 4.4. For x ∈ Yp and y ∈ Yq the tree x/y (read x over y) in Yp+q is
obtained by identifying the root of x with the leftmost leaf of y. Similarly, the tree
x\y (read x under y) in Yp+q is obtained by identifying the rightmost leaf of x
with the root of y.

For example, #/!=' and "\!=&.

4.3. Involution. The symmetry around the axis passing through the root defines
an involution σ on Y . For example, σ(&)=& and σ(")=#. The involution can
be extended to an involution on Y, by letting σ act on each tree in the grove. One
can easily check that for trees x, y:

(i) σ(x ∨ y)= σ(y)∨ σ(x),

(ii) σ(x/y)= σ(y)\σ(x),

(iii) σ(x\y)= σ(y)/σ (x).

We will see that this involution also respects the arithmetic of groves.

5. Addition

Before we define addition, we first put a partial ordering on Yn .

5.1. Partial ordering. We say that the inequality x < y holds if y is obtained from
x by moving edges of x from left to right over a vertex. This induces a partial
ordering on Yn by imposing:

(i) (x ∨ y)∨ z ≤ x ∨ (y ∨ z).



THE ARITHMETIC OF TREES 5

(ii) If x < y then x ∨ z < y ∨ z and z ∨ x < z ∨ y for all z ∈ Yn .

For example, $<'<)<%. Note that the primitive trees are extremal elements
with respect to this ordering.

5.2. Sum.

Definition 5.1. The sum of two trees x and y is the following disjoint union of
trees

x + y :=
⋃

x/y≤z≤x\y

z .

All the elements in the sum have the same degree, namely deg(x) + deg(y).
The definition of addition extends to groves by distributing. Namely, for groves
x =

⋃
i xi and y =

⋃
j yi ,

x + y :=
⋃
i j

(xi + y j ). (2)

We remark that it is not immediate that the result of the sum is a grove since it
is not obvious that the trees arising in the union are all distinct. Loday shows that
this is indeed the case for total groves

n+m = n+m,

and deduces the general case from this as every grove is a subset of some total
grove.

Proposition 5.2 (Recursive property of addition). Let x = x l
∨ xr and y = yl

∨ yr

be nonzero trees. Then

x + y = x l
∨ (xr

+ y) ∪ (x + yl)∨ yr .

The recursive property of addition says that the sum of two trees x and y is
naturally a union of two sets, which we call the left and right sum of x and y:

x a y = x l
∨ (xr

+ y) and x ` y = (x + yl)∨ yr .2 (3)

Note that x+y= x a y∪x ` y. You can think about this as splitting the plus sign
+ into two signs a and `. From (2) and the definition, we see that the definition
for left sum and right sum can also be extended to groves by distributing.

With the definition of inherited trees/groves and (3), one can easily check that
left (respectively right) inheritance is passed along via right (respectively left)
sums. More precisely,

Lemma 5.3. Let y be a left-inherited tree. Then x ` y is left-inherited. Similarly,
if x is right-inherited, then x a y is right-inherited.

2We set x ` 0= 0 a y = 0.
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5.3. Universal expression. It turns out that every tree can expressed as a combi-
nation of left and right sums of !. This expression is unique modulo the failure of
left and right sum to be associative. More precisely,

Proposition 5.4. Every tree x of degree n can be written in as an iterated Left and
Right sum of n copies of !. This is called the universal expression of x , and we
denote it by wx(!). This expression is unique modulo:

(i) (x a y) a z = x a (y+ z),

(ii) (x ` y) a z = x ` (y a z),

(iii) (x + y) ` z = x ` (y ` z).

For example,
"=! `! and &=! `! a!.

Loday gives a algorithm for computing the universal expression of a tree x .

Proposition 5.5 (Recursive property for universal expression). Let x be a tree of
degree greater than 1. The algorithm for determining wx(!) is given through the
recursive relation

wx(!)= wx l (!) `! a wxr (!).

6. Multiplication

Essentially, we define the multiplication to distribute on the left over the universal
expression.

Definition 6.1. The product x × y is defined by

x × y = wx(y).

This means to compute the product x× y, first compute the universal expression
for x , then replace each occurrence of ! by the tree y, then compute the resulting
Left and Right sums. For example, one can easily check that " = ! ` !. This
means for any tree y, "× y = y ` y. In particular,

"×#=# `#

is the tree shown in the figure on page 2.
Note that the definition of x × y as stated still makes sense if y is a grove. We

can further extend the definition of multiplication to the case when x is a grove by
declaring multiplication to be distributive on the left over disjoint unions:

(x ∪ x ′)× y = x × y ∪ x ′× y = wx(y)∪wx ′(y).
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7. Properties

We list a few properties of arithmetree.

• The addition + : Y×Y→ Y is associative, but not commutative.

• The multiplication × : Y×Y→ Y is associative, but not commutative. It is
distributive on the left with respect to +, but it is not right distributive.

• There is an injective map N ↪→ Y, n 7→ n (defined in Section 3) that respects
the arithmetic. Namely,

m+ n = m+ n and mn = m× n for all m, n ∈ N.

• Degree gives a surjective map deg :Y→N that respects the arithmetic and is
a one-sided inverse to the injection above . For every x, y ∈ Y,

deg(x + y)= deg(x)+ deg(y) and deg(x × y)= deg(x) deg(y).

• deg(n)= n for all n ∈ N.

• The neutral element for + is 0= .

• The neutral element for × is 1=!.

• The involution σ satisfies

σ(x + y)= σ(y)+ σ(x) and σ(x × y)= σ(x)× σ(y).

8. Results

The recursive properties of addition and multiplication allowed us to implement
arithmetree on a computer using PARI/GP [2005]. The computational experimen-
tation was done using Loday’s [2002] naming convention for trees.

8.1. Counting trees. Since each grove x ∈ Y is just a subset of trees, there is
another measure of the “size” of x other than degree.

Definition 8.1. Let x ∈ Y be a grove. The count of x , denoted C(x) is defined as
the cardinality of x .

It turns out that count function gives a coarse measure of how complicated a
grove x is in terms of arithmetree. Namely, if x is the sum (resp. product) of other
groves, then the count of x is at least as large as the count of any of the summands
(resp. factors).

Lemma 8.2. Let x, y ∈ Y be two nonzero groves. Then

(i) C(x a y)≥ C(x)C(y), with equality if and only if x is a left-inherited grove.

(ii) C(x ` y)≥C(x)C(y), with equality if and only if y is a right-inherited grove.
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Proof. We first consider Lemma 8.2(i). Since a is distributive over unions, it
suffices to prove the case when x and y are trees. Namely, we must show that
for all nonzero trees x and y, C(x a y) ≥ 1, with equality if and only if x is a
left-inherited tree. It is immediate that C(x a y) ≥ 1; it remains to show that
equality is only attained when x is left-inherited. From the definition of left sum,
x a y = x l

∨ (xr
+ y). If x is not left-inherited, then xr

6= 0 and

C(x a y)= C(x l
∨ (xr

+ y))= C(xr
+ y)

= C(xr
a y ∪ xr

` y)= C(xr
a y)+C(xr

` y)

> 1.

On the other hand, if x is left-inherited, then xr
= 0 and

C(x a y)= C(x l
∨ (xr

+ y))= C(x l
∨ y)= 1.

Item (ii) follows similarly. �

Proposition 8.3. Let x, y ∈ Y be two nonzero groves. Then

(i) C(x + y)≥ 2C(x)C(y), with equality if and only if x is a left-inherited and y
is right-inherited.

(ii) C(x × y)≥ C(x)C(y)deg(x).

Proof. Since x + y = x a y ∪ x ` y, Proposition 8.3(i) follows immediately from
Lemma 8.2. For Proposition 8.3(ii), we note that multiplication is left distributive
over unions, and so it suffices to prove the case when x is a tree. Namely we must
show that for a tree x and a grove y, C(x × y)≥ C(y)deg(x).

Let wx be the universal expression of the tree x . Then x × y = wx(y) is some
combination of left and right sums of y. By distributivity of left and right sum over
unions and repeated usage of Lemma 8.2, the result follows. �

8.2. Primes.

Definition 8.4. A grove x is said to be prime if x is not the product of two groves
different from 1.

Since deg(x × y) = deg(x) deg(y) for all groves x, y, it is immediate that any
grove of prime degree is prime. However, there are also prime groves of composite
degree. For example, by taking all possible products of elements of Y2, one can
check by hand that the primitive tree L4 is a prime grove of degree 4.

We turn our focus to prime trees, which are prime groves with count 1. It turns
out that composite trees have a nice description in terms of inherited trees. Namely,
a composite tree must have an inherited tree as a right factor and a primitive tree
as a left factor.
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Theorem 8.5. Let z be a composite tree of degree n. Then there exists a proper
divisor d 6= 1 of n and a tree T ∈ Yd−1 such that

z = Ln/d × (0∨ T ) or z = Rn/d × (T ∨ 0).

Proof. Let z = x × y be a composite tree of degree n. By Proposition 8.3, x and y
must also be trees. Since n = deg(z)= deg(x) deg(y), it follows that there exists a
proper divisor d 6= 1 of n such that deg(y)= d and deg(x)= n/d.

We proceed by induction on the degree of x . Suppose x is a tree of degree 2.
Then x =! a! or x =! `!. If x =! `!, then x = L2 is primitive and

1= C(x × y)= C(y ` y).

From Proposition 8.3, it follows that y is right-inherited. Similarly, if x = a ,
then x = R2 and y is left-inherited.

Now suppose x is a tree of degree k such that x × y is a tree of degree n. From
Proposition 5.5 and the definition of multiplication, it follows that

x × y = wx(y)

= wx l (y) ` y a wxr (y)

= (x l
× y) ` y a (xr

× y).

Suppose xr
6= 0. Then xr

× y 6= 0 and C(y a (xr
× y)) = 1. Then by

Proposition 8.3, y is left-inherited. Let T = y a (xr
× y). By Lemma 5.3, T

is also left-inherited. Since C((x l
× y) ` T ) = 1 and T 6= 0, we must have that

either T is also right-inherited, or (x l
× y)= 0. The only tree that is both left and

right-inherited is the tree 1= . It follows that (x l
× y)= 0, and hence x l

= 0. By
the inductive hypothesis, xr is a right-primitive tree, and hence x = Rk .

Now suppose xr
= 0. Then x l

6= 0, and an analogous argument shows that y is
left-inherited and x = Lk . �

From this theorem, we get a nice picture of the possible shapes of composite
trees:

T · · · T T T T T T · · · T

Indeed, one computes that the product Lk×(0∨T ) has the form shown on the left,
and and Rk × (T ∨ 0) the form on the right.

It follows that the primitive trees (Lk and Rk) and the inherited trees (0∨T and
T ∨ 0) are prime. More precisely:
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Proposition 8.6. A nonzero tree is either !, prime, or the product of exactly two
prime trees. Furthermore, the factors are exactly the ones given in Theorem 8.5,
and can be read off from the shape of the tree.

The following combinatorial formula is a consequence of Proposition 8.6:

Corollary 8.7. Let an denote the number of composite trees of degree n. Then
an

2
=−c1− cn +

∑
d|n

cd , where cd is the d-th Catalan number.

9. Final remarks

9.1. Unique factorization. Loday [2002] conjectures that arithmetree possesses
unique factorization. Namely, when a grove x is written as a product of prime
groves, the ordered sequence of factors is unique. Very narrowly interpreted, this
statement is false. For example since multiplication in N is commutative and mul-
tiplication in Y extends arithmetic on N, we see that for n ∈N, if n = p1 p2 · · · pk ,
then

n = pσ(1)× pσ(2)× · · ·× pσ(k),

for any permutation σ . However, away from the image of N in Y, it appears that this
narrow interpretation is true. Specifically, computer experimentation on groves of
degree up to 12 yielded a unique ordered sequence of prime factors for each grove
outside of the image of N in Y.

If we interpret the image of N in Y in terms of the count function, we see that
it is precisely the set of groves with maximal count:

Ymax
=

⋃
n∈N

{x ∈ Yn | C(x)= cn}.

This subset Ymax possesses unique factorization up to permutation of the factors.
On the other extreme, the trees are precisely the set of groves with minimal count;

Ymin
=

⋃
n∈N

{x ∈ Yn | C(x)= 1}.

It follows from Proposition 8.6 that Ymin possesses unique factorization in the
narrow sense. The question of unique factorization for all of Y is open.

9.2. Additively irreducible. From Proposition 8.3 we see that not every grove can
be written as a sum of groves. In fact it is easy to see that every tree is additively
irreducible in the sense that it cannot be written as the sum of two groves. It would
be interesting to study additively irreducible groves. In an analogue to the question
of unique factorization, one could ask if arithmetree possesses unique partitioning.
Namely, when a grove is written as a sum of additively irreducible elements, is the
ordered sequence of summands unique?
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Vertical transmission in epidemic models
of sexually transmitted diseases
with isolation from reproduction
Daniel Maxin, Timothy Olson and Adam Shull

(Communicated by Suzanne Lenhart)

We describe a population logistic model exposed to a mild life-long sexually
transmitted disease, that is, without significant increased mortality among in-
fected individuals and providing no immunity/recovery. We then modify this
model to include groups isolated from sexual contact and analyze their potential
effect on the dynamics of the population. We are interested in how the isolated
class may curb the growth of the infected group while keeping the healthy pop-
ulation at acceptable levels. In particular, we analyze the connection between
vertical transmission and isolation from reproduction on the long term behavior
of the disease. A comparison with similar effects caused by vaccination and
quarantine is also provided.

1. Introduction

The dynamics of a population depends on the relation between reproduction and
mortality. One factor that we analyze in this paper is the long-term effect on the
population growth caused by the segregation of portions of the general (reproduc-
tive) population into a nonreproductive class that really consists of individuals of
two very different kinds: sexually active but nonprocreating, such as infertile indi-
viduals, and sexually inactive, consisting of individuals who by choice or medical
reasons refrain from sexual contact for life. The influence of the nonreproductive
group on general population dynamics has been analyzed for several exponential
and logistic models in [Milner 2005]. It has been shown that the nonreproductive
group can indeed alter the population trend and may even make an exponentially in-
creasing population stagnate or decline. A similar result holds for logistic models.
Maxin and Milner [2007] extended these models to incorporate a sexually trans-
mitted disease (STD) without recovery that does not increase mortality. It has been

MSC2000: primary 92D30; secondary 92D25.
Keywords: sexually transmitted diseases, abstaining individuals, vertical transmission, isolation

from reproduction.
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shown that the abstaining groups have the ability to induce a stable disease-free
equilibrium (DFE) in an endemic situation. This is quite different from quarantine
since the sexually isolated individuals do not reproduce and, by this, the number
of susceptibles decreases since no vertical transmission is assumed.

In this paper we extend the logistic model from [Maxin and Milner 2007] —
a reference we henceforth abbreviate as [MM 2007] — to include vertical trans-
mission which assumes that the newborn can acquire the disease from an infected
mother. It is intuitively obvious that, with vertical transmission, there is a new
source of newly infected individuals in the population and the conditions for dis-
ease clearance will become more restrictive. Our goal in this paper is to show that,
even in this case, a stable, disease-free steady state is possible and may be caused
primarily by isolation from reproduction.

The paper is structured as follows. In Section 2, we introduce the model and ana-
lyze the extinction and the disease-free equilibrium, and correlate these results with
the ones obtained in [MM 2007]. We then compute a threshold condition on the
nonreproductive rates that describes how the isolated class induces a disease-free
equilibrium in an endemic situation caused by vertical transmission. In Section 3,
we analyze a particular model that assumes total vertical transmission when all the
newborn from infected people are infected at birth and that leads to the existence
of a total endemic steady state when the entire healthy population vanishes. While
this is not realistic for known diseases, the stability condition of the endemic equi-
librium suggests that, contrary to what might be expected, a higher isolation rate of
infected leads to an endemic equilibrium (where healthy and infected individuals
coexist) regardless of how big the infection rate may be. We conclude in Section 4
with a brief comparison between our model and a similar S-I type model with
vaccination and quarantine to show that the previous result may not be possible in
the absence of isolation from reproduction. We conclude our paper with several
thoughts on further avenues of research.

2. The logistic model with abstaining groups and vertical transmission

Maxin and Milner [MM 2007] introduced several exponential and logistic STD
models that incorporate an abstaining class A of people who are isolated from
sexual contact. Here we consider their model with logistic mortality and assume
that each newborn from an infected individual has a probability ε of being healthy
at birth. Thus, if β is the per capita birth rate and I is the infected class, the rate
at which individuals are born already infected is β(1− ε)I . The system becomes

S′ = βS+βε I − λSI − µ̄S− ν1S,
I ′ = β(1− ε)I + λSI − µ̄I − ν2 I,
A′ = ν1S+ ν2 I − µ̄A,

(1)
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where µ̄= µ+ bP with P = S+ I + A.
The meaning of the remaining parameters is as follows:

• S and A denote the susceptible and the abstaining class. Note that, since the
abstaining individuals do not reproduce and do not participate in the infection
process, we can include both the infected and healthy isolated people into
a single group A in order to keep the dimension of the system as small as
possible. Whenever the disease is cleared (such as in the case of a stable
disease-free equilibrium) A will contain healthy isolated individuals only.

• µ̄ is the logistic death rate and b is the logistic linear coefficient that captures
the total population effect on the death rate.

• λ represents the infection rate using the mass-action law corresponding to a
homogeneous population.

• ν1 and ν2 represent the transition rates from susceptibles and infected into the
isolated class A.

• P will denote, throughout this paper, the total population.

When ε = 1, this system is identical with the one analyzed in [MM 2007].
It is reasonable to assume that the isolation rate of infected individuals is greater,

since some infected individuals may choose to quarantine themselves in order to
avoid spreading the disease. Thus, we will assume throughout this paper that

ν1 < ν2.

The model always admits an extinction equilibrium (0, 0, 0).
If β −µ− ν1 > 0 there is also a disease-free equilibrium (S∗, I∗, A∗) where

S∗ =
(

K −
ν1

b

)(
1−

ν1

β

)
=

(β −µ− ν1

b

)(
1−

ν1

β

)
,

I∗ = 0,

A∗ =
(

K −
ν1

b

)ν1

β
=

(β −µ− ν1

b

)ν1

β
,

(2)

with K = (β −µ)/b. The endemic equilibrium will be analyzed in the context of
complete vertical transmission in the following section.

Theorem 1 (stability of the boundary steady states). The extinction equilibrium is
locally asymptotically stable if

β −µ− ν1 < 0.

The disease-free equilibrium (S∗, I∗, A∗) is locally asymptotically stable if

β −µ− ν1 > 0 and λ <
βε− ν1+ ν2(

1− ν1
β

)(
K − ν1

b

) .



16 DANIEL MAXIN, TIMOTHY OLSON AND ADAM SHULL

Proof. The Jacobian of (1) is

J =

β−λI−µ̄−bS−ν1 βε−λS−bS −bS
λI−bI β(1−ε)+λS−µ̄−bI−ν2 −bI
ν1−bA ν2−bA −µ̄−bA

 .
Evaluated at (0, 0, 0) this is

J (0, 0, 0)=

β−µ−ν1 βε 0
0 β(1−ε)−µ−ν2 0
ν1 ν2 −µ

 .
It follows that the extinction equilibrium is locally asymptotically stable if

β −µ− ν1 < 0 and β(1− ε)−µ− ν2 < 0.

However, the second inequality follows from the first, since 0<ε < 1 and ν1 <ν2:

β(1− ε) < β < µ+ ν1 < µ+ ν2.

Assuming now that β −µ− ν1 > 0, and denoting

P∗ = S∗+ A∗ = K −
ν1

b
=
β −µ− ν1

b
> 0,

the Jacobian J evaluated at (S∗, I∗, A∗) isβ−µ−bP∗−bS∗−ν1 βε−λS∗−bS∗ −bS∗
0 β(1−ε)+λS∗−µ−bP∗−ν2 0

ν1−bA∗ ν2−bA∗ −µ−bP∗−bA∗

 .
The eigenvalues are β(1−ε)+λS∗−µ−bP∗−ν2 (this being the single nonzero

entry on its row) together with the eigenvalues of the complementary minor,

M =
(
β−µ−bP∗−bS∗−ν1 −bS∗

ν1−bA∗ −µ−bP∗−bA∗

)
.

Since Tr(M) = −µ− 2bP∗ < 0 and det M = bβS∗ > 0, the eigenvalues of M
have negative real parts. Thus local asymptotic stability holds for (S∗, I∗, A∗) if

β(1− ε)+ λS∗−µ− bP∗− ν2 < 0,

which is equivalent to

λ <
βε− ν1+ ν2(

1− ν1
β

)(
K − ν1

b

) . �

From [MM 2007] we know that, in the absence of the isolated class A, the
disease is endemic if β/K < λ. Similarly, with vertical transmission, if there is no
isolation from reproduction, the disease is endemic provided that βε/K < λ. The
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double inequality below indicates the range of the infection rate λ that would cause
an endemic situation in the absence of the isolated class A and a stable disease-free
equilibrium in the presence of it:

βε

K
< λ <

βε− ν1+ ν2(
1− ν1

β

)(
K − ν1

b

) . (3)

This condition resembles the similar one obtained in [MM 2007], with ε = 1
(no vertical transmission):

β

K
< λ <

β − ν1+ ν2(
1− ν1

β

)(
K − ν1

b

) .
This means that the isolated class A, represented by the two isolation rates ν1

and ν2, has the ability to induce stability to the disease-free equilibrium in an
otherwise endemic situation. With the addition of vertical transmission we notice
another threshold effect which suggests that the vertical transmission alone can
induce an endemic situation even in the case where the abstaining class satisfies
the condition in [MM 2007]. This happens if the infection rate satisfies

βε− ν1+ ν2(
1− ν1

β

)(
K − ν1

b

) < λ < β − ν1+ ν2(
1− ν1

β

)(
K − ν1

b

) .
To summarize, the vertical transmission reduces the disease-free stability range of
λ, which is to be expected with the additional infected newborns in the model.

In Figure 1 we plot two numerical examples to illustrate Theorem 1. The birth

S

I

t

S

A
I

t

Figure 1. Example equilibria: endemic equilibrium (left) in the
absence of abstainers (ν1 = ν2 = 0) and disease-free equilibrium
(right) in their presence (ν1 = 0.01, ν2 = 0.04). In both cases,
β = 0.04962, µ= 0.02026, ε = 0.7, b= 0.0002, and λ= 0.0004.
The first inequality in (3) is satisfied in the first case, and both are
in the second.
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and death rates are those given in the CIA World Factbook for Niger in 2008, but
all other parameter values are for illustration purposes only and do not reflect real
data.

A major difference from the model treated in [MM 2007] appears when the
vertical transmission rate is very high. Although not realistic, for theoretical pur-
poses we will assume the extreme case, ε = 0, which indicates 100% vertical
transmission. We treat this case in greater detail in the following section.

3. Complete vertical transmission

Setting ε = 0 in (1), we obtain:
S′ = βS− λSI − µ̄S− ν1S,
I ′ = β I + λSI − µ̄I − ν2 I,
A′ = ν1S+ ν2 I − µ̄A.

(4)

The system, in this form, allows us to explicitly compute the endemic equilib-
rium (a nontrivial task if ε 6= 0):

S∗ =
µ∗+ ν2−β

λ
, I ∗ =

β −µ∗− ν1

λ
, A∗ =

(ν2− ν1)(β −µ
∗)

λµ∗
,

where µ∗ = µ+ bP∗. Adding the equations for S∗, I ∗, and A∗ together gives us

P∗ =
(ν2− ν1)β

λµ∗
.

For a biologically meaningful endemic equilibrium (EE) to exist (i.e., positive
values) we need

ν1 < β −µ
∗ < ν2,

or
β

µ∗+ ν1
> 1 and

β

µ∗+ ν2
< 1.

This translates to a requirement that the reproductive number of the susceptibles
must be greater than one, while the reproductive number of the infected population
must be less than one.

In addition to the disease-free and endemic equilibria, (4) admits a third steady
state in which the entire healthy population vanishes. We call this the susceptible
extinction equilibrium (SEE):

S̄ = 0, Ī =
(

1−
ν2

β

)
P̄, Ā =

ν2

β
P̄,

where P̄ = (β −µ− ν2)/b.
We see that, for a positive SEE equilibrium, we need β −µ− ν2 > 0.



VERTICAL TRANSMISSION IN STD MODELS WITH ISOLATION 19

Theorem 2 (existence and local stability conditions for EE and SEE). If either

ν2− ν1(
1− ν1

β

)(
K − ν1

b

) < λ < ν2− ν1(
1− ν2

β

)(
K − ν2

b

) (5)

or
ν2− ν1(

1− ν1
β

)(
K − ν1

b

) < λ and β <
µ

2
+ ν2, (6)

the endemic equilibrium (S∗, I ∗, A∗) exists and is locally asymptotically stable. If

β > µ+ ν2 and λ >
ν2− ν1(

1− ν2
β

)(
K − ν2

b

) , (7)

the susceptible extinction equilibrium (S̄, Ī , Ā) exists and is locally asymptotically
stable.

Proof. First we show that the EE is stable whenever it exists. The Jacobian of (4),
evaluated at (S∗, I ∗, A∗), is

J (S∗, I ∗, A∗)=

 −bS∗ −λS∗− bS∗ −bS∗

λI ∗− bI ∗ −bI ∗ −bI ∗

ν1− bA∗ ν2− bA∗ −µ∗− bA∗

 .
If the characteristic equation of this matrix is x3

+p1x2
+p2x+p3 = 0, then

p1 =−Tr(J )= µ∗+ bP∗,

p2 =
(
b2S∗ I ∗+ (λ2

− b2)S∗ I ∗
)
+
(
bS∗(µ∗+ bA∗)+ bS∗(ν1− bA∗)

)
+
(
bI ∗(µ∗+ bA∗)+ bI ∗(ν2− bA∗)

)
= λ2 I ∗S∗+ bν1S∗+ bν2 I ∗+ bµ∗(S∗+ I ∗),

p3 =−Det(J )= λS∗ I ∗(bν2− bν1+ λµ
∗
+ λbA∗).

Clearly p1 > 0, p2 > 0 and p3 > 0, since ν2 > ν1.
Replacing S∗, I ∗, A∗ and P∗ with their corresponding values computed above,

we also see that p1 p2 > p3 since

p1 p2− p3 =
bβ(ν2− ν1)

(
λ(µ∗)2+ bβ(ν2− ν1)

)
λ2µ∗

> 0.

Hence, according to the Routh–Hurwitz criterion, the interior equilibrium is
always stable whenever it exists. It remains now to interpret the positivity condition
ν1 < β −µ

∗ < ν2 in terms of the original parameters.
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To this end, we solve for µ∗ using the following equation:

P∗ =
µ∗−µ

b
=
β(ν2− ν1)

λµ∗
.

There is a unique positive solution

µ∗ =
µλ+

√
µ2λ2+ 4bβλ(ν2− ν1)

2λ
,

and the existence condition above becomes

2(β − ν2)−µ <
1
λ

√
µ2λ2+ 4bβλ(ν2− ν1) < 2(β − ν1)−µ. (8)

Consider the second inequality first. Its right side is positive, since our standing
assumption is that β > µ + ν1, to avoid total population extinction. Therefore
squaring both sides leads to an equivalent inequality,

1
λ2

(
µ2λ2

+ 4bβλ(ν2− ν1)
)
< 4(β − ν1)

2
+µ2

− 4µ(β − ν1),

which after simplification becomes, in terms of K =
β −µ

b
, the condition

λ >
ν2− ν1(

1− ν1
β

)(
K − ν1

b

) .
Thus the second inequality in (8) amounts to precisely the opposite of the condition
for disease-free stability at the end of the statement of Theorem 1, in the case ε=0.

There remains to study the first inequality in (8). It is certainly satisfied if its
left side is negative, that is, if

β <
µ

2
+ ν2.

In the opposite case, β ≥ µ
2
+ν2, we can square both sides to obtain the equivalent

condition
λ <

ν2− ν1(
1− ν2

β

)(
K − ν2

b

) . (9)

In other words, the endemic equilibrium exists and it is stable if conditions (5)
and (6) are satisfied.

The Jacobian of (4) evaluated at (S̄, Ī , Ā) is−λ Ī + ν2− ν1 0 0
(λ− b) Ī −bĪ −bĪ
ν1− bĀ ν2− bĀ −µ̄− bĀ

 ,
where µ̄ here denotes µ+ b(S̄+ Ī + Ā).
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It is clear that one of the eigenvalues is negative when λ Ī > ν2 − ν1, which is
equivalent to the second condition in (7):

λ >
ν2− ν1(

1− ν2
β

)(
K − ν2

b

) . (10)

Removing the row and column containing that eigenvalue leaves us with a 2× 2
matrix whose determinant is always positive (bβ Ī > 0) and whose trace is always
negative (−µ̄− bP̄ < 0). Thus, the susceptible extinction equilibrium is locally
asymptotically stable, with λ satisfying condition (7) . �

Remark 1. Condition (6) has an interesting consequence. First, if β < µ/2+ ν2,
then β <µ+ν2 also, so the susceptible extinction equilibrium does not exist in this
case. This means that if ν2 is big enough, the susceptible class never goes extinct
and the endemic equilibrium is stable regardless of how big the infection rate λ
may be. This emphasizes the epidemiological role of isolation from reproduction.

Remark 2. If one excludes the fact that the isolated class A does not reproduce,
then the model (4) resembles an S− I type model with vaccination (ν1) and quar-
antine (ν2). Thus, in order to sustain the previous remark that the Susceptible
Extinction Equilibrium may be eliminated by the isolation from reproduction we
need to investigate whether this result holds for a similar model where the vacci-
nated and quarantined classes do reproduce. In the next section we show that the
answer to this question is negative meaning that the result obtained for our original
model is indeed primarily due to the isolation from reproduction.

We provide some numerical examples to illustrate Theorem 2. In Figure 2 we

I

A

S

t

Figure 2. Example of a susceptible extinction equilibrium: β =
0.04962, µ= 0.02026, ν1 = 0.005, ν2 = 0.01, ε = 0, b = 0.0002,
λ= 0.0004. Inequality (10) is satisfied.
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S

A

I

t

S

A

I

t

Figure 3. Examples of endemic equilibria: β = 0.04962, µ =
0.02026, ν1 = 0.005, ν2 = 0.04, ε = 0, b = 0.0002, λ = 0.0004
(left) or λ= 0.0008 (right). Inequalities (6) are satisfied.

show an example when the SEE is stable. In Figure 3 we illustrate the case of a
stable EE satisfying (6). In Figure 3, right, we double the value of λ while keeping
the other parameters the same as in the left half of the figure, to illustrate that under
condition (6) the stability of EE is maintained regardless of how big the infection
rate is.

4. A model with complete vertical transmission, vaccination and quarantine

The model proposed in this section is intended to eliminate the ambiguity concern-
ing the epidemiological role of the isolated class A. In other words, we would like
to see if the result in the previous section is due to the nonreproduction or perhaps
due to vaccination and quarantine (which are other possible interpretations for the
transition rates ν1 and ν2). To this end, we assume now that the model resembles
an S-I type dynamics with vaccination and quarantine. Another main difference is
that all individuals reproduce, including the quarantined. Since the isolated classes
reproduce and one needs to track the infected and healthy newborns, we must
separate the isolated class A into two classes: V , the vaccinated individuals and
Q the quarantined infected people. Furthermore, we denote by η the transition
rate from vaccinated individuals back to the susceptible class S to account for a
possible imperfect vaccine where some individuals loose the acquired immunity.

The model is as follows:
S′ = β(S+ V )− λSI − µ̄S− ν1S+ ηV,
I ′ = β(I + Q)+ λSI − µ̄I − ν2 I,
V ′ = ν1S− µ̄V − ηV,
Q′ = ν2 I − µ̄Q,

(11)
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where µ̄= µ+ b(S+ I + V + Q).

Remark 3. In this model we assumed the same reproduction rate for all individu-
als. A possible interpretation is that, in the case of sexually transmitted diseases,
quarantine can be viewed as abstaining from sexual contact with healthy people
only. This is true sometimes for diseases such as herpes simplex type 2 (HSV-2)
when infected individuals search for partners among groups already infected. In
reality, due to these considerations, the quarantined class will always exhibit a
certain degree of isolation from reproduction. However, the main purpose of model
(11) is to verify the results in the previous sections under the assumption that no
isolation from reproduction occurs with transitions from one class to another.

Notice that there is no endemic equilibrium where the healthy and infected in-
dividuals coexist as shown below:

Substituting V = ν1S/(µ̄+ η) and Q = ν2 I/µ̄ into the first two equations, we
obtain

λI = (β − µ̄)
(

1+
ν1

µ̄+ η

)
and λS = (µ̄−β)

(
1+

ν2

µ̄

)
.

Clearly, it is impossible for both of them to be positive since λS> 0 implies β < µ̄
which, in turn, implies λI < 0.

Adding the equations of (11) we obtain a logistic equation for the total popula-
tion P:

P ′ = βP − µ̄P = (β −µ− bP)P.

Therefore,

lim
t→∞

P(t)=
β −µ

b
:= K ,

provided that β > µ. If β < µ the population declines to zero.
Thus there are three steady states:

• the extinction equilibrium: (0, 0, 0, 0),

• the susceptible extinction equilibrium (SEE):

S̄ = 0, Ī =
βK
β + ν2

, V̄ = 0, Q̄ =
ν2K
β + ν2

,

• the disease-free equilibrium (DFE):

S∗ =
(β + η)K
β + ν1+ η

, Ī = 0, V̄ =
ν1K

β + ν1+ η
, Q̄ = 0.

Theorem 3. If β > µ, the SEE is locally asymptotically stable and the DFE is
unstable (whenever it exists).
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Proof. The Jacobian of (11) is

J =


β−λI−µ̄−bS−ν1 −(λ+b)S −bS+β+η −bS

(λ−b)I β+λS−µ̄−bI−ν2 −bI −bI+β
ν1−bV −bV −µ̄−bV−η −bV
−bQ ν2−bQ −bQ −µ̄−bQ

 .
We evaluate first the characteristic polynomial of J (S̄, Ī , V̄ , Q̄), which is

f (x)=
(
x2
+ (bĪ + bQ̄+β + ν2)x + b( Ī + Q̄)(β + ν2)

)
×
(
x2
+ (β + ν1+ λ Ī + η)x + λ Ī (β + η)

)
.

Since all its coefficients are positive then the real parts of all eigenvalues are
negative and the susceptible extinction equilibrium is locally asymptotically stable
whenever it exists.

On the contrary, for the disease-free equilibrium, the characteristic polynomial
of J (S∗, I ∗, V ∗, Q∗) is

g(x)=
(
x2
+ (bS∗+ bV ∗+β + η+ ν1)x + b(S∗+ V ∗)(β + η+ ν1)

)
×
(
x2
+ (β + ν2− λS∗)x −βλS∗

)
and the real part of one of its eigenvalues is always positive: from the second
quadratic factor of g(x) we see that the product of its roots is given by

x1x2 =−βλS∗ < 0. �

Thus, the DFE is always unstable and the possibility of eliminating the disease
is not possible through quarantine and vaccination alone when the population is
faced with complete vertical transmission. In Figure 4 we provide a numerical
example using the same parameter values as those in Figure 3 to illustrate that,
in the absence of isolation from reproduction, the SEE is stable and the healthy
population vanishes.

5. Conclusions

We modified the epidemic model with sexually abstaining groups introduced in
[MM 2007] to include vertical transmission. We found that previous results claim-
ing that the isolated class may induce the stability of the disease-free equilibrium in
an endemic situation are still valid in the presence of vertical transmission although
the range of the infection rate when this is possible is more restrictive.

One major difference appears when the vertical transmission rate is very high,
that is, close to 100%. To simplify our analysis we actually considered a complete
vertical transmission situation where every newborn from infected parents is in-
fected as well. In this case, under certain conditions on the vital parameters, we
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Figure 4. The susceptible extinction equilibrium in the absence
of isolation from reproduction. Parameter values: β = 0.04962,
µ=0.02026, ν1=0.005, ν2=0.04, ε=0, b=0.0002, λ=0.0004,
η = 0.2.

found that the model admits a steady state (SEE) when the entire susceptible popu-
lation vanishes, in addition to the disease-free and interior (endemic) steady states.
The local stability analysis for the endemic equilibrium shows that both the infected
and the healthy groups may coexist and that the total endemic situation when the
healthy population declines to zero can be avoided by isolation from reproduction
alone. A comparison with model (11) shows that this result may indeed be due
to isolation from reproduction and not due to vaccination or quarantine, which are
other possible interpretations for the transition rates ν1 and ν2.

One important limitation of our work is given by the use of one-sex models.
Since we were interested in showing that there is an important correlation between
vertical transmission and isolation from reproduction, we chose the simplest pos-
sible model to sustain our argument and to keep the mathematical details as simple
as possible. Our next objective related to the present research is to investigate if
similar results can be obtained using two-sex models. The influence of sexually
abstaining groups on STD dynamics has been analyzed in [Maxin 2009; Maxin
and Milner 2009] using a gender structured logistic model. We intend to extend
that model to include vertical transmission. This research is currently underway
and will be reported later.
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On the maximum number of isosceles right
triangles in a finite point set

Bernardo M. Ábrego, Silvia Fernández-Merchant and David B. Roberts
(Communicated by Kenneth S. Berenhaut)

Let Q be a finite set of points in the plane. For any set P of points in the plane,
SQ(P) denotes the number of similar copies of Q contained in P . For a fixed n,
Erdős and Purdy asked for the maximum possible value of SQ(P), denoted by
SQ(n), over all sets P of n points in the plane. We consider this problem when
Q=4 is the set of vertices of an isosceles right triangle. We give exact solutions
when n ≤ 9, and provide new upper and lower bounds for S4(n).

1. Introduction

Paul Erdős and George Purdy [1971; 1975; 1976] posed the question: Given a finite
set of points Q, what is the maximum number SQ(n) of similar copies that can be
contained in an n-point set in the plane? This problem remains open in general.
However, there has been some progress regarding the order of magnitude of this
maximum as a function of n. Elekes and Erdős [1994] noted that SQ (n)≤n (n− 1)
for any pattern Q and they also gave a quadratic lower bound for SQ(n) when
|Q| = 3 or when all the coordinates of the points in Q are algebraic numbers.
They also proved a slightly subquadratic lower bound for all other patterns Q.
Later, Laczkovich and Ruzsa [1997] characterized precisely those patterns Q for
which SQ (n)=2(n2). In spite of this, the coefficient of the quadratic term is not
known for any nontrivial pattern; it is not even known if limn→∞ SQ(n)/n2 exists!

Apart from being a natural question in discrete geometry, this problem also arose
in connection with the optimization of algorithms designed to look for patterns
among data obtained from scanners, digital cameras, telescopes, and so on [Brass
2002; Brass et al. 2005; Brass and Pach 2005].

Our paper considers the case where Q is the set of vertices of an isosceles right
triangle. The case where Q is the set of vertices of an equilateral triangle has been
considered in [Ábrego and Fernández-Merchant 2000]. To avoid redundancy, we

MSC2000: primary 52C10; secondary 05C35.
Keywords: Erdős problems, similar triangles, isosceles right triangles.
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refer to an isosceles right triangle as an IRT for the remainder of the paper. We
begin with some definitions. Let P denote a finite set of points in the plane. We
define S4(P) to be the number of triplets in P that are the vertices of an IRT.
Furthermore, let

S4(n)= max
|P|=n

S4(P).

As mentioned before, Elekes and Erdős established that S4(n) = 2(n2) and it is
implicit from their work that 1/18 ≤ lim infn→∞ S4(n)/n2

≤ 1. The main goal
of this paper is to derive improved constants that bound the function S4(n)/n2.
Specifically, in Sections 2 and 3, we prove:

Theorem 1. 0.433064< lim inf
n→∞

S4(n)
n2 ≤

2
3
< 0.66667.

We proceed to determine in Section 4 the exact values of S4(n) when 3≤ n≤ 9.
Several ideas for the proofs of these bounds come from the equivalent bounds for
equilateral triangles in [Ábrego and Fernández-Merchant 2000].

2. Lower bound

For z ∈ P , let Rπ/2(z, P) be the π/2 counterclockwise rotation of P with center z.
Let degπ/2(z) be the number of isosceles right triangles in P such that z is the
right-angle vertex of the triangle. If z ∈ P , then degπ/2(z) can be computed by
simply rotating our point set P by π/2 about z and counting the number of points
in the intersection other than z. Therefore,

degπ/2(z)=
∣∣P ∩ Rπ/2(z, P)

∣∣− 1. (1)

Since an IRT has only one right angle,

S4(P)=
∑
z∈P

degπ/2(z).

That is, the sum computes the number of IRTs in P . From this identity an initial
lower bound of 5

12 can be derived for lim infn→∞ S4(n)/n2 using the set

P =
{
(x, y) ∈ Z2

: 0≤ x ≤
√

n, 0≤ y ≤
√

n
}
.

We now improve this bound.
The following theorem generalizes our method for finding a lower bound. We

denote by 3 the lattice generated by the points (1, 0) and (0, 1), and we refer to
points in 3 as lattice points. The next result provides a formula for the leading
term of S4(P) when our points in P are lattice points enclosed by a given shape.
This theorem, its proof, and notation, are similar to those of Theorem 2 in [Ábrego
and Fernández-Merchant 2000], where we obtained a similar result for equilateral
triangles in place of IRTs.
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Theorem 2. Let K be a compact set with finite perimeter and area 1. Define

fK : C→ R+ as fK (z)= Area(K ∩ Rπ/2(z, K )), where z ∈ K .

If Kn is a similar copy of K intersecting 3 in exactly n points, then

S4(Kn ∩3)=

(∫
K

fK (z) dz
)

n2
+ O(n3/2).

Proof. Given a compact set L with finite area and perimeter, we have

|r L ∩3| = Area(r L)+ O(r)= r2Area(L)+ O(r),

where r L is the scaling of L by a factor r . Therefore,

S4(Kn ∩3)=
∑

z∈Kn∩3

|(3∩ Kn)∩ Rπ/2(z, (Kn ∩3))| − 1

=
∑

z∈Kn∩3

Area(Kn ∩ Rπ/2(z, Kn))+ O(
√

n).

We see that each error term in the sum is bounded by the perimeter of Kn , which
is finite by hypothesis. Thus,

S4(Kn ∩3)= n2 ∑
z∈Kn∩3

1
n2 Area(Kn ∩ Rπ/2(z, Kn))+ O(n3/2)

= n2 ∑
z∈Kn∩3

1
n

Area
(

1
√

n
(Kn ∩ Rπ/2(z, Kn))

)
+ O(n3/2)

= n2 ∑
z∈Kn∩3

1
n

Area
(

1
√

n
Kn ∩ Rπ/2

(
z
√

n
,

1
√

n
Kn

))
+ O(n3/2).

The last sum is a Riemann approximation for the function f(1/√n)Kn
over the region

(1/
√

n)Kn; thus

S4(Kn ∩3)= n2
(∫

1
√

n Kn

f 1
√

n Kn
(z) dz+ O

(
1
√

n

))
+ O(n3/2).

Since

Area
(

1
√

n
Kn

)
=

1
n

Area(Kn)=
1
n
(n+ O(

√
n))

= 1+ O
(

1
√

n

)
= Area(K )+ O

(
1
√

n

)
,

it follows that ∫
1
√

n Kn

f 1
√

n Kn
(z) dz =

∫
K

fK (z) dz+ O
(

1
√

n

)
.
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As a result,

S4(Kn ∩3)= n2
∫

1
√

n Kn

f 1
√

n Kn
(z) dz+ O(n3/2)= n2

∫
K

fK (z) dz+ O(n3/2). �

The importance of this theorem can be seen immediately. Although our lower
bound of 5

12 for lim infn→∞ S4(n)/n2 was derived by summing the degrees of each
point in a square lattice, the same result can be obtained by letting K be the square{
(x, y) : |x | ≤ 1

2 , |y| ≤
1
2

}
. It follows that fK (x, y)= (1−|x |−|y|)

(
1−

∣∣|x |−|y|∣∣)
and

S4(Kn ∩3)=

(∫
K

fK (z) dz
)

n2
+ O(n3/2)= 5

12 n2
+ O(n3/2).

An improved lower bound will follow provided that we find a set K such that
the value for the integral in Theorem 2 is larger than 5

12 . We get a larger value for
the integral by letting K be the circle {z ∈ C : |z| ≤ 1/

√
π}. In this case

fK (z)=
2
π

arccos
(√2π

2
|z|
)
− |z|

√
2
π
− |z|2 (2)

and

S4(Kn ∩3)=
(∫

K
fK (z) dz

)
n2
+ O(n3/2)=

(3
4
−

1
π

)
n2
+ O(n3/2).

It was conjectured in [Ábrego and Fernández-Merchant 2000] that not only does
limn→∞ E(n)/n2 exist, but it is attained by the uniform lattice in the shape of a
circle. (E(n) denotes the maximum number of equilateral triangles determined by
n points in the plane.) The corresponding conjecture in the case of the isosceles
right triangle turns out to be false. That is, if limn→∞ S4(n)/n2 exists, then it must
be strictly greater than 3

4 −π
−1. Define 3 to be the translation of 3 by the vector

(1
2 ,

1
2). The following lemma will help us to improve our lower bound.

Lemma 3. If ( j, k) ∈ R2 and 3′ =3 or 3′ =3, then

Rπ/2(( j, k),3′)∩3′ =
{
3′ if ( j, k) ∈3∪3,
∅ else.

Proof. Observe that

Rπ/2(( j, k), (s, t))=
(

0 −1
1 0

)(
s− j
t−k

)
+

(
j
k

)
=

(
k−t+ j
s− j+k

)
.

First suppose (s, t) ∈ 3. Since s, t ∈ Z, then (k−t+ j, s− j+k) ∈ 3 if and only
if k− j ∈ Z and k + j ∈ Z. This can only happen when either both j and k are
half-integers (i.e., ( j, k) ∈3), or both j and k are integers (i.e., ( j, k) ∈3). Now
suppose (s, t)∈3. In this case, because both s and t are half-integers, we conclude
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that (k − t + j, s − j + k) ∈ 3 if and only if both k − j ∈ Z and k + j ∈ Z. Once
again this occurs if and only if ( j, k) ∈3∪3. �

Recall that if K denotes the circle of area 1, then (3
4 − π

−1)n2 is the leading
term of S4(Kn ∩ 3). The previous lemma implies that, if we were to adjoin a
point z ∈ R2 to Kn ∩ 3 such that z has half-integer coordinates and is located
near the center of the circle formed by the points of Kn ∩3, then degπ/2(z) will
approximately equal |Kn ∩3|. We obtain the next theorem by further exploiting
this idea.

Theorem 4. 0.43169≈
3
4
−

1
π
< 0.433064< lim inf

n→∞

S4(n)
n2 .

Proof. Let K be the circle of area 1 and set A= Km1∩3, B= Km2∩3. Position B
so that its points are centered on the circle formed by the points in A (see Figure 1).
We let n = m1+m2 = |A∪ B| and m2 = x ·m1, where 0< x < 1 is a constant to
be determined.

We proceed to maximize the leading coefficient of S4(A∪ B) as x varies from
0 to 1. By Lemma 3, there cannot exist an IRT whose right-angle vertex lies in A
while one π/4 vertex lies in A and the other lies in B. Similarly, there cannot exist
an IRT whose right angle-vertex lies in B while one π/4 vertex lies in A and the
other lies in B. Therefore, each IRT with vertices in A∪ B must fall under one of
four cases:

Case 1: All three vertices in A. By Theorem 2, there are (3
4−π

−1)m2
1+O(m3/2

1 )

IRTs in this case. Since m1 = n/(1+ x), the number of IRTs in terms of n equals(3
4
−

1
π

) n2

(1+ x)2
+ O(n3/2). (3)

Figure 1. Left: set B (open dots) centered on set A (black dots).
Right: plot of the n2 coefficient of S4(A∪ B) for x from 0 to 1.
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Case 2: All three vertices in B. By Theorem 2, there are ( 3
4−π

−1)m2
2+O(m3/2

2 )

IRTs in this case. This time m2 = nx/(1+ x) and the number of IRTs in terms of
n equals (3

4
−

1
π

) n2x2

(1+ x)2
+ O(n3/2). (4)

Case 3: Right-angle vertex in B, π/4 vertices in A. The relationship given by
Lemma 3 allows us to slightly adapt the proof of Theorem 2 in order to compute
the number of IRTs in this case. The integral approximation to the number of IRTs
in this case is given by∑
z∈Km2∩3

∣∣(Km1∩3)∩Rπ/2(z, (Km1∩3))
∣∣= m2

1

(∫
1
√m1

Km2

f 1
√m1

Km1
(z) dz

)
+O(m3/2

1 ).

But

Area
(

1
√

m1
Km2

)
= Area

(√
m2

m1
K
)
+ O(
√

m1),

so

m2
1

(∫
1
√m1

Km2

f 1
√m1

Km1
(z) dz

)
+ O(m3/2

1 )= m2
1

(∫
√

m2
m1

K
fK (z) dz

)
+ O(m3/2

1 ).

Expressing this value in terms of n gives(∫
√

x K
fK (z) dz

)
n2

(1+ x)2
+ O(n3/2). (5)

Case 4: Right-angle vertex in A, π/4 vertices in B. As in Case 3, the number of
IRTs is given by∑
z∈Km1∩3

∣∣(Km2 ∩3)∩ Rπ/2(z, (Km2 ∩3))
∣∣

= m2
2

(∫
1
√m2

Km1

f 1
√m2

Km2
(z) dz

)
+ O(m3/2

2 ). (6)

Now recall that f(1/√m2)Km2
(z)=Area

(
(1/
√

m2)Km2 ∩ Rπ/2(z, (1/
√

m2)Km2)
)
.

It follows that f(1/√m2)Km2
(z0)= 0 if and only if z0 is farther than

√
2/π from the

center of (1/
√

m2)Km2 . Thus for small enough values of m2, the region of inte-
gration in (6) is actually (

√
2/m2)Km2 , so it does not depend on m1. We consider

two subcases.
First, if x ≤ 1

2 (i.e., m2 ≤ m1/2), then√
2
π
=

1
√

m2

√
2m2
√
π
≤

1
√

m2

√
2
√
π

√
m1
√

2
=

1
√

m2

√
m1

π
.
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The left side of this inequality is the radius of (
√

2/m2)Km2 , while the right side
is the radius of (1/

√
m2)Km1 ; thus the region of integration where f(1/√m2)Km2

is
nonzero equals (

√
2/m2)Km2 . Hence, the number of IRTs equals

m2
2

(∫
√

2
m2

Km2

f 1
√m2

Km2
(z) dz

)
+ O(m3/2

2 )= m2
2

(∫
√

2K
fK (z) dz

)
+ O(m3/2

2 )

=

(∫
√

2K
fK (z) dz

)
n2x2

(1+x)2
+ O(n3/2).

(7)

Now we consider the case x > 1
2 (i.e., m2 > m1/2). In this case, f(1/√m2)Km2

is
nonzero for all points in (1/

√
m2)Km1 . Thus the number of IRTs is then

m2
2

(∫
1
√m2

Km1

f 1
√m2

Km2
(z) dz

)
+ O(m3/2

2 )= m2
2

(∫
√

m1
m2

K
fK (z) dz

)
+O(m3/2

2 )

=

(∫
√

1
x K

fK (z) dz
)

n2x2

(1+x)2
+ O(n3/2).

(8)

By (2), we have, for t > 0,∫
t K

fK (z) dz = 2π
∫ t/
√
π

0

(
2
π

arccos
(√2π

2
r
)
− r

√
2
π
− r2

)
r dr

=
1

2π

(
4t2 arccos t

√
2
+ 2 arcsin t

√
2
− t (t2

+ 1)
√

2− t2
)
.

Therefore, putting all four cases together — i.e., expressions (3)–(5), and either (7)
or (8) — we obtain that the n2 coefficient of S4(A∪ B) equals

1
4π(x + 1)2

(
8x arccos

√
x
2
+ 4 arcsin

√
x
2
+ (5π − 4)x2

+ (3π − 4)

− 2(x + 1)
√

2x − x2

)
if 0< x ≤ 1

2 , or

1
4π(x + 1)2

(
8x
(

arccos
√

x
2
+ arccos

√
1

2x

)
+ 4 arcsin

√
x
2
+ 4x2 arcsin

√
1

2x

+(3π − 4)(x2
+ 1)− 2(x + 1)

(√
2x − x2+

√
2x − 1

))
,

if 1
2 < x<1. Letting x vary from 0 to 1, this coefficient is maximized (see Figure 1)

when x ≈ 0.0356067, corresponding to a radius of B approximately 18.87% of the
radius of A. Letting x equal this value gives 0.433064 as a decimal approximation
to the maximum value attained by the n2 coefficient. �
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At this point, one might be tempted to further increase the quadratic coefficient
by placing a third set of lattice points arranged in a circle and centered on the circle
formed by B. It turns out that forming such a configuration does not improve the
results in the previous theorem. This is due to Lemma 3. More specifically, given
our construction from the previous theorem, there is no place to adjoin a point z to
the center of A∪ B such that z ∈ 3 or z ∈ 3. Hence, if we were to add the point
z to the center of A ∪ B, then any new IRTs would have their right-angle vertex
located at z with one π/4 vertex in A and the other π/4 vertex in B. Doing so can
produce at most 2m2 = 2xm1 ≈ 0.0712m1 new IRTs (recall that x ≈ 0.0356066
in our construction). On the other hand, adding z to the perimeter of A, gives us
m1 fK (1/

√
π)≈ 0.1817m1 new IRTs.

3. Upper bound

We now turn our attention to finding an upper bound for S4(n)/n2. It is easy to
see that S4(n) ≤ n2

− n, since any pair of points can be the vertices of at most
six IRTs. Our next theorem improves this bound. The idea is to prove that there
exists a point in P that does not belong to many IRTs. First, we need the following
definition.

For every z ∈ P , let R+π/4(z, P) and R−π/4(z, P) be the dilations of P , centered
at z, with factor

√
2 and 1/

√
2, respectively, followed by a π/4 counterclockwise

rotation with center z. Let deg+π/4(z) and deg−π/4(z) be the number of isosceles right
triangles zxy with x, y ∈ P such that zxy occur in counterclockwise order, and zy,
respectively zx , is the hypotenuse of the triangle zxy.

Much like the case of degπ/2, deg+π/4 and deg−π/4 can be computed with the
identities

deg+π/4(z)=
∣∣P ∩ R+π/4(z, P)

∣∣− 1, deg−π/4(z)=
∣∣P ∩ R−π/4(z, P)

∣∣− 1.

Theorem 5. S4(n)≤
⌊2

3(n− 1)2− 5
3

⌋
for n ≥ 3.

Proof. By induction on n. If n=3, then S4(3)≤1=
⌊ 1

3(2·4−5)
⌋

. Now suppose the
theorem holds for n=k. We must show this implies the theorem holds for n=k+1.
Suppose that there is a point z ∈ P such that degπ/2(z)+ deg+π/4(z)+ deg−π/4(z)≤⌊ 1

3(4n− 5)
⌋
. Then, by induction,

S4(k+ 1)≤ degπ/2(z)+ deg+π/4(z)+ deg−π/4(z)+ S4(k)

≤
⌊ 1

3(4k−1)
⌋
+
⌊2

3(k− 1)2− 5
3

⌋
=
⌊ 2

3 k2
−

5
3

⌋
.

The last equality can be verified by considering the three possible residues of k
when divided by 3. Hence, our theorem is proved if we can find a point z ∈ P with
the desired property.
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Let x, y ∈ P be points such that x and y form the diameter of P . In other words,
if w ∈ P , then the distance from w to any other point in P is less than or equal
to the distance from x to y. We now prove that either x or y is a point with the
desired property mentioned above. We begin by analyzing deg−π/4. We use the
notation from [Ábrego and Fernández-Merchant 2000, Theorem 1].

Define Nx = P∩R−π/4(x, P)\{x} and Ny = P∩R−π/4(y, P)\{y}. It follows from
our identities that, deg−π/4(x) = |Nx | and deg−π/4(y) = |Ny|. Furthermore, by the
inclusion-exclusion principle for finite sets, we have

|Nx | + |Ny| = |Nx ∪ Ny| + |Nx ∩ Ny|.

We shall prove by contradiction that |Nx ∩ Ny| ≤ 1. Suppose that there are two
points u, v ∈ Nx ∩ Ny . This means that there are points ux , vx , u y, vy ∈ P such
that the triangles xux u, xvxv, yu yu, yvyv are IRTs oriented counterclockwise with
right angle at either u or v.

But notice that the line segments ux u y and vxvy are simply the (π/2)-counter-
clockwise rotations of xy about centers u and v, respectively. Hence, ux u yvxvy is
a parallelogram with two sides having length xy as shown in Figure 2, left. This is
a contradiction since one of the diagonals of the parallelogram is longer than any of
its sides. Thus, |Nx∩Ny|≤1. Furthermore, x /∈ Ny and y /∈ Nx , so |Nx∪Ny|≤n−2
and thus deg−π/4(x)+ deg−π/4(y) = |Nx ∪ Ny| + |Nx ∩ Ny| ≤ n − 2+ 1 = n − 1.
This also implies that deg+π/4(x)+deg+π/4(y)≤ n−1, since we can follow the same
argument applied to the reflection of P about the line xy.

We now look at degπ/2(x) and degπ/2(y). We claim that, for every p ∈ P , at
most one of Rπ/2(x, p) or Rπ/2(y, p) belongs to P . Indeed, let px = Rπ/2(x, p)
and py= Rπ/2(y, p) (see Figure 2, right). The distance px py is exactly the distance
xy but scaled by

√
2. This contradicts the fact that xy is the diameter of P .

Define a graph G with vertex set V (G)= P\{x, y} and edge set given by saying
that uv ∈ E(G) if and only if v = Rπ/2(x, u) or v = Rπ/2(y, u). We show that

0≤ degπ/2(x)+ degπ/2(y)− |E(G)| ≤ 1. (9)

x y

u

v

uy

vy

vx

ux

x y

p

px

py

Figure 2. Proof of Theorem 5.
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The left inequality follows from the fact each edge counts an IRT in either
degπ/2(x) or degπ/2(y) and possibly in both. However, if uv is an edge of G
so that v = Rπ/2(x, u) and u = Rπ/2(y, v), then xuyv is a square, so this can only
happen for at most one edge.

Now, let degG(u) be the number of edges in E(G) incident to u. We claim that

degG(u)≤ 2 for every u ∈ V (G). (10)

Indeed, take uv1 ∈ E(G); we can assume, without loss, that u = Rπ/2(y, v1). If
v3 = Rπ/2(y, u) ∈ P , then we conclude that xv3 > xy or
xv1 > xy, because 6 xyv3 ≥ π/2 or 6 xyv1 ≥ π/2. This
contradicts the fact that xy is the diameter of P . Sim-
ilarly, if v2 and v4 are defined as u = Rπ/2(x, v4)

and v2= Rπ/2(x, u), then at most one of v2 or v4

can be in P .

Claim. All paths in G have length at most 2.

Proof. We prove this claim by contradiction. Suppose we can
have a path of length 3 or more. To assist us, let us place
our points on a cartesian coordinate system with our diam-
eter xy relabeled as the points (0, 0) and (r, 0), further-
more, assume p, q≥0 and that the four vertices of the
path of length 3 are (p,−q), (q, p), (r−p, q−r),
and (r−q, r−p). Our aim is to show that the dis-
tance between (r−q, r−p) and (r−p, q−r) contra-
dicts that r is the diameter of P . Now, if paths of length 3
were possible, the distance between every pair of points in
the figure on the right must be less than or equal to r . Since d((p,−q), (q, p))≤ r ,
we have p2

+ q2
≤ r2/2.

Now let us analyze the square of the distance from (r−q, r−p) to (r−p, q−r).
Because 2(p2

+ q2)≥ (p+ q)2, it follows that

d2((r − q, r − p), (r − p, q − r)
)
= (−q + p)2+ (2r − p− q)2

= 4r2
− 4r(p+ q)+ 2(p2

+ q2)

≥ 4r2
− 4
√

2r
√

p2+ q2+ 2(p2
+ q2)

=
(
2r −

√
2(p2+ q2)

)2
.

But
√

2(p2+ q2)≤ r , so
(
2r −

√
2(p2+ q2)

)
≥ r and thus

d2((r − q, r − p), (r − p, q − r)
)
≥ r2.

Equality occurs if and only if p= r/2 and q= r/2; otherwise, the distance between
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(r−q, r−p) and (r−p, q−r) is strictly greater than r , contradicting the fact that
the diameter of P is r . Therefore if p 6= r/2 or q 6= r/2 then there is no path of
length 3. In the case that p = r/2 and q = r/2 the points (q, p) and (r−q, r−p)
become the same and so do the points (p,−q) and (r−p, q−r). Thus we are left
with a path of length 1. �

It follows from (10) and the Claim that all paths of length 2 are disjoint. Thus,
G is the union of disjoint paths of length at most 2. If a denotes the number of
paths of length 2 and b the number of paths of length 1, then

|E(G)| = 2a+ b and 3a+ 2b ≤ n− 2.

Recall from (9) that either

degπ/2(x)+ degπ/2(y)= |E(G)| or degπ/2(x)+ degπ/2(y)= |E(G)| + 1.

If degπ/2(x)+ degπ/2(y)= |E(G)|, then

2 |E(G)| = 4a+ 2b ≤ n− 2+ a ≤ n− 2+ n−2
3
,

so degπ/2(x)+ degπ/2(y)= |E(G)| ≤
2
3(n− 2). Moreover, if

degπ/2(x)+ degπ/2(y)= |E(G)| + 1,

then b ≥ 1 and we get a minor improvement,

2 |E(G)| = 4a+ 2b ≤ n− 2+ a ≤ n− 4+ n−2
3
,

so degπ/2(x)+ degπ/2(y)= |E(G)| + 1≤ (2n− 7) /3< 2
3(n− 2).

We are now ready to put everything together. Between the two points x and y,
we derived the bounds:

degπ/2(x)+ degπ/2(y)≤
2
3(n− 2),

deg+π/4(x)+ deg+π/4(y)≤ (n− 1),

deg−π/4(x)+ deg−π/4(y)≤ (n− 1).

Because the degree of a point must take on an integer value, it must be the case
that either x or y satisfies degπ/2+ deg+π/4+ deg−π/4 ≤ b(4n− 5)/3c. �

4. Small cases

In this section we determine the exact values of S4(n) when 3≤ n ≤ 9.

Theorem 6. For 3 ≤ n ≤ 9, S4(3) = 1, S4(4) = 4, S4(5) = 8, S4(6) = 11,
S4(7)= 15, S4(8)= 20, and S4(9)= 28.
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n=3 n=4 n=5 n=6

n=7 n=8

n=9

Figure 3. Optimal sets achieving equality for S4(n).

The corresponding optimal sets are shown in Figure 3.

Proof. We begin with n = 3. Since three points uniquely determine a triangle,
and there is an IRT with three points, shown in Figure 4(a), this situation becomes
trivial and we conclude that S4(3)= 1.

Now let n = 4. In Figure 4(b) we show a point set P such that S4(P)= 4. This
implies that S4(4)≥ 4. However, S4(4) is also bounded above by

(4
3

)
= 4. Hence,

S4(4)= 4.
To continue with the proof for the remaining values of n, we need the following

two lemmas.

Lemma 7. Suppose |P| = 4 and S4(P) ≥ 2. The sets in parts (b)–(e) of Figure 4
are the only possibilities for such a set P , not counting symmetric repetitions.

Proof. Having S4(P)≥ 2 implies that we must always have more than one IRT in
P . Hence, we can begin with a single IRT and examine the possible ways of adding
a point and producing more IRTs. We accomplish this task in Figure 4(a). The 10
numbers in the figure indicate the location of a point, and the total number of IRTs
after its addition to the set of black dots. All other locations not labeled with a
number do not increase the number of IRTs. Therefore, except for symmetries, all
the possibilities for P are shown in Figure 4(b)–(e). �

Lemma 8. Let P be a finite set with |P| = n. Suppose that S4(A) ≤ b for all
A ⊆ P with |A| = k. Then

S4(P)≤
⌊

n (n− 1) (n− 2) b
k (k− 1) (k− 2)

⌋
.

Proof. Suppose that within P , every k-point configuration contains at most b IRTs.
The number of IRTs in P can then be counted by adding all the IRTs in every k-
point subset of P . However, in doing so, we end up counting a fixed IRT exactly
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Figure 4. Proof of Theorem 6. Each circle with a number indi-
cates the location of a point and the total number of IRTs resulting
from its addition to the base set of black dots.
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k−3

)
times. Because S4(A)≤ b we get,(

n− 3
k− 3

)
S4(P)=

∑
A⊆P
|A|=k

S4(A)≤
(

n
k

)
b.

Notice that S4(P) can only take on integer values so,

S4(P)≤

⌊ (n
k

)
b(n−3

k−3

)⌋= ⌊n(n− 1)(n− 2)b
k(k− 1)(k− 2)

⌋
. �

Now suppose |P|=5. If S4(A)≤1 for all A⊆ P with |A|=4, then by Lemma 8,
S4(P)≤ 2. Otherwise, by Lemma 7, P must contain one of the four sets shown in
Figure 4(b)–(e). The result now follows by examining the possibilities for produc-
ing more IRTs by placing a fifth point in the four distinct sets. In Figure 4(b)–(e),
we accomplish this task. Just as in Lemma 7, every number in a figure indicates
the location of a point, and the total number of IRTs after its addition to the set
of black dots. It follows that the maximum value achieved by placing a fifth point
is 8 and so S4(5) = 8. The point set that uniquely achieves equality is shown
in Figure 4(f). Moreover, there is exactly one set P with S4(P) = 6 (shown in
Figure 4(g)), and two sets P with S4(P)= 5 (Figures 4(h) and 4(i)).

Now suppose |P| = 6. If S4(A) ≤ 4 for all A ⊆ P with |A| = 5, then by
Lemma 8, S4(P)≤ 8. Otherwise, P must contain one of the sets in Figure 4(f)–(i).
We now check all possibilities for adding more IRTs by joining a sixth point to our
four distinct sets. This is shown in Figure 4(f)–(i). It follows that the maximum
value achieved is 11 and so S4(6) = 11. The point set that uniquely achieves
equality is shown in Figure 4(j). Also, except for symmetries, there are exactly
three sets P with S4(P)=10 (Figure 4(k)–(m)) and only one set P with S4(P)=9
(Figure 4(n)).

Now suppose |P| = 7. If S4(A) ≤ 8 for all A ⊆ P with |A| = 6, we have
S4(P) ≤ 14, by Lemma 8. Otherwise, P must contain one of the sets in parts
(j)–(n) of Figure 4. We now check all possibilities for adding more IRTs by joining
a seventh point to our 5 distinct configurations. We complete this task in parts
(j)–(n). Because the maximum value achieved is 15, we deduce that S4(7) = 15.
In this case, there are exactly two point sets that achieve 15 IRTs.

The proof for the values n= 8 and n= 9 follows along the same lines, but there
are many more intermediate sets to be considered. We omit the details. �

Inspired by our method used for proving exact values of S4(n), a computer
algorithm was devised to construct the best one-point extension of a given base
set. This algorithm, together with appropriate heuristic choices for some initial
sets, led to the construction of point sets with many IRTs giving us our best lower
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n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

bound 35 43 52 64 74 85 97 112 124 139 156 176 192 210 229 252

Table 1. Best lower bounds for S4(n).

bounds for S4(n) when 10 ≤ n ≤ 25. These lower bounds are shown in Table 1
and the point sets achieving them in Figure 5.

Figure 5. Best constructions An for n ≤ 25. Each set An is ob-
tained as the union of the starting set (in white) and the points with
label ≤ n. The value S4(An) is given by Table 1.
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Stability properties of a predictor-corrector
implementation of

an implicit linear multistep method
Scott Sarra and Clyde Meador

(Communicated by John Baxley)

We examine the stability properties of a predictor-corrector implementation of
a class of implicit linear multistep methods. The method has recently been de-
scribed in the literature as suitable for the efficient integration of stiff systems
and as having stability regions similar to well known implicit methods. A more
detailed analysis reveals that this is not the case.

1. Introduction

In an undergraduate research project that started as a senior capstone project,
Meador [2009] became aware of an explicit ODE method that claimed to have
desirable stability properties that are usually only enjoyed by implicit methods.
The little known method seemed too good to be true. If it had the claimed stability
properties, it deserved to be better known and more widely used in applications.
In this work we describe what a more careful study of the method revealed. We
calculate the correct stability regions of the methods and verify our claims with
numerical experiments.

2. Linear multistep methods

A general s-step linear multistep method (LMM) for the numerical solution of the
autonomous ordinary differential equation (ODE) initial value problem (IVP)

y′ = F(y), y(0)= y0 (1)

is of the form
s∑

m=0

αm yn+m
=1t

s∑
m=0

βm F(yn+m), n = 0, 1, . . . , (2)

MSC2000: 65L04, 65L06, 65L20.
Keywords: linear multistep method, eigenvalue stability, numerical differential equations, stiffness.
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where αm and βm are given constants. It is conventional to normalize (2) by setting
αs = 1. When βs = 0 the method is explicit. Otherwise, it is implicit. In order
to start multistep methods, the first s − 1 time levels have to be calculated by a
one-step method such as a Runge–Kutta method. Many of the properties of the
method (2) can be described in terms of the characteristic polynomials

ρ(ω)=

s∑
m=0

αmω
s and σ(ω)=

s∑
m=0

βmω
s . (3)

The linear stability region of a numerical ODE method is determined by apply-
ing the method to the scalar linear equation

y′ = λy, y(0)= 1, (4)

where λ is a complex number. The exact solution of (4) is y(t) = eλt , which
approaches zero as t →∞ if and only if the real part of λ is negative. The set of
all numbers z =1tλ such that limn→∞ yn

= 0 is called the linear stability region
of the method. For z in the stability domain, the numerical method exhibits the
same asymptotic behavior as (4). For stability, all the scaled eigenvalues of the
coefficient matrix of a linear system of ODEs must lie in the stability region. For
nonlinear systems, the scaled eigenvalues of the Jacobian matrix of the system must
lie within the stability region. A numerical ODE method is A-stable if its region
of absolute stability contains the entire left half-plane (Re(1tλ) < 0).

For LMMs, the boundary of the stability region is found by the boundary locus
method which plots the parametric curve of the function

r(θ)=
ρ(eiθ )

σ (eiθ )
, 0≤ θ ≤ 2π, (5)

that is, the ratio of the method’s characteristic polynomials (3). Standard references
on numerical ODEs can be consulted for more details [Butcher 2003; Hairer et al.
2000; Hairer and Wanner 2000; Iserles 1996; Lambert 1973]

3. Implicit LIL linear multistep methods

In this work we consider a class of LMM that has been referred to as local iter-
ative linearization (LIL) in the literature. The s-stage implicit LIL method also
has accuracy of order s. The LIL method has been applied to chaotic dynamical
systems in [Danca and Chen 2004; Luo et al. 2007]. The convergence, accuracy,
and stability properties of the LIL methods were examined in [Danca 2006].

In [Danca and Chen 2004; Danca 2006; Luo et al. 2007], both the implicit
and predictor-corrector versions are referred to as LIL methods. However, the
stability properties of the methods are very different and we distinguish between
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the methods by calling the implicit method ILIL, and the predictor-corrector im-
plementation PCLIL.

Using the notation f n
= F(yn), the first four ILIL formulas follow. The s = 1

ILIL formula
yn+1
− yn
=1t f n+1 (6)

coincides with the implicit Euler method. For s = 2 the ILIL algorithm is

yn+2
−

4
3

yn+1
+

1
3

yn
=1t

(
25
36

f n+2
−

1
18

f n+1
+

1
36

f n
)
; (7)

for s = 3,

yn+3
−

5
3

yn+2
+

13
15

yn+1
−

1
5

yn

=1t
(

26
45

f n+3
−

1
9

f n+2
+

4
45

f n+1
−

1
45

f n
)
; (8)

and for s = 4,

yn+4
− 2yn+3

+
8
5

yn+2
−

26
35

yn+1
+

1
7

yn

=1t
(

6463
12600

f n+4
−

523
3150

f n+3
+

383
2100

f n+2
−

283
3150

f n+1
+

223
12600

f n
)
. (9)

The characteristic polynomial coefficients of the ILIL methods are listed in
Table 1. The stability regions of the ILIL methods of orders 1 through 4 are shown
in Figure 1 (left). The stability regions are exterior to the curves. The innermost
curve is associated with the first-order method and the stability region shrinks as the
order of the method increases. The first- and second-order methods are A-stable,
while the third and fourth-order methods do not include all of the left half-plane. It
is well known that the order of an A-stable LMM cannot exceed 2 [Lambert 1973].

s = 1 s = 2 s = 3 s = 4

α0/β0 −1/0 1
3/

1
36

−1
5 /
−1
45

1
7/

223
12600

α1/β1 1/1 −4
3 /
−1
18

13
15/

4
45

−26
35 /

−283
3150

α2/β2 - 1/ 25
36

−5
3 /
−1
9

8
5/

383
2100

α3/β3 - - 1/ 26
45 −2/−523

3150

α4/β4 - - - 1/ 6463
12600

Table 1. Coefficients of the characteristic polynomials (3) for the
ILIL algorithms.
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Figure 1. Left: Implicit LIL methods have stability regions con-
sisting of the exterior of the plotted curves. Right: Predictor-
corrector implemented LIL methods have bounded stability re-
gions in the interior of the plotted curves.

4. LIL predictor-corrector

Two types of methods that are commonly used to solve the nonlinear difference
equations of implicit methods are functional iteration and Newton’s method. A
third approach, which does not involve solving nonlinear equations, that can be
used to implement an implicit ODE method is a predictor-corrector approach. An
explicit formula, the predictor, is used to get a preliminary approximation ŷn+s of
yn+s . Then the corrector step uses formulas like the implicit LIL methods (6)–(9),
with ŷn+s in place of yn+s when calculating f n+s , to get a more accurate approx-
imation of yn+s . The predictor-corrector approach turns the implicit method into
one that is implemented in the manner of an explicit method. However, the stability
properties of the predictor-corrector method will be inferior to those of the original
implicit method. The predictors for the PCLIL methods are listed in Table 2.

s order s LIL predictor

1 ŷn+1
= yn

2 ŷn+2
= 2yn+1

− yn

3 ŷn+3
= 3yn+2

− 3yn+1
+ yn

4 ŷn+4
= 4yn+3

− 6yn+2
+ 4yn+1

− yn

Table 2. The predictor stages for the predictor-corrector LIL algorithms.
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Applying the PCLIL methods to the stability test problem (4) reveals that the α
coefficients of the characteristic polynomial (3) remain the same as the implicit LIL
methods. However, the β coefficients are modified to be β̂ which lead to different
stability regions. The β̂ coefficients for the PCLIL methods are listed in Table 3.
The details of finding the β̂ coefficients are illustrated with the second-order PCLIL
method:

α2 yn+2
+α1 yn+1

+α0 yn
=1t

(
β2 f n+2

+β1 f n+1
+β0 f n)

=1t
(
β2λ(2yn+1

− yn)+β1λyn+1
+β0λyn)

=1t
(
(β1+ 2β2)λyn+1

+ (β0−β2)λyn)
=1t

(
β̂1 f n+1

+ β̂0 f n).
The stability regions for the PCLIL methods of orders 1 through 4 are shown in

the right image of Figure 1. Since the stability regions consist of the regions that
are interior to the curves, PCLIL methods are not A-stable. It is well known that
A-stable explicit LMMs do not exist [Nevanlinna and Sipilä 1974].

5. Numerical examples

Many problems arising from various fields result in systems of ODEs that have
a property called stiffness. A formal definition can be formulated (see [Lambert
1973], for example), but the essence of a stiff problem can be explained by the fact
the coefficient matrix of a linear ODE system (or Jacobian matrix of a nonlinear
ODE system) has some eigenvalues with large negative real parts. Thus, explicit
methods with their bounded stability regions may be required to take much smaller
time steps for stability than are necessary for accuracy. Implicit methods, particu-
larly A-stable methods, with their unbounded stability regions are well suited for
stiff problems.

s = 1 s = 2 s = 3 s = 4

β̂0 1 −
2
3

5
9 β0−β4

β̂1 0 4
3 −

74
45 β1+ 4β4

β̂2 - 0 73
45 β2− 6β4

β̂3 - - 0 β3+ 4β4

β̂4 - - - 0

Table 3. Modified β coefficients of the characteristic polynomials
(3) for the LIL algorithms implemented as predictor-correctors.
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Linear example. We consider the linear ODE system

y′1 =−21y1+ 19y2− 20y3, y1(0)= 1,

y′2 = 19y1− 21y2+ 20y3, y2(0)= 0,

y′3 = 40y1− 40y2− 40y3, y3(0)=−1,

(10)

which may be considered stiff. The coefficient matrix

A =


−21 19 −20

19 −21 20

40 −40 −40

 (11)

has eigenvalues λ1 =−2, λ2 =−40+ 40i , and λ3 =−40− 40i .
In Figure 2 the stability region of the third-order ILIL is the outside of the dashed

curve and the stability region of the third-order PCLIL is the interior of solid curve.
The eigenvalues of the linear ODE system (10) scaled by 1t = 0.017 are in the
left image and scaled by 1t = 0.012 in the right image.

The unstable PCLIL solution of the y1(t) component of the system using 1t =
0.017 is shown in the left image in Figure 3 and the stable solution using1t=0.012
is shown on the right. The system can be integrated with the implicit LIL methods
with any size time step and the method will remain stable.

Note that for linear problems it is possible to derive an explicit expression from
the implicit LIL formulas and that an iterative method is not required. For example,

−1 0 1 2 3 4 5
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1
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Figure 2. Color dots indicate the eigenvalues of the linear ODE
system (10) scaled by 1t = 0.017 (left) and 1t = 0.012 (right).
The third-order ILIL is stable for eigenvalues outside the dashed
curve, and the third-order PCLIL for those inside the solid curve.
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Figure 3. Left: unstable PCLIL solution of the y1(t) component
of the system (10) using 1t = 0.017. Right: stable solution using
1t = 0.012.

the second-order implicit LIL method applied to the linear ODE system (10) can
be evaluated as

yn+1
=

(
I −

251t
36

A
)−1(4

3
I −

1t
18

A
)

yn
+

(
I −

251t
36

A
)−1(−1

3
I −

1t
36

A
)

yn−1,

where I is the 3× 3 identity matrix.

Nonlinear example. We consider the Rabinovich–Fabrikant (RF) equations, a set
of differential equations in three variables with two constant parameters a and b:

x ′ = y(z− 1+ y2)+ ax,

y′ = x(3z+ 1− x2)+ ay,

z′ = − 2z(b+ xy).

PCLIL methods have been used extensively in the study of this system [Danca and
Chen 2004; Luo et al. 2007; Danca 2006].

In our numerical work, we encountered severe stability issues while using the
PCLIL methods with certain settings of the parameters. For instance, with a=0.33
and b = 0.5, a very small step size of 1t = 0.0001 was needed to stably integrate
the system to t = 200 with the fourth-order PCLIL method. The resulting attractor
is shown in Figure 4. The fourth-order ILIL method was implemented and was an
improvement in many cases. However, due to the method not being A-stable, we
still had stability problems for some parameter settings.
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Figure 4. Phase plots of the Rabinovich–Fabrikant equations for
parameter settings a = 0.33 and b = 0.5.

We note that the most efficient method that we found for our numerical ex-
ploration of the RF system was an implicit Runge–Kutta method. Using the 4-
stage, eighth-order accurate, A-stable Gauss method [Butcher 1964; Ehle 1968;
Hairer and Wanner 2000; Sanz-Serna and Calvo 1994], we were able to accurately
approximate the attractor in Figure 4 with a step size as large as 1t = 0.2.

6. Conclusions

Previously, the predictor-corrector implementation of the LIL method has been
analyzed in [Danca 2006] where of the PCLIL method it was said that “The time
stability of LIL method is more efficient than that of other known algorithms and is
comparable with time stability of the Gear’s algorithm” and that the LIL method is
suitable for stiff problems. Additionally, in [Danca and Chen 2004; Luo et al. 2007]
the PCLIL was applied to chaotic dynamical systems that had stiff characteristics
and was presented as a method well suited to this type of problem. As we have
shown here, this is not the case. The PCLIL methods are explicit and have bounded
stability regions that decrease in area as the order of the method increases. The
PCLIL methods are not well suited for stiff problems as they will require very small
time steps in order to remain stable. It is possible that in the previous application to
nonlinear chaotic systems that very small time steps were always used for accuracy
purposes and thus stability issues were not encountered.
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Five-point zero-divisor graphs determined by
equivalence classes

Florida Levidiotis and Sandra Spiroff

(Communicated by Scott Chapman)

We study condensed zero-divisor graphs (those whose vertices are equivalence
classes of zero-divisors of a ring R) having exactly five vertices. In particular,
we determine which graphs with exactly five vertices can be realized as the
condensed zero-divisor graph of a ring. We provide the rings for the graphs
which are possible, and prove that the rest of graphs can not be realized via
any commutative ring. There are 34 graphs in total which contain exactly five
vertices.

1. Introduction

Beck [1988] introduced, for a commutative ring R, a graph whose vertices are the
elements of R and whose edges are given by the rule that two vertices r and s share
an edge if and only if rs = 0. Thus, for the ring R = Z/6Z= {0, 1, 2, 3, 4, 5}, the
associated graph is this:

2 1

3 0

4 5

This is by definition a simple graph (no loops or multiple edges) and it is clearly
connected with diameter at most two,1 since all vertices share an edge with 0.

Anderson and Livingston [1999] later introduced the zero-divisor graph 0(R)
of a commutative R, by taking the subgraph of Beck’s graph consisting of all zero-
divisors2 together with the edges they share — in other words, by discarding from

MSC2000: primary 13A99; secondary 05C99.
Keywords: condensed zero-divisor graphs, equivalence classes of zero-divisors.
This work is based on Levidiotis’ undergraduate honor’s thesis project [2010] under the supervision
of the second author.

1See Definition 2.2 for terms from graph theory.
2See Definition 2.1 for terms from ring theory.
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Beck’s graph the vertex 0 and all vertices that are not zero-divisors. For instance,
the zero-divisors of the ring Z/6Z are {2, 3, 4}, so 0(Z/6Z) is this graph:

2

3 = 0(Z/6Z)

4
It turns out that the zero-divisor graph, too, is always connected, and its diameter
is at most three.

Mulay [2002, (3.5)] demonstrated how a graph 0E(R) could be constructed
from 0(R) by collapsing into equivalence classes zero-divisors that have the same
annihilator ideal. Thus, the equivalence class [r ] of an element r ∈ R is the set of
zero-divisors s such that annR(r) = annR(s); and such equivalence classes form
the vertices of 0E(R). We call 0E(R) the condensed zero-divisor graph of R. (In
[Spiroff and Wickham 2011; Coykendall et al. 2012] the term used was “zero-
divisor graph determined by equivalence classes”.) Once again, these graphs are
simple and connected; the diameter is at most three.

Example 1.1. The equivalence classes of zero-divisors of the ring R = Z/6Z are
{[2], [3]}. Note that annR(2)= annR(4), hence [2] = [4].

[2]

[3]
= 0E(Z/6Z)

Example 1.2 [Spiroff and Wickham 2011, Example 1.11]. To illustrate the rela-
tion between the zero-divisor graph 0(R) and its condensed counterpart 0E(R),
consider R = Z/12Z:

2 4

6 3 9 = 0(Z/12Z)

10 8

[2] [6] [4] [3] = 0E(Z/12Z)

To motivate the study of 0E(R), we provide an additional example. The ring
(Z/6Z)[X ], consisting of polynomials in the variable X with coefficients from
Z/6Z, contains infinitely many elements and zero-divisors. However, there are
still just two equivalence classes of zero-divisors, and the graph takes the same
form as that in Example 1.1.
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The goal of this project is to examine the five-point condensed zero-divisor
graphs and to determine which of them are possible. This work grew out of [Spiroff
and Wickham 2011]; we rely on the results there and provide some answers to
questions that arose during that initial study. A subsequent paper [Coykendall
et al. 2012] generalizes some of the results in this project.

For those graphs that can be constructed from equivalence classes, we provide
an associated ring. For those graphs that can not be constructed from equivalence
classes, we prove that no ring exists such that 0E(R) takes the necessary form.
The list of all thirty-four graphs with exactly five vertices can be found in [Harary
1969, pages 216–217]. The connected ones are all shown in this paper at the
relevant places, and are labeled (1)–(21).

2. Definitions and basic results

Throughout, R will be a commutative ring with identity that satisfies the ascending
chain condition on ideals. A good general reference for the ring theory needed
here is [Dummit and Foote 1991]. For zero-divisor graphs, see [Anderson and
Livingston 1999].

Definition 2.1. Some definitions from ring theory are collected here:

(1) A zero divisor of R is a nonzero element r of R for which there is another
nonzero element s of R such that rs = 0.

(2) The annihilator ideal of r in R, denoted by annR(r), is the set of all elements
a in R such that ar = 0.

(3) A unit in R is a nonzero element u that has a multiplicative inverse; that is,
uu−1

= 1 for some u−1 in R.

(4) An ideal J of R is maximal if, whenever J ⊆ I for any proper ideal I of R,
then J = I .

(5) An equivalence relation on R is a binary relation ∼ that is reflexive, symmet-
ric, and transitive.

Definition 2.2. Some definitions from graph theory are collected here:

(1) A graph consists of a set of vertices, a set of edges, and an incidence relation,
describing which pairs of vertices are joined by an edge. Two vertices joined
by an edge are called adjacent.

(2) A path of length n between two vertices v andw is a finite sequence of vertices
u0, u1, . . . , un such that v = u0, w = un , and ui−1 and ui are adjacent for all
1≤ i ≤ n.
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(3) A graph is said to be connected if there is a path between every pair of vertices
of the graph.

(4) The distance between two vertices v and w in a connected graph is the length
of the shortest path between them.

(5) The diameter of a connected graph G is the greatest distance between any two
vertices.

(6) A graph is said to be complete if every vertex in the graph is adjacent to every
other vertex in the graph.

Definition 2.3. The condensed zero-divisor graph of a ring R, denoted by 0E(R),
is the graph associated to R whose vertices are the classes of zero-divisors, where
a pair of distinct classes [r ], [s] is adjacent if and only if [r ] · [s] = 0, where
[r ] · [s] := [rs].

Remark 2.4 [Mulay 2002, (3.5)]. Multiplication is well-defined: let [r1] = [r2]

and [s1] = [s2]; that is, annR(r1) = annR(r2) and annR(s1) = annR(s2). Then
r1s1= 0 if and only if s1 ∈ annR(r1)= annR(r2), if and only if r2s1= 0, if and only
if r2 ∈ annR(s1)= annR(s2), if and only if r2s2 = 0.

Proposition 2.5 [Mulay 2002, (3.5); Spiroff and Wickham 2011, Propositions 1.4,
1.5, 1.8]. For any ring R, 0E(R):

(a) is connected;

(b) has diameter at most three;

(c) is not a cycle graph; that is, does not take the form of an n-gon, for any n;

(d) is not complete if it has at least three vertices.

Lemma 2.6. If u is a unit in R and r is a zero-divisor in R, then annR(ur) =
annR(r).

Proof. If s ∈ annR(r), then s(ur) = u(sr) = 0, hence s ∈ annR(ur). Conversely,
if s ∈ annR(ur), then 0 = s(ur) = u(sr) implies u−1

· 0 = u−1
· u(sr), and hence

0= sr . Thus, s ∈ annR(r). �

3. Negative results

In this section, we prove that all but four of the five-point graphs can not be realized
as the condensed zero-divisor graph of a ring. (Recall that we are assuming that
all rings are commutative with identity and satisfy the ascending chain condition
on ideals.) By part (a) of Proposition 2.5, only connected graphs need to be con-
sidered. By parts (b)–(d) of the same proposition, graphs of types (1)–(3) are not
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possible:

[t] [t] [t]

[s] [u] [s] [u] [s] [u]

[r ] [v] [r ] [v] [r ] [v]

(1) (2) (3)

The rest of the arguments proceed by contradiction. Namely, we assume that
there exists R such that 0E(R) has exactly the graph in question, which means, in
particular, that R has exactly five distinct equivalence classes as represented by the
graph. Then from the classes and relations, we show that there must be, in fact, a
distinct sixth class, and hence arrive at a contradiction.

Consider this graph:
[t]

[s] [u]
(4)

[r ] [v]

We show that the element t+v determines a sixth class. First, t+v is annihilated
by u, but not by s: indeed, s(t + v) = 0+ sv 6= 0, as there is no edge between s
and v. Likewise, r does not annihilate t + v. However, based on the graph, every
class is annihilated by [r ] or [s]. Thus, [t + v] is not represented by any vertex,
and hence must determine a new class.

The proofs for graphs (5)–(8) below proceed along the same lines: in (5) and
(6), the element t+v determines a new class, and in (7) and (8), the elements u+v
and r t determine a new class, respectively.

[t] [t] [t] [t]

[s] [u] [s] [u] [s] [u] [s] [u]

[r ] [v] [r ] [v] [r ] [v] [r ] [v]

(5) (6) (7) (8)

The remaining proofs rely on two key strategies.

Strategy I. If two points on the condensed zero-divisor graph are adjacent to the
same set of vertices, but are not adjacent to one another, then at least one is self-
annihilating; otherwise, the two points would represent the same class.
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Consider graph (9). One can assume that r2
=0, else [r ]= [u]. Then the element

r+v, which is annihilated by r , but not s or u, determines a new class since, based
on the graph, every class is annihilated by [s] or [u]. Similarly, for (10), we have
s2
= 0, else [s] = [t], hence sv determines a new class. In (11) we have u2

= 0,
else [s] = [u], and v2

= 0, else [r ] = [v], hence s+ v determines a new class.

[t] [t] [t]

[s] [u] [s] [u] [s] [u]

[r ] [v] [r ] [v] [r ] [v]

(9) (10) (11)

Strategy II. If two points on the condensed zero-divisor graph are adjacent to the
same set of vertices and are also adjacent to one another, then at least one of the
points must not annihilate itself ; otherwise, the two points would represent the
same class.

More specifically, in graph (12), one can assume that r2
6= 0, else [r ] = [u].

Then the element r+v, which is annihilated by u, but not r or s, determines a new
class since, based on the graph, every class is annihilated by [r ] or [s]. Similarly,
in (13), r2

6= 0 and v2
6= 0, else [r ] = [u] = [v]; hence r + v determines a new

class; and in (14), r2
6= 0, else [r ] = [v] and s2

6= 0, else [s] = [u]; hence r + s
determines a new class.

[t] [t] [t]

[s] [u] [s] [u] [s] [u]

[r ] [v] [r ] [v] [r ] [v]

(12) (13) (14)

The proofs for graphs (15) and (16), shown on the next page, use both strategies.
In (15), one can assume that v2

= 0, by Strategy I, else [r ] = [v], and that s2
6= 0,

by Strategy II, else [s]= [u]. Then the element s+v, which is annihilated by u and
v, but not r, s or t , determines a new class since, based on the graph, every class is
annihilated by [r ], [s] or [t]. Similarly, in (16), one can assume that u2

= 0, else
[s] = [u], and that v2

6= 0, else [r ] = [v]; hence the element u + v determines a
new class.
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[t] [t]

(15)
[s] [u] [s] [u]

(16)

[r ] [v] [r ] [v]

The last negative case is more complicated.

Proposition 3.1. The graph in (17) can not be realized as 0E(R) for any ring R.

[t]

[s] [u]
(17)

[r ] [v]

Proof. Suppose that R is a ring such that 0E(R) takes the form in (17). Note that
su 6= 0, but rsu = tsu = vsu = 0, hence [su] = [s]. As a result, su2

6= 0, and
hence u2

6= 0. By symmetry, [tv] = [v] and t2
6= 0. Next, consider s + v, which

is annihilated by r , but not t or u. The only candidate for [s + v] is [r ], which
means that r is self-annihilating. Moreover, it implies the same of s and v, since
0= rs = (s+ v)s and 0= rv = (s+ v)v.

Consider tu, which is annihilated by s and v. We will show that [tu] must
represent a new class. The candidates for [tu] are [r ], [s], and [v]. By symmetry,
we need only consider [tu] = [r ] and [tu] = [s].

Case I: [tu] = [r ]. This means that t2u 6= 0, tu2
6= 0, but t2u2

= 0 since r is
self-annihilating. Here we are using the fact from [Mulay 2002, (3.5), page 3552]
that if y ∈ [x] and xn

= 0, then yn
= 0 as well. Now [t2

] 6= [v] since t2 is not
annihilated by u; likewise, [u2

] 6= [s]. Thus, [t2
] 6= [t], else t2u2

= 0 implies that
[u2
] = [s]. Next, if [t2

] = [r ], then t2v = 0, which contradicts [tv] = [v], and for
the same reason, [t2

] 6= [s]. Finally, t2 is annihilated by s, hence [t2
] 6= [u]. Thus,

[tu] determines a new class; contradiction.

Case II: [tu] = [s]. This means that t2u = 0. Thus [t2
] = [v], and hence t2v = 0

since v is self-annihilating. But this contradicts the fact that [tv] = [v]. �

4. Positive results

The graphs in this section, labeled (18)–(21), can be realized as condensed zero-
divisor graphs. In Proposition 4.1 we prove that when R = Z/p6Z, for any prime
number p, we get (18) for 0E(R). In Proposition 4.2 we show that the ring

(Z/3Z)[[X, Y ]]
(X2, Y 2)

(∗)
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has a graph of the form (19), where lowercase letters match the corresponding
uppercase letters in the quotient rings; that is, x = X + (X2, Y 2) in the ring (∗).

[p] [x] [x]

[p3
] [p5

] [y] [xy] [y] [x2
]

[p4
] [p2

] [x+y] [x+2y] [x+y] [x+2y]

(18) (19) (20)

The graph (20) is the condensed zero-divisor graph of the ring

(Z/3Z)[[X, Y ]]
(X3, Y 3, XY, X2+ 2Y 2)

.

This was first reported in [Spiroff and Wickham 2011, Example 3.9], but without
details; we supply the details in Proposition 4.3.

Finally, the graded ring

R =
A[T ]

(T 3, T 2x, T 2 y, T xy)
, where A =

(Z/2Z)[[X, Y ]]
(X2, Y 2)

and x and y represent the cosets of X and Y in A, has the graph shown in (21);
a summary of the proof is given in Proposition 4.4. This is an example of a star
graph or fan graph; such graphs are studied in our context in [Coykendall et al.
2012, Section 2], and we refer the interested reader to that paper for a full proof
that this ring has the graph shown.

[t]

[s] [u] (21)

[r ] [v]

Proposition 4.1. If R = Z/p6Z, then 0E(R) has the graph (18).

Proof. Every nonzero element r̄ = r + p6Z in R is either a unit, in which case
gcd(r, p) = 1, or a zero-divisor, in which case r̄ = upk , where ū is a unit, and
k ∈ {1, 2, 3, 4, 5}. By Lemma 2.6, annR(ū pk) = annR(pk), therefore the ele-
ments p, p2, p3, p4, and p5 represent the classes. They are all distinct since
pi ∈ annR(p6−i ), but pi /∈ annR(p6− j ), for j > i . From this the relations follow.

�

Proposition 4.2. If R =
(Z/3Z)[[X, Y ]]
(X2, Y 2)

, then 0E(R) has the graph shown in (19).
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Proof. The ring has a unique maximal ideal m= (x, y). Note that m2
= (x2, xy, y2)

and hence m2
= (xy) since xy is the only nonzero generator. Moreover, m3

= 0
in R; that is, both x and y, annihilate xy. Therefore, a general element of R looks
like a+ bx + cy+ dxy, where the coefficients a, b, c, d lie in {0, 1, 2}. However,
whenever a 6= 0, this element is a unit since the other terms all lie in m; see, for
instance, [Matsumura 1989, page 3]. We have shown this:

The only possible zero-divisors live in m and have the form bx + cy+ dxy.

We now proceed to describe each class.

First class: [x y] . AnnR(dxy)=m, for any d 6=0. To see this, note by annR(xy)⊆
m, by the statement proved immediately above. On the other hand, since both
generators of m annihilate xy, m⊆ annR(xy). Thus, annR(xy)=m. Also, since 2
is a unit in R, Lemma 2.6 implies that [2xy] = [xy].

Second class: [x] . AnnR(bx + dxy)= (x), for b 6= 0.
Let b′x + c′y+ d ′xy ∈ annR(bx + dxy). Then

0= (bx + dxy)(b′x + c′y+ d ′xy)= bc′xy,

which is zero if and only if bc′ = 0. Since b, c′ are elements of a field and b 6= 0,
we must have c′ = 0. Therefore, the annihilators of bx + dxy have the form

b′x + d ′xy = x(b′+ d ′y)= x(b′+ b′′x + d ′y+ d ′′xy),

for any b′, b′′, d ′, d ′′ ∈ Z/3Z; that is, annR(bx + dxy)= (x).

Third class: [ y] . An analogous argument shows that annR(cy + dxy) = (y), for
c 6= 0.

Fourth class: [x + y] . AnnR(bx + by+ dxy)= (x + 2y), for b 6= 0.
Let b′x + c′y+ d ′xy ∈ annR(bx + by+ dxy). Then

0= (bx + by+ dxy)(b′x + c′y+ d ′xy)= bc′xy+ bb′xy = b(b′+ c′)xy,

which is zero if and only if b(b′+c′)= 0. Since b 6= 0, we must have b′+c′≡ 0 in
Z/3Z. Therefore, the elements that annihilate bx+by+dxy are d ′xy, x+2y+d ′xy
and 2x+ y+d ′xy. However, these last two differ by a unit, for example, 2x+ y =
2(x+2y), and d ′xy = d ′y(x+2y), hence only x+2y is necessary as a generator.
Thus, annR(bx + by+ dxy)= (x + 2y).

Fifth class: [x + 2 y] . A similar analysis shows that annR(bx + 2by + dxy) =
(x + y), where b 6= 0. �
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Proposition 4.3 [Spiroff and Wickham 2011, Example 3.9]. If

R =
(Z/3Z)[[X, Y ]]

(X3, Y 3, XY, (X + Y )(X + 2Y ))
,

then 0E(R) has the graph shown in (20).

Proof. The ring has unique maximal ideal m = (x, y). The nonzero generators of
m2 are (x2, y2) and m3

= 0 in R; that is, both x and y, annihilate every element in
m2. Therefore, a general element of R looks like a+ bx + cy+ dx2

+ ey2, where
the coefficients a, b, c, d , and e, are all either 0, 1 or 2. However, whenever a 6= 0,
this polynomial is a unit since the other terms all lie in m; see [Matsumura 1989,
page 3]. Moreover, the relation (x+y)(x+2y)=0 simplifies to x2

= y2. Therefore,
the only possible zero-divisors live in m and have the form bx + cy+ dx2.

First class: [x2] . AnnR(dx2)=m, d 6= 0.
To see this, we first note that annR(x2) ⊆ m. On the other hand, since both

generators of m annihilate x2, m ⊆ annR(x2). Thus, annR(x2) = m. Moreover,
since 2 is a unit in R, Lemma 2.6 implies that [2x2

] = [x2
].

Second class: [x] . AnnR(bx + dx2)= (y), for b 6= 0.
Let b′x+c′y+d ′x2

∈ annR(bx+dx2). Then 0= (bx+dx2)(b′x+c′y+d ′x2)=

bb′x2, which is zero if and only if bb′ = 0. Since b, b′ are elements of a field and
b 6= 0, we must have b′ = 0. Therefore, the annihilators of bx + dx2 have the
form c′y + d ′x2, or c′y + d ′y2, since x2

= y2, and c′y + d ′y2
= y(c′ + d ′y) =

y(c′+b′′x+d ′y+d ′′x2), for any c′, b′′, d ′, d ′′∈Z/3Z; that is, annR(bx+dx2)= (y).

Third class: [ y] . An analogous argument shows that annR(cy + dx2) = (x), for
c 6= 0.

Fourth class: [x + y] . AnnR(bx + by+ dx2)= (x + 2y), for b 6= 0.
Let b′x + c′y+ d ′x2

∈ annR(bx + by+ dx2). Then

0= (bx + by+ dx2)(b′x + c′y+ d ′x2)= bb′x2
+ bc′y2

= b(b′+ c′)x2,

which is zero if and only if b(b′+c′)= 0. Since b 6= 0, we must have b′+c′≡ 0 in
Z/3Z. Therefore, the elements that annihilate bx+by+dx2 are d ′x2, x+2y+d ′x2

and 2x+ y+d ′x2. However, these last two differ by a unit, for example, 2x+ y =
2(x+2y), and d ′x2

= d ′x(x+2y), hence only x+2y is necessary as a generator.
Thus, annR(bx + by+ dx2)= (x + 2y).

Fifth class: [x + 2 y] . A similar analysis shows that annR(bx + 2by + dxy) =
(x + y), where b 6= 0. �
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Proposition 4.4. If

R =
A[T ]

(T 3, T 2x, T 2 y, T xy)
, where A =

(Z/2Z)[[X, Y ]]
(X2, Y 2)

,

then 0E(R) has the graph shown in (21).

Outline of proof. (See [Coykendall et al. 2012] for details.) The ring A is similar
to the ring in Proposition 4.2, but with a smaller coefficient ring, and an analogous
argument to the one there shows that zero-divisors in A take the form bx+cy+dxy,
where b, c, d ∈ Z/2Z, and there are four distinct classes, given by annA(x)= (x),
annA(y) = (y), annA(xy) = (x, y), and annA(x + y) = (x + y). In fact, these
determine four distinct classes in R. Note that R has the direct sum decomposition

A⊕
A
(xy)
· t ⊕

A
(x, y)

· t2

as an abelian group. We describe the first four classes in R and the last class,
determined by t .

First class: [x y] . AnnR(xy + γ t2) = (x, y)A ⊕ A
(xy)
· t ⊕ A

(x, y)
· t2, for γ in

A/(x, y).

Second class: [x] . AnnR(x + γ t2)= (x)A⊕ (x, y)
(xy)

· t ⊕ A
(x, y)

· t2.

Third class: [ y] . AnnR(y+ γ t2)= (y)A⊕ (x, y)
(xy)

· t ⊕ A
(x, y)

· t2.

Fourth class: [x + y] . AnnR(x + y+ γ t2)= (x + y)A⊕ (x, y)
(xy)

· t ⊕ A
(x, y)

· t2.

Fifth class: t . AnnR(t + γ t2)= (xy)A⊕ (x, y)
(xy)

· t ⊕ A
(x, y)

· t2.

Remark 4.5. The (nonzero) elements α+βt , where α ∈ (x, y)A and β ∈ A/(xy),
fall into the above categories. If α = 0 and β ∈ (x, y)A, then the element is in
the first class; if α 6= 0 and β ∈ (x, y)A, then the element is in [α]; finally, if
β /∈ (x, y)A, then the element is in [t]. �
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A note on moments in finite von Neumann algebras
Jon Bannon, Donald Hadwin and Maureen Jeffery

(Communicated by David R. Larson)

By a result of the second author, the Connes embedding conjecture (CEC) is false
if and only if there exists a self-adjoint noncommutative polynomial p(t1, t2) in
the universal unital C∗-algebra A=〈t1, t2 : t j = t∗j , 0< t j ≤ 1 for 1≤ j ≤ 2〉 and
positive, invertible contractions x1, x2 in a finite von Neumann algebra M with
trace τ such that τ(p(x1, x2)) < 0 and Trk(p(A1, A2)) ≥ 0 for every positive
integer k and all positive definite contractions A1, A2 in Mk(C). We prove that
if the real parts of all coefficients but the constant coefficient of a self-adjoint
polynomial p ∈ A have the same sign, then such a p cannot disprove CEC if
the degree of p is less than 6, and that if at least two of these signs differ, the
degree of p is 2, the coefficient of one of the t2

i is nonnegative and the real
part of the coefficient of t1t2 is zero then such a p disproves CEC only if either
the coefficient of the corresponding linear term ti is nonnegative or both of the
coefficients of t1 and t2 are negative.

1. Introduction

The Connes embedding conjecture (CEC) is true if every separable type II1 factor
M embeds in a tracial ultrapower Rω of the amenable type II1 factor R. This
question concerns the matricial approximation of the elements of a type II1 factor
M with faithful normal trace state τ in the sense we now recall. For an N -tuple
(x1, . . . , xN ) of self-adjoint elements in M, R > 0, n, k ∈ N and ε > 0, we let

0R(x1, . . . , xN : n, k, ε)

denote the set of tuples (A1, . . . , AN ) of those k × k self-adjoint matrices over C

of operator norm at most R satisfying∣∣∣∣τ(xi1 xi2 . . . xi p)−
1
k

Tr(Ai1 Ai2, . . . Ai p)

∣∣∣∣< ε,
MSC2000: primary 46L10; secondary 46L54.
Keywords: von Neumann algebras, noncommutative moment problems, Connes embedding

conjecture.
Jeffery is an undergraduate at Siena College in Loudonville, New York.
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whenever 1≤ p ≤ n and (i1, i2, . . . , i p) ∈ {1, 2, . . . , N }p. We call the elements of
0R(x1, . . . , xN : n, k, ε) approximating microstates for (x1, . . . , xN ) of precision
(n, ε) using k × k matrices of norm at most R. A separable type II1 factor M

embeds in an ultrapower Rω if and only if for all tuples (x1, . . . , xN ) of self-
adjoint elements in M, all n ∈N and all ε > 0, it is possible to find k ∈N and R> 0
such that 0R(x1, . . . , xN : n, k, ε) 6= ∅. In [Rădulescu 1999] it is proved that this
statement is true under the restriction that n ∈ {2, 3}, and that if the statement were
true for n = 4, the CEC would follow.

Our paper concerns the following reformulation of the CEC:

Theorem 1.1 [Hadwin 2001, Corollary 2.3]. Let H be a separable Hilbert space.
The Connes embedding conjecture is false if and only if there is a positive integer n,
a noncommutative polynomial p(t1, t2, . . . , tn) in the universal unital C∗-algebra
An=〈t1, t2, . . . , tn : t j = t∗j ,−1< t j ≤ 1 for 1≤ j ≤ n〉 and an n-tuple (x1, . . . , xn)

of self-adjoint contractions in B(H) such that

(i) Trk(p(A1, A2, . . . , An)) ≥ 0 for every positive integer k and every n-tuple
(A1, . . . , An) of self-adjoint contractions A1, A2, . . . , An in Mk(C), and

(ii) W ∗(x1, x2, . . . , xn) has a faithful tracial state τ and τ(p(x1, x2, . . . , xn))< 0.

It is well known that a separable type II1 factor M embeds in an Rω if and only
if M⊗Mk(C) does for all k ∈N. If M is generated by k self-adjoint elements then
M⊗ Mk(C) is generated by two self-adjoint elements [Sinclair and Smith 2008,
Proposition 16.1.1]. Whenever x ∈ B(H) is a self-adjoint contraction and ε > 0, it
follows (e.g., by the continuous functional calculus for x) that

(1+ ε)+ x
2+ ε

is a positive invertible contraction. Therefore, if we replace An by

A=
〈
t1, t2 : t j = t∗j , 0< t j ≤ 1 for 1≤ j ≤ 2

〉
,

and repeat the argument in [Hadwin 2001, Section 2], we obtain the following.

Theorem 1.2. Let H be a separable Hilbert space. The Connes embedding con-
jecture is false if and only if there is a noncommutative polynomial p(t1, t2) in the
universal unital C∗-algebra A = 〈t1, t2 : t j = t∗j , with 0 < t j ≤ 1 for 1 ≤ j ≤ 2〉,
and positive, invertible contractions x1 and x2 in B(H) such that

(i) Trk(p(A1, A2)) ≥ 0 for every positive integer k and all positive definite con-
tractions A1 and A2 in Mk(C), and

(ii) W ∗(x1, x2) has a faithful tracial state τ and τ(p(x1, x2)) < 0.
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Also note that if a polynomial p ∈ A satisfies (i) and (ii) in the theorem, then
so does the polynomial p + p∗. We may therefore assume that the polynomial
appearing in the theorem is self-adjoint.

Note that, even if we restrict our attention in Theorem 1.1 (or Theorem 1.2) to
the case where the degree of p is less than or equal to 3, we cannot use [Rădulescu
1999] to rule out the possibility of finding such a p that will disprove the CEC,
because existing methods only allow us to use, when R′ < R, the existence of a
microstate in 0R(x1, . . . , xN : n, k, ε) to guarantee the existence of a microstate in
0R′(x1, . . . , xN : n′, k, ε′), where ε′ < ε and n′ > n — that is, decreasing R comes
at the expense of increasing n. See, for example, Proposition 2.4 of [Voiculescu
1994] or Lemma 4 of [Dostál and Hadwin 2003]. Even if this difficulty were
overcome, there is no guarantee that the matrices in any approximating microstates
found would be positive definite. It behooves us, therefore, to either look for a
noncommutative polynomial that may be used to disprove the CEC as prescribed in
Theorem 1.1, or to proceed inductively, by degree, to show that such a polynomial
cannot exist.

In Section 2 of this paper we prove, in Corollary 2.5 and Theorem 2.6 that
if the real parts of all coefficients but the constant coefficient of a self-adjoint
noncommutative polynomial p ∈ A share the same sign, then such a p cannot
disprove the CEC if the degree of p is less than 6. We prove in Section 3 that if
the degree of a self-adjoint noncommutative polynomial p ∈ A is 2, the real part
of the coefficient of t1t2 is zero and the coefficient of one of the t2

i is nonnegative,
then such a p disproves the CEC only if either the coefficient of the corresponding
linear term ti is nonnegative or if both of the coefficients of t1 and t2 are negative.

From here on in this paper, the symbols t1 and t2 will denote the standard gen-
erators of the universal C∗-algebra

A= 〈t1, t2 : t j = t∗j , 0< t j ≤ 1 for 1≤ j ≤ 2〉.

We refer the reader to [Kadison and Ringrose 1983; Sinclair and Smith 2008] for
the basic theory of finite von Neumann algebras.

2. τ -symmetrizable monomials

We prove that if the real parts of all coefficients but the constant coefficient of
self-adjoint p ∈ A share the same sign, and the constant coefficient is positive,
then p cannot disprove the CEC if its degree is less than six. Let M be a finite
von Neumann algebra with faithful trace state τ , and 0 < x1, x2 ≤ 1 self-adjoint
contractions in M.

Definition 2.1. A symmetric expression in x1, x2 is a finite sequence

(w0, w1, . . . , wN−1, wN )
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of elements in M, where N ∈N,wk= x s
i with i ∈{1, 2}, s ∈{1, 1/2} andwk=wN−k

for all k ∈ {0, 1, . . . , N }. A monic monomial m(x1, x2) = xi1 xi2 . . . xil ∈ M with
i j ∈ {1, 2} for j ∈ {1, 2, . . . , l} is τ -symmetrizable if there exists a symmetric
expression (w0, w1, . . . , wN−1, wN ) in x1, x2 such that

τ(xi1 xi2 . . . xil )= τ(w0w1 . . . wN−1wN ).

The element w0w1 . . . wN−1wN ∈ M is called the element associated to the sym-
metric expression (w0, w1, . . . , wN−1, wN ).

Lemma 2.2. If (w0, w1, . . . , wN−1, wN ) is a symmetric expression in x1, x2, then
the associated element w0w1 . . . wN−1wN in M is a nonnegative contraction.

Proof. We prove this by induction on N + 1. If N + 1 = 1, then N = 0 and the
result is clear from the assumptions on the xi .

Assume now that the result holds for N + 1 ≤ l, that is, for all symmetric ex-
pressions (w0, w1, . . . , w j−1, w j ) in x1, x2 with j < l. Let (w0, w1, . . . , wl−1, wl)

be a symmetric expression in x1, x2. Then so is (w1, . . . , wl−1). By the induction
hypothesis, w1 . . . wl−1 ∈M is a nonnegative contraction. Since w0 =wl = x s

i for
some i ∈ {1, 2} and s ∈ {1, 1

2}, we have

0≤ w0w1 . . . wl−1wl = x s
i w1 . . . wl−1x s

i ≤ x2s
i ≤ xi ≤ 1. �

Remark 2.3. It is a straightforward exercise to verify that every monic noncom-
mutative monomial m(x1, x2) of degree less than six is τ -symmetrizable in any
finite von Neumann algebra M with faithful trace state τ . (Here, of course, it is
essential that 0< x1, x2 ≤ 1!)

Corollary 2.4. If m(x1, x2)= xi1 xi2 . . . xil ∈M is a τ -symmetrizable monic mono-
mial, then 1− τ(m(x1, x2))≥ 0.

Proof. Since m is τ -symmetrizable, there exists a symmetric expression

(w0, w1, . . . , wN−1, wN )

in x1, x2 such that

τ(xi1 xi2 . . . xil )= τ(w0w1 . . . wN−1wN ).

By Lemma 2.2 and the fact that τ is a state, τ(w0w1 . . . wN−1wN )≤ 1. �

In the following two results, J = J \ {0} denotes a finite index set, and for all
j ∈ J , c j ∈ C, and m j (t1, t2) 6= 1 denotes a monic monomial in A.

Corollary 2.5. If 0 < x1, x2 ≤ 1 in M and p(t1, t2) = c01 +
∑

j∈J c j m j (t1, t2)
is a self-adjoint noncommutative polynomial in A such that, such that c0 > 0,
Re(c j ) ≥ 0 for all j ∈ J , p(1, 1) ≥ 0 and m j (x1, x2) is τ -symmetrizable for every
j ∈ J , then τ(p(x1, x2))≥ 0.
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Proof. This is trivial application of Corollary 2.4. �

Theorem 2.6. If 0 < x1, x2 ≤ 1 in M and p(t1, t2) = c01+
∑

j∈J c j m j (t1, t2) is
a self-adjoint noncommutative polynomial in A such that c0 > 0, Re(c j ) < 0 for
all j ∈ J , p(1, 1) ≥ 0 and m j (x1, x2) is τ -symmetrizable for every j ∈ J , then
τ(p(x1, x2))≥ 0.

Proof. Suppose p(t1, t2) satisfies the hypotheses. We have

p(1, 1)= c01+
∑
j∈J

c j ≥ 0,

and therefore
τ(p(x1, x2))≥

∑
j∈J

c j (m j (x1, x2)− 1)≥ 0. �

3. Degrees 1 and 2

In degree 1 it is convenient to consider the statement of Theorem 1.1 above. The
next result rules out the possibility of finding a polynomial p of degree 1 that will
disprove the CEC via Theorem 1.1. Observe that if p(s, t) = c0 + c1s + c2t =
c̄0+ c̄1s+ c̄2t for any real numbers −1≤ s, t ≤ 1 and that p(s, t)≥ 0 for any such
s and t , then c0 ≥ |c1+ c2|.

Theorem 3.1. Let H be a separable Hilbert space. Let x1 and x2 be self-adjoint
contraction operators in B(H) such that W ∗(x1, x2) has a faithful trace state τ . If
p(t1, t2)= c0+c1t1+c2t2 = c̄0+ c̄1t1+ c̄2t2 is a self-adjoint polynomial in A with
c0 ≥ |c1+ c2| then τ(p(x1, x2))≥ 0.

Proof. Observe that τ(c0+ c1x1+ c2x2)= c0+ c1τ(x1)+ c2τ(x2)≥ c0−|c1+ c2|,
since −1≤ τ(xi )≤ 1 for i ∈ {1, 2}. �

We now turn to degree 2. We first prove in Theorem 3.4 that if

p(t1, t2)= c0+ c1t1+ c2t2+ c3t2
1 + c4t1t2+ c̄4t2t1+ c5t2

2

is a quadratic, self-adjoint noncommutative polynomial such that either c4 is the
only nonzero degree 2 term with 2 Re(c4) 6= 0 or one of c3 or c5 is positive, then
whenever p(s, t) is nonnegative for all real numbers 0 < s, t ≤ 1, it follows that
Trk(p(A, B))≥ 0 for all positive definite contractions A and B in Mk(C), for any
k ∈ N.

To prove the result above, we shall need the fact that any positive definite square
matrix has strictly positive entries on its main diagonal. This is a direct conse-
quence of Sylvester’s minorant criterion for positive definiteness.

Lemma 3.2. Let A= (Ai j )
k
i=1 ∈ Mk(C) be positive definite. Then Ai i > 0 for all i

∈ {1, 2, . . . , k}.
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Proof. We prove this by induction on k. Recognize that the case k = 1 is clear.
Assume the claim holds for k= l, and that A= (Ai j )

l+1
i=1 is a positive definite matrix.

By Sylvester’s criterion, A= (Ai j )
l
i=1 is also positive definite, and therefore, by the

induction hypothesis, Ai i > 0 if i ∈ {1, 2, . . . l}.We need only show A(l+1)(l+1)> 0.
Let v ∈ Cl+1 be the vector with 1 in its (l + 1)-st row and zero elsewhere. Then
〈Av, v〉 = A(l+1)(l+1) > 0 by the positive definiteness of A. �

We now observe that if a polynomial is nonnegative on (0, 1] × (0, 1], then its
constant term must be nonnegative.

Lemma 3.3. If p(s, t) = c0+ c1s+ c2t + c3s2
+ 2 Re(c4)st + c5t2

≥ 0 for all real
numbers 0< s, t ≤ 1, then c0 ≥ 0.

Proof. For any ε > 0 we have

0< p(ε, ε)= c0+
(
c1+ c2+ (c3+ 2 Re(c4)+ c5)ε

)
ε;

hence c0 ≥ 0. �

Theorem 3.4. Let p(t1, t2) = c0 + c1t1 + c2t2 + c3t2
1 + c4t1t2 + c̄4t2t1 + c5t2

2 be a
self-adjoint noncommutative polynomial in A. Suppose

p(s, t)= c0+ c1s+ c2t + c3s2
+ 2 Re(c4)st + c5t2

≥ 0

for all real numbers 0 < s, t ≤ 1, and either c3 = 0, c5 = 0 and 2 Re(c4) 6= 0 or
c3 > 0 or c5 > 0. Then Trk(p(A, B)) ≥ 0 for any positive definite contractions
A, B in Mk(C).

Proof. For simplicity, let us assume c5 ≥ 0. Let A, B be positive definite con-
tractions in Mk(C). By the spectral theorem, we may assume A = diag(Ai )

k
i=1 is

diagonal. A simple computation establishes that, for all i ∈ {1, 2, . . . , k},

(p(A, B))i i = p(Ai , Bi i )+
∑

j∈{1,2,...,k}\{i}
c5|Bi j |

2.

Since A is a positive definite contraction, each Ai satisfies 0 < Ai ≤ 1. If we
could establish that the matrix B0 := diag(Bi i )

k
i=1 is a positive definite contrac-

tion, then each p(Ai , Bi i ) would follow nonnegative by assumption and therefore
Trk(p(A, B)) =

∑k
i=1(p(A, B))i i ≥ 0. Positivity of B0 is a simple consequence

of the positive definiteness of B, since every diagonal entry of a positive definite
matrix is strictly positive by Lemma 3.2. It remains to show that B0 is a con-
traction, which is equivalent to proving that I − B0 is positive semidefinite. We
know, however, that I −B is positive semidefinite, and hence that for all ε > 0 that
(I + ε)− B is positive definite. Again as a consequence of Sylvester’s criterion,
((I + ε)− B)i i > 0 for all i ∈ {1, 2, . . . , n}, therefore for all such i it follows that
1+ ε > Bi i , and hence 1 ≥ Bi i . It follows that I − B0 is positive semidefinite,
hence B0 is a contraction. �
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Let M be a von Neumann algebra with faithful trace state τ . Below,

〈x, y〉2 = τ(y∗x) and ‖x‖22 = τ(x
∗x)1/2, for x, y ∈M.

Let n ∈N and x1, x2 be positive invertible contractions in M. For every k ∈N, there
are spectral projections {P (k)i }

k
i=1 in {1, x1}

′′ such that τ(P (k)i )= 1/k for each i and∥∥∥x1−
k∑

i=1

i − 1
k

P (k)i

∥∥∥< 1
k
.

If i = j , let V (k)
i j = P (k)i , and if i 6= j , let V (k)

i j be a partial isometry in M with
initial projection P (k)j (meaning that V (k)

i j (V
(k)

i j )
∗
= Pj ) and final projection P (k)i

(meaning that (V (k)
i j )
∗V (k)

i j = P (k)i ). We now prove that if x2 is sufficiently close
(in ‖ · ‖2) to a positive definite element in the type I subfactor of M generated by
{V (k)

i j }
k
i, j=1, then τ(p(x1, x2))≥ 0 when p satisfies the hypotheses of Theorem 3.4.

In the statement of the theorem, we regard x2 as an operator matrix and compare
it entry-wise to the element (bi j V

(k)
i j )

k
i, j=1.

Theorem 3.5. Let M be a finite von Neumann algebra with faithful trace state
τ , let x1, x2 be positive, invertible elements in M, and adopt the notation in the
previous paragraph. Let p(t1, t2)= c0+ c1t1+ c2t2+ c3t2

1 + c4t1t2+ c̄4t2t1+ c5t2
2

be a self-adjoint noncommutative polynomial in A. Suppose that

p(s, t)= c0+ c1s+ c2t + c3s2
+ 2 Re(c4)st + c5t2

≥ 0

for all real numbers 0 < s, t ≤ 1, that either c3 = 0, c5 = 0 and 2 Re(c4) 6= 0
or c3 > 0 or c5 > 0, and that for all k ∈ N there exists a type I subfactor of
M generated by {V (k)

i j }
k
i, j=1 as in the previous paragraph, and a positive definite

contraction (bi j )
k
i, j=1 ∈ Mk(C) such that∥∥P (k)i x2 P (k)j − bi j V

(k)
i j

∥∥
2 <

1
k100 , for all i, j ∈ {1, 2, . . . , k}.

Then τ(p(x1, x2))≥ 0.

Proof. Let Dk =
k∑

i=1

i−1
k

P (k)i and Bk =
k∑

i, j=1
bi j V

(k)
i j . Writing x1 = Dk+ (x1−Dk)

and x2 = Bk + (x2− Bk), we have

τ(p(x1), p(x2))

= c0+c1τ
(
Dk+ (x1−Dk)

)
+c2τ

(
Bk+ (x2− Bk)

)
+c3τ

(
(Dk+ (x1−Dk))

2)
+2 Re(c4)τ

(
(Dk+(x1−Dk))(Bk+(x2−Bk))

)
+c5τ

(
(Bk+(x2−Bk))

2)
= p(τ (Dk), τ (Bk))+ c1τ(x1− Dk)+ c2τ(x2− Bk)

+2c3τ(Dk(x1− Dk))+ c3τ(x1− Dk)
2
+ 2 Re(c4)τ (Dk(x2− Bk))

+ 2 Re(c4)τ (Bk(x1− Dk))+ 2 Re(c4)τ
(
(x1− Dk)(x2− Bk)

)
+ 2c5τ

(
Bk(x2− Bk)

)
+ c5τ

(
(x2− Bk)

2).
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Therefore, by the triangle and Cauchy–Schwartz inequalities and the fact that the
operator norm dominates the ‖ · ‖2-norm,∣∣τ(p(x1), p(x2))− p(τ (Dk), τ (Bk))

∣∣≤ (|c1| + |c2| + 3|c3| + 6 Re(c4)+ 3c5
)1

k
.

Since W ∗(Dk, Bk)∼= W ∗(diag((i − 1)/k, i ∈ {1, . . . , k}), (bi j )
k
i, j=1)⊆ Mk(C) via

the obvious trace-preserving ∗-isomorphism, it follows that

τ(p(x1), p(x2))≥ 0. �

Proposition 3.6. Let p(t1, t2) = c0 + c1t1 + c2t2 + c3t2
1 + c4t1t2 + c̄4t2t1 + c5t2

2
be a self-adjoint noncommutative polynomial in A satisfying the hypotheses of
Theorem 3.4, and let M be a finite von Neumann algebra with faithful trace state
τ . If 0< x1, x2 ≤ 1 in M then τ(p(x1, x2)) < 0 if and only if

c5‖x2− τ(x2)‖
2
2+ c3‖x1− τ(x1)‖

2
2+ 2 Re(c4)〈x1− τ(x1), x2− τ(x2)〉2

<−p(τ (x1), τ (y1)).

Proof. Writing each τ(xi x j ) as τ
(
(xi − τ(xi )1)(x j − τ(x j )1)

)
+ τ(xi )τ (x j ), we

see that

τ(p(x1, x2))= p(τ (x1), τ (y1))+ c5‖x2− τ(x2)‖
2
2+ c3‖x1− τ(x1)‖

2
2

+ 2 Re(c4)〈x1− τ(x1), x2− τ(x2)〉2.

The result follows. �

In the rest of this section, we narrow down the possibilities for disproving the
CEC using polynomials satisfying the hypotheses of Theorem 3.4 in the nonrotated
case, where Re(c4)= 0. We point out that if p(t1, t2)= c0+c1t1+c2t2+c3t2

1+c5t2
2

is a self-adjoint noncommutative polynomial in A satisfying the hypotheses of
Theorem 3.4 with both c5 ≥ 0 and c3 ≥ 0, then τ(p(x1, x2)) ≥ 0 by the proof of
Proposition 3.6.

Theorem 3.7. Let p(t1, t2) = c0+ c1t1+ c2t2+ c3t2
1 + c5t2

2 be a self-adjoint non-
commutative polynomial in A satisfying the hypotheses of Theorem 3.4 with c3>0,
c5 < 0 and such that c1 ≥ 0 and c2 ≤ 0. Then, for any finite von Neumann algebra
M with faithful trace state τ , we have

τ(p(x1, x2))≥ 0,

for any positive definite contractions x1 and x2 in M.

Proof. Assume that p(t1, t2) satisfies the hypotheses. Suppose that there exists
a finite von Neumann algebra M with faithful trace state τ and positive definite
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contractions x1 and x2 such that τ(p(x1, x2)) < 0. If c1 ≥ 0 and c2 ≤ 0, then

p(t1, t2)= c0+ c1t1+ c2t2+ c3t2
1 + c5t2

2 ,

so c0+ (c1+ c3ε)ε+ c2+ c5 ≥ 0 for every ε > 0, and hence c0 ≥−c5− c2. Thus

0> c0+ c1t1+ c2t2+ c3t2
1 + c5t2

2

≥−c5− c2+ c1t1+ c2t2+ c3t2
1 + c5t2

2

=−c5(1− t2
2 )+ c3t2

1 + c1t1− c2(1− t2),

and
0>−c5τ(1− x2

2)+ c3τ(x2
1)+ c1τ(x1)− c2τ(1− x2)≥ 0.

This is a contradiction. �

Theorem 3.8. Let p(t1, t2) = c0+ c1t1+ c2t2+ c3t2
1 + c5t2

2 be a self-adjoint non-
commutative polynomial in A satisfying the hypotheses of Theorem 3.4 with c3>0,
c5 < 0 and such that c1 < 0 and c2 = 0. Then for any finite von Neumann algebra
M with faithful trace state τ ,

τ(p(x1, x2))≥ 0,

for any positive definite contractions x1 and x2 in M.

Proof. Assume that p(t1, t2) satisfies the hypotheses. Let M be a finite von Neu-
mann algebra with faithful trace state τ and let x1 and x2 be positive definite con-
tractions. If c1 < 0 and c2 = 0, then for every ε > 0 letting t1 = ε− c1/(2c3),

c0+ c3ε
2
−

c2
1

4c3
+ c5 ≥ 0,

and therefore c0 ≥
c2

1
4c3
− c5. Then

p(t1, t2)= c0+ c3

(
t1+

c1

2c3

)2
−

c2
1

4c3
+ c5t2

2

≥
c2

1

4c3
− c5+ c3

(
t1+

c1

2c3

)2
−

c2
1

4c3
+ c5t2

2 =−c5(1− t2
2 )+ c3

(
t1+

c1

2c3

)2
.

Therefore

τ(p(x1, x2))=−c5τ(1− x2
2)+ c3τ

((
x1+

c1

2c3

)2
)
≥ 0. �

The previous two theorems establish that any polynomial p(t1, t2)= c0+c1t1+
c2t2 + c3t2

1 + c5t2
2 in A that has a chance to disprove the CEC must satisfy either

c2 > 0 or both c1 < 0 and c2 < 0.
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Combinatorial proofs of Zeckendorf representations
of Fibonacci and Lucas products
Duncan McGregor and Michael Jason Rowell

(Communicated by Arthur T. Benjamin)

In 1998, Filipponi and Hart introduced many Zeckendorf representations of
Fibonacci, Lucas and mixed products involving two variables. In 2008, Artz
and Rowell proved the simplest of these identities, the Fibonacci product, using
tilings. This paper extends the work done by Artz and Rowell to many of the
remaining identities from Filipponi and Hart’s work. We also answer an open
problem raised by Artz and Rowell and present many Zeckendorf representations
of mixed products involving three variables.

1. Preliminaries

Definition 1.1. The n-th Fibonacci number is the term fn of the Fibonacci se-
quence defined recursively by

f0 = 1, f1 = 1, fn = fn−1+ fn−2.

This definition is shifted relative to the standard Fibonacci sequence, which
begins at 0. This is done to ensure that the combinatorial interpretation matches
our sequence without having to shift indices.

Benjamin and Quinn [2003] presented a combinatorial interpretation for the
Fibonacci sequence: fn is the number of possible tilings of an 1× n board with
1× 2 dominoes and 1× 1 squares.1 They also gave a combinatorial interpretation
for a related sequence introduced by Edouard Lucas:

Definition 1.2. The n-th Lucas number is the term Ln of the Lucas sequence,
defined recursively by

L0 = 2, L1 = 1, Ln = Ln−1+ Ln−2.

MSC2000: 05A19, 11B39.
Keywords: number theory, Fibonacci numbers, Zeckendorf representations, combinatorics.

1The 1× n board, or n-board, is divided into 1× 1 squares, called cells. In a tiling, the board
is entirely covered by tiles without overlap. (A tile is either a domino or a square.) Two tilings are
equivalent if, given any pair of cells, they belong to the same tile in one tiling if and only if they
belong to the same tile in the other.

75
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Ln is the number of possible square-and-domino tilings of an n-bracelet, that
is, an n-board with ends identified. (One can think of such a board as a ring of
curved cells.) We do not consider as equivalent tilings superimposable by a rotation
or reflection; the equivalence relation is the same as for a linear board (see note
1). An n-bracelet has a designated starting cell and ending cell. If these two cells
are covered by the same domino, we say that the board is out of phase. Otherwise,
the board is in phase.

The combinatorial interpretation of fn and Ln given by Benjamin and Quinn
is easy to prove by induction. (For instance, in the linear case, consider the first
cell of the n-board: either it’s covered by a domino, in which case there are, by the
induction assumption, fn−2 possible tilings of the n−2 leftover cells, or it’s covered
by a square, in which case there are fn−1 possibilities.) Since the introduction
of these interpretations, many Fibonacci and Lucas identities have been proved
combinatorially. Some identities are presented below and will be used repeatedly
throughout the paper.

Lemma 1.1. For any positive integer n ≥ 0,

fn =

{
f0+ f2+ · · ·+ fn−1 for n odd,
f1+ f3+ · · ·+ fn−1+ 1 for n even.

A combinatorial proof of the odd case of Lemma 1.1 appears as Identity 2 in
[Benjamin and Quinn 2003]. The even case can be proved similarly.

In the next proof and later one, we say that a tiling has a fault at m if the m-th
and (m+1)-st cells belong to different tiles.

Lemma 1.2. For any positive integers m, n ≥ 1,

fm+n − fm fn = fm−1 fn−1.

Proof. Consider the tilings of an (m+n)-board; we know there are fm+n of them.
Divide the board into an m-board and an n-board. For tilings that have a fault at
m, there are fm possibilities for the m-board and fn for the n-board, for a total of
fm fn possibilities. The complementary case is where there is a domino straddling
tiles m and m+1. Then we’re left with subboards of lengths m−1 and n−1, and
there are fm−1 fn−1 such possibilities. �

Lemma 1.3. For any positive integer n ≥ 2,

Ln = fn + fn−2.

A combinatorial proof of this appears under Identity 32 in [Benjamin and Quinn
2003]. We will repeatedly apply this lemma in our identities that involve Lucas
products so that we can work with n-boards rather than bracelets. For example,

Lm Ln = fm fn + fm−2 fn + fm fn−2+ fm−2 fn−2.
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Each of the four terms on the right-hand side are each of the combinations of two
bracelets either being in or out of phase.

Edouard Zeckendorf, an amateur mathematician and a doctor in the Belgian
army, proved [1972] an interesting property of Fibonacci numbers (here N stands
for the natural numbers, not including 0):

Theorem 1.4. Every N ∈ N can be expressed uniquely as a sum

M∑
i=1

fai = N ,

where M ∈ N, ai ∈ N for 1≤ i ≤ M , and ai+1 > ai + 1 for 1≤ i < M.

We call this decomposition the Zeckendorf representation of N . Note that, since
ai+1 > ai + 1, repeated or consecutive Fibonacci numbers cannot appear in the
representation.

An open exercise in [Benjamin and Quinn 2003] lists a number of identities
involving Zeckendorf representations of multiples of Fibonacci numbers and asks
for combinatorial proofs:

2 fn = fn−2+ fn+1,

3 fn = fn−2+ fn+2,

4 fn = fn−2+ fn + fn+2,
...

Wood [2007] provided combinatorial proofs for several of these identities, but
without a unified method. Gerdemann [2009] gave a combinatorial algorithm for
finding the Zeckendorf representation of any particular m fn , but it does not give a
general closed-form representation.

Artz and Rowell [2009] found combinatorial proofs of certain Zeckendorf repre-
sentations of fm fn originally proved in [Filipponi and Hart 1998] by other means:

Theorem 1.5. For n > 2k+ 1,

f2k+1 fn =
k+1∑
i=1

fn−2k−4+4i .

Theorem 1.6. For n > 2k,

f2k fn = fn−2k +
k∑

i=1
fn−2k−1+4i .

To sketch the proof for the case of f2k+1 fn , one must break the set of all tilings
of an (n+2k+1)-board with a fault at n into many disjoint sets where the closest
square is i dominoes away from the fault at n. Further our closest square can be
no further than k dominoes away from the fault; therefore, 0≤ i ≤ k.
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In Sections 2 and 3 we provide combinatorial proofs of additional Zeckendorf
representations of Fibonacci and Lucas products given in [Filipponi and Hart 1998],
namely those for 2 fm fn and Lm Ln . In Section 4 we answer an open problem
from [Artz and Rowell 2009] and present many new Fibonacci and Lucas product
Zeckendorf representations.

2. The Zeckendorf representation of 2 fm fn

A Zeckendorf representation for 2 fm fn was given in [Filipponi and Hart 1998].
We provide a combinatorial proof for this identity, extending the combinatorial
methods from [Artz and Rowell 2009].

Theorem 2.1. For integers k and n such that n > 2k+ 1 > 0,

2 f2k+1 fn = fn+2k+1+
k∑

i=1
fn+2k+3−4i + fn−2k−2.

Proof. The tilings of an (n+2k+1)-board having a fault at n make up a fn f2k+1-
element set. We will partition this set into a union of four sequences of subsets Ri ,
Si , Ti , and Ui , for 0≤ i≤k, according to Figure 1. Specifically, given a (n+2k+1)-
board tiling having a fault at n, let i be the number of dominos between the fault
and a square closest to the fault: then i ≤ k (there is at least one square in the
(2k+1)-board to the right of the fault). Next assign this tiling to the set

Ri if there are i dominos adjacent to the fault on each side, followed by a square
on each side;

Si if there are i dominos adjacent to the fault on each side, followed by yet
another domino on the left and a square on the right;

· · ·· · ·Ri : ︸ ︷︷ ︸
n−2i−1 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
2k−2i cells

↓
Fault at n

· · ·· · ·Si : ︸ ︷︷ ︸
n−2i−2 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
2k−2i cells

↓

· · ·· · ·Ti : ︸ ︷︷ ︸
n−2i−2 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
2k−2i−1 cells

↓

· · ·· · ·Ui : ︸ ︷︷ ︸
n−2i−3 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
2k−2i−1 cells

↓

Figure 1. Configurations charaterizing membership in the sets Ri ,
Si , Ti and Ui .
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Ti if there are i dominos adjacent to the fault on each side, followed by two
squares on the left and a domino on the right;

Ui if there are i dominos adjacent to the fault on each side, followed by a square
and a domino on the left and a domino on the right.

(Note that Tk and Uk are empty.) Thus, the sets Ri , Si , Ti , Ui for 0≤ i ≤ k account
exactly once for each tiling having a fault at n.

Further, we take a second copy of each of these sets, denoting them by R∗i , S∗i ,
T ∗i , and U∗i , and we define

Ai = Ri ∪ R∗i ∪ Si ∪ Ti ∪ T ∗i ∪ Ui , Bi = S∗i ∪ U∗i .

It follows that the sets Ai and Bi , for 0 ≤ i ≤ k, account exactly twice for each
tiling having a fault at n. Therefore

k∑
i=0

|Ai ∪ Bi | = 2 fn f2k+1,

by the first sentence of the proof. To complete the proof, we will show the following
equalities:

|A0| = fn+2k+1;

|Ai ∪ Bi−1| = fn+2k+3−4i for 1≤ i ≤ k;

|Bk | = fn−2k−2.

We prove each equality by exhibiting a bijection from the set of tilings of a board
of the appropriate size to the set in the left-hand side of the equality. For instance,
to show that |A0| = fn+2k+1, we start from the set of all tilings of the (n+2k+1)-
board; this set, as we know, has fn+2k+1 elements. So consider any tiling of the
(n+ 2k+ 1)-board.

• If the tiling has a fault at n and a square next to the fault, on either or both
sides, do nothing. This gives an element of R0 ∪ S0 ∪ T0 ∪U0.

• If the tiling has a fault at n and a domino on both sides of the fault, replace the
domino to the left of the fault with two squares, obtaining an element of T ∗0 .

• If the tiling does not have a fault at n, split the domino covering cells n and
n+ 1 into two squares, obtaining an element of R∗0 .

Since A0 = R0 ∪ R∗0 ∪ S0 ∪ T0 ∪ T ∗0 ∪ U0 and all elements of the component sets
are accounted for, we have shown that |A0| = fn+2k+1.

Next we show that |Ai∪Bi−1|= fn+2k+3−4i for 1≤ i ≤ k. Consider any tiling of
an (n+2k+3−4i)-board, and remove the last tile. Suppose first that the removed
tile was a domino, which leaves an (n+2k+1−4i)-board.
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• If the tiling has a fault at n−2i and a square next to the fault, on either or both
sides, insert 2i dominos at the fault. This gives an element of Ri∪Si∪Ti∪Ui .

• If the tiling has a fault at n−2i and a domino on both sides of the fault, replace
the domino to the left of the fault with two squares and insert 2i dominos at
the fault, obtaining an element of T ∗i .

• If the tiling does not have a fault at n−2i , replace the domino covering the fault
with two squares and insert 2i dominos between the two squares, obtaining
an element of R∗i .

This accounts for each element of Ai once. Now suppose instead that the tile we
removed was a square, which leaves an (n+2k+2−4i)-board.

• If the tiling has a fault at n−2i , insert 2i−1 dominos followed by a square at
the fault, obtaining an element of S∗i−1.

• If the tiling does not have a fault at n−2i , insert a square followed by 2i−1
dominos just before the domino that covers cell n−2i . This gives an element
of U∗i−1.

This accounts for each element of Bi−1 once. Thus Ai∪Bi−1 is in bijection with
the set of tilings of the (n+2k+3−4i)-board.

Lastly, we must show that |Bk | = fn−2k−2. Given any tiling of an (n−2k−2)-
board, append 2k+1 dominos followed by a square at the right edge, to obtain an
element of Bk = S∗k (recall that U∗k is empty). This concludes the proof. �

We only present, but do not prove, the case 2 f2k fn . Its proof is similar to the
case presented above and is left to the interested reader.

Theorem 2.2. For integers k and n such that n > 2k+ 1 > 0,

2 f2k fn = fn+2k +
k∑

i=1
fn+2k+2−4i + fn−2k .

3. Zeckendorf representations of Lm Ln

Also given in [Filipponi and Hart 1998] is a Zeckendorf representation of Lm Ln .
We again extend the notion of squares closest to a given fault to prove our theorem
combinatorially.

Lemma 3.1. Let m and n be positive integers such that n > m > 1. Then

fn fm−2− fn−1 fm−1 = (−1)m fn−m .

Proof. Let A{n+m−2,n} be the set of all tilings of an (n+m− 2)-board with a fault
at n.

For 0≤ i ≤ b(m−2)/2c, let A{n+m−2,n}
2i be the set of all tilings of an (n+m−2)-

board with a fault at n, i dominos on both sides of the fault and a square at cell
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A{n+m−2,n}
2i

· · ·· · ·︸ ︷︷ ︸
n−2i−1 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
m−2i−2 cells

↓

Fault at n

A{n+m−2,n}
2i+1

· · ·· · ·︸ ︷︷ ︸
n−2i−2 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
m−2i−3 cells

↓

B{n+m−2,n−1}
2i

· · ·· · ·︸ ︷︷ ︸
n−2i−1 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
m−2i−2 cells

↓

Fault at n−1

B{n+m−2,n−1}
2i+1

· · ·· · ·︸ ︷︷ ︸
n−2i−2 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
m−2i−3 cells

↓

Figure 2. Configurations characterizing membership in various sets.

n−2i . For 0 ≤ i ≤ b(m−3)/2c, let A{n+m−2,n}
2i+1 be the set of all tilings of an

(n+m−2)-board with a fault at n, i dominos on either side of the fault, a domino
at cell n−2i−1 and a square at cell n+2i+1. See Figure 2. For m odd we have

A{n+m−2,n}
=

m−2⋃
i=0

A{n+m−2,n}
i .

If m is even, we need one more set to complete our construction of A{n+m−2,n}.
Let A{n+m−2,n}

m−1 be the set of all tilings of an (n+m−2)-board with a fault at n,
m/2−1 dominos on the right side of the fault and m/2 dominos on the left side of
the fault. Then

A{n+m−2,n}
=

m−1⋃
i=0

A{n+m−2,n}
i .

Let B{n+m−2,n−1} be the set of all tilings of an (n+m−2)-board with a fault at
n−1.

For 0≤ i≤b(m−2)/2c, let B{n+m−2,n−1}
2i be the set of all tilings of an (n+m−2)-

board with a fault at n−1, i dominos on either side of the fault and a square at
cell n+2i . For 0 ≤ i ≤ b(m−3)/2c, let B{n+m−2,n−1}

2i+1 be the set of all tilings of
an (n+m−2)-board with a fault at n−1, i dominos on either side of the fault, a
square at cell n−2i−1 and a domino at cell n+2i . See again Figure 2. For m even
we have

B{n+m−2,n−1}
=

m−2⋃
i=0

B{n+m−2,n−1}
i .



82 DUNCAN MCGREGOR AND MICHAEL JASON ROWELL

If m is odd, we need one more set to complete our construction of B{n+m−2,n−1}.
Let B{n+m−2,n−1}

m−1 be the set of all tilings of an (n +m − 2)-board with a fault at
n− 1 and (m− 1)/2 dominos on either side of the fault. Then

B{n+m−2,n−1}
=

m−2⋃
i=0

B{n+m−2,n−1}
i .

Note that
∣∣A{n+m−2,n}

i

∣∣= ∣∣B{n+m−2,n−1}
i

∣∣ for 0≤ i ≤m−2, since the cardinality
of each of these sets is just fn−i−1 fm−i−2. Thus

∣∣A{n+m−2,n}
∣∣− ∣∣B{n+m−2,n−1}∣∣= {∣∣A{n+m−2,n}

m−1

∣∣ if m is even,

−
∣∣B{n+m−2}

m−1

∣∣ if m is odd.

Noting that ∣∣A{n+m−2,n}
∣∣= fn fm−2,

∣∣B{n+m−2,n−1}∣∣= fn−1 fm−1,∣∣A{n+m−1,n}
m−1

∣∣= ∣∣B{n+m−2}
m−1

∣∣= fn−m,

we see that

fn fm−2− fn−1 fm−1 =
∣∣A{n+m−2,n}

∣∣− ∣∣B{n+m−2,n−1}∣∣
=

{∣∣A{n+m−2,n}
m−1

∣∣ if m is even,

−
∣∣B{n+m−2}

m−1

∣∣ if m is odd,

= (−1)m fn−m . �

We present four corollaries helpful in proving the Zeckendorf representation of
Lm Ln . In each of them, an application of Lemma 1.2 is used.

Corollary 3.2. For integers k and n such that n > 2k > 1,

fn f2k−2− ( fn+2k − fn f2k)= fn−2k .

Proof. Let m→ 2k in Lemma 3.1 and note that

fn−1 f2k−1 = fn+2k − fn f2k . �

Corollary 3.3. For integers k and n such that n− 2 > 2k > 1,

fn−2 f2k−2− ( fn+2k−2− fn−2 f2k)= fn−2k−2.

Proof. Let m→ 2k and n→ n− 2 in Lemma 3.1 and note that

fn−3 f2k−1 = fn+2k−2− fn−2 f2k . �

Corollary 3.4. For integers k and n such that n− 1 > 2k+ 2 > 1,

( fn+2k+1− fn f2k+1)− fn−2 f2k+1 = fn−2k−3.



COMBINATORIAL PROOFS OF FIBONACCI AND LUCAS PRODUCTS 83

Proof. Let m→ 2k+ 2 and n→ n− 1 in Lemma 3.1 and note that

fn−1 f2k = fn+2k+1− fn f2k+1. �

Corollary 3.5. For integers k and n such that n− 1 > 2k > 1,

( fn+2k−1− fn f2k−1)− fn−2 f2k−1 = fn−2k−1.

Proof. Let m→ 2k and n→ n− 1 in Lemma 3.1 and note that

fn−1 f2k−2 = fn+2k−1− fn f2k−1. �

Theorem 3.6. For integers k and n such that n− 2 > 2k > 1,

L2k Ln = fn+2k + fn+2k−2+ fn−2k + fn−2k−2.

Proof. By Lemma 1.3 we know that

L2k Ln = fn f2k + fn f2k−2+ fn−2 f2k + fn−2 f2k−2.

Rearranging terms we see that our theorem can be rewritten as

fn f2k−2− ( fn+2k− fn f2k)+ fn−2 f2k−2− ( fn+2k−2− fn−2 f2k)= fn−2k+ fn−2k−2.

Applying Corollaries 3.2 and 3.3 concludes our proof. �

Before moving on to the case Ln L2k+1, we need another lemma:

Lemma 3.7. For integers k and n such that n+ 2 > 2k− 1 > 0,

fn−2k−4+ fn−2k−1+ fn+2k+1+
2k−1∑
j=1

fn−2k+2 j

= fn+2k+1+ fn+2k−1− fn−2k−1− fn−2k−3.

Proof. We will first turn our eye to the summation on the left-hand side of our
identity. Applying Lemma 1.1 we can collapse this sum to two terms:

2k−1∑
j=1

fn−2k+2 j = ( f0+ f2+ · · ·+ fn+2k−2)− ( f0+ f2+ · · ·+ fn−2k)

= fn+2k−1− fn−2k+1.

It is left to show that

fn−2k−4+ fn−2k−1+ fn+2k+1+ fn+2k−1− fn−2k+1

= fn+2k+1+ fn+2k−1− fn−2k−1− fn−2k−3,

or, equivalently,

fn−2k−4+ fn−2k−3+ fn−2k−1 = fn−2k+1− fn−2k−1. (3-1)
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We do this by showing that both sides of our identity count the total number of
ways of tiling an (n−2k)-board.

On the left-hand side of (3-1) we have all the tilings of an (n−2k−4)-board,
an (n−2k−3)-board and an (n−2k−1)-board. To each of the tilings of length
n−2k−4 add two dominos at the end of the board. To those of length n−2k−3
add a square followed by a domino at the end of the board. To the tilings of length
n−2k−1 add a square at the end of the board. This constructs all tilings of length
n−2k.

On the right-hand side of (3-1) we have all the tilings of an (n−2k+1)-board
and an (n−2k−1)-board. If we append a domino to all of our tilings of length
n−2k−1, we see that our right-hand side can be interpreted as all tilings of length
n−2k+1 that do not end in a domino. Thus, we are counting all tilings of length
n−2k+1 that end in a square. Removing the square in each of the tilings leaves
us with all tilings of length n−2k. �

Theorem 3.8. For integers k and n such that n− 3 > 2k > 1,

L2k+1Ln = fn−2k−4+ fn−2k−1+ fn+2k+1+
2k−1∑
j=1

fn−2k+2 j .

Proof. Applying Lemmas 1.3 and 3.7, we can rewrite this equality as

fn f2k+1+ fn−2 f2k+1+ fn f2k−1+ fn−2 f2k−1

= fn+2k+1+ fn+2k−1− fn−2k−1− fn−2k−3.

Rearranging terms, we see that this is equivalent to

fn−2k−3+ fn−2k−1

= ( fn+2k+1− fn f2k+1)− fn−2 f2k+1+ ( fn+2k−1− fn f2k−1)− fn−2 f2k−1.

Applying Corollaries 3.4 and 3.5 concludes our proof. �

4. Answering an open problem and new Zeckendorf representations

In [Artz and Rowell 2009], the following theorem was given and an open problem
was posed to find a combinatorial proof. The following proof gives an answer to
the open question.

Theorem 4.1. For integers m and n such that n > m > 0,

( fm+1+ fm−1) fn = fn+m+1− (−1)m fn−m−1.

Proof. Let m→ 2k+ 1 in Lemma 3.1. Then

fn f2k−1− fn−1 f2k =− fn−2k−1.
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Applying Lemma 1.2, we see that this is equivalent to

fn f2k−1− ( fn+2k+1− fn f2k+1)=− fn−2k−1.

Rearranging terms we see that this proves the case m odd of our theorem. Similarly,
we use Corollary 3.2 to prove the case m even. �

Filipponi and Hart introduced Zeckendorf representations of mixed triple prod-
ucts including both Fibonacci and Lucas numbers, namely of the form f 2

m Ln and
L2

m fn . We extend their work and present the Zeckendorf representations of a mixed
products including three variables. In each of the following identities we assume
that our variables take on appropriate integer values.

The remainder of this section was motivated almost entirely by the even case of
Theorem 4.1. For sufficiently large values of n, we can ensure that our Zeckendorf
representations do not overlap.

Theorem 4.2. For n > 2 j > m and n > 2 j +m,

fm L2 j fn =


fn+2 j−m+ fn−2 j−m +

m/2∑
i=1

fn+2 j+m−4i−1+
m/2∑
i=1

fn−2 j+m−4i−1

for m even,
(m+1)/2∑

i=1
fn+2 j−m−3+4i +

(m+1)/2∑
i=1

fn−2 j−m−3+4i for m odd.

Proof. We begin with the first case, say m = 2k for some positive integer k. Ap-
plying Theorem 4.1 with m→ 2 j , followed by Theorem 1.6 with n→ n+2 j and
n→ n− 2 j , we get

f2k L2 j fn = f2k( fn+2 j + fn−2 j )

= fn+2 j−2k + fn−2 j−2k +
k−1∑
i=1

fn+2 j+2k−4i−1+
k−1∑
i=1

fn−2 j+2k−4i−1.

Next let m = 2k + 1 instead. Apply Theorem 4.1 with m → 2 j , followed by
Theorem 1.5 with n→ n+ 2 j and n→ n− 2 j to see that

f2k+1L2 j fn = f2k+1 fn+2 j + f2k+1 fn−2 j

=

k+1∑
i=1

fn+2 j−2k−4+4i +
k+1∑
i=1

fn−2 j−2k−4+4i . �

Noting that Lm = fm−2 + fm , it is easy to extend our previous theorem to the
following:

Theorem 4.3. For n > 2 j > m and n > 2 j +m

Lm L2 j fn =


fn−2 j−m + fn−2 j+m + fn+2 j−m + fn+2 j+m for m even,

m−1∑
i=1

fn+2 j−m−1+2i +
m∑

i=1
fn−2 j−m−1+2i for m odd.



86 DUNCAN MCGREGOR AND MICHAEL JASON ROWELL

Proof. Let m=2k for some positive integer k. Applying Theorem 4.1 with m→2 j ,
followed by Theorem 4.1 twice more with m→ n+ 2 j and m→ n− 2 j , we see
that

L2k L2 j fn = L2k( fn+2 j + fn−2 j )= fn−2 j−2k + fn−2 j+2k + fn+2 j−2k + fn+2 j+2k .

If instead m = 2k+1, rewriting L2k+1 as f2k+1+ f2k−1 and applying Theorem 4.2
twice yields our result. �

We next consider the Zeckendorf representation of a Lucas triple product.

Lemma 4.4. For k > 1,

2
k∑

i=1
fn+2i−2 = fn−2+ fn+2k +

k−2∑
i=1

fn+2i .

Proof. Noting 2 fm = fm−2 + fm+1 [Benjamin and Quinn 2003, Identity 16,
page 13], we see that

2
k∑

i=1
fn+2i−2 =

k∑
i=1

2 fn+2i−2 =
k∑

i=1
fn+2i−4+ fn+2i−1 =

k∑
i=1

fn−4+2i +
k∑

i=1
fn+2i−1

= fn−2+
k−1∑
i=1

fn+2i−2+
k−1∑
i=1

fn+2i−1+ fn+2k−1.

Finally, noting that fm = fm−1+ fm−2, we see that

2
k∑

i=1
fn+2i−2 = fn−2+

k−1∑
i=1

fn+2i−2+
k−1∑
i=1

fn+2i−1+ fn+2k−1

= fn−2+
k−1∑
i=1

fn+2i+ fn+2k−1 = fn−2+
k−2∑
i=1

fn+2i+ fn+2k−2+ fn+2k−1

= fn−2+
k−2∑
i=1

fn+2i+ fn+2k . �

Theorem 4.5. For n > 2 j > m and n > 2 j +m+ 2

Lm L2 j Ln =


fn−2 j−m + fn−2 j+m + fn+2 j−m + fn+2 j+m + fn−2 j−m−2

+ fn−2 j+m−2+ fn+2 j−m−2+ fn+2 j+m−2 for m even,

fn+2 j−m−3+ fn+2 j−m +
∑m

i=1 fn+2 j−m+2i+1

+ fn−2 j−m−3+ fn−2 j−m +
∑m

i=1 fn−2 j−m+2i+1 for m odd.

Proof. Let m = 2k for some positive integer k. Rewriting Ln as fn + fn+2 and
applying Theorem 4.3 twice yields the result for m even.
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Let m = 2k+1. Rewriting Ln as fn+ fn−2 and applying Theorem 4.3 twice we
see that

L2k+1L2 j Ln = fn+2 j−2k−2+ fn+2 j+2k

+2
2k∑

i=1
fn+2 j−2k−2+2i + fn−2 j−2k−2+ fn−2 j+2k + 2

2k∑
i=1

fn−2 j−2k−2+2i .

Applying Lemma 4.4 to each of our series with n→ n+ 2 j − 2k, k→ 2k and
n→ n− 2 j − 2k, k→ 2k, respectively, yields,

L2k+1L2 j Ln = 2 fn+2 j−2k−2+ fn+2 j+2k + fn+2 j+2k+2+
2k−1∑
i=1

fn+2 j−2k+2i

+2 fn−2 j−2k−2+ fn−2 j+2k + fn−2 j+2k+2+
2k−1∑
i=1

fn−2 j−2k+2i .

Finally, we will apply Theorem 1.6 with 2k→ 2 and with n→ n+2 j −2k−2
and n→ n− 2 j − 2k− 2, respectively. �

We present our last Zeckendorf representation of a triple product,

Theorem 4.6. For n > m > 2 j and n > m+ 2 j ,

L2 j fm fn=



fn−m+2 j−1+ fn+m−2 j +
j∑

i=1
fn−m−2 j−3+4i +

j∑
i=1

fn+m−2 j−1+4i

+

m/2− j∑
i=1

fn−m+2 j+4i for m odd,

fn−m−2 j + fn+m−2 j +
j∑

i=1
fn−m−2 j−1+4i +

j∑
i=1

fn+m−2 j−1+4i

+

m/2− j∑
i=1

fn−m+2 j−2+4i for m even.

Proof. Let m = 2k for some positive integer k. Applying Theorem 1.6 we see that

L2 j f2k fn = L2 j
(

fn−2k +
k∑

i=1
fn−2k−1+4i

)
.

Now distribute L2 j and apply Theorem 4.1 to each term. Rearranging terms we
see that

L2 j f2k fn = fn−2k−2 j + fn−2k+2 j +
k∑

i=1
( fn−2k−2 j−1+4i + fn−2k+2 j−1+4i )

= fn−2k−2 j + fn−2k+2 j +
j∑

i=1
fn−2k−2 j−1+4i + 2

k− j∑
i=1

fn−2k+2 j−1+4i

+

j∑
i=1

fn+2k−2 j−1+4i .

We can now apply Theorem 1.6, with 2k→ 2. Recalling that fn = fn−1+ fn−2,
we obtain
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L2 j f2k fn = fn−2k−2 j + fn−2k+2 j +
j∑

i=1
fn−2k−2 j−1+4i +

j∑
i=1

fn+2k−2 j−1+4i

+

k− j∑
i=1

( fn−2k+2 j+4i + fn−2k+2 j−3+4i )

= fn−2k−2 j + fn−2k+2 j +
j∑

i=1
fn−2k−2 j−1+4i +

j∑
i=1

fn+2k−2 j−1+4i

+ fn−2k+2 j+1+ fn+2k−2 j +
k− j−1∑

i=1
( fn−2k+2 j+4i + fn−2k+2 j+1+4i )

= fn−2k−2 j + fn+2k−2 j +
j∑

i=1
fn−2k−2 j+4i−1+

j∑
i=1

fn+2k−2 j+4i−1

+

k− j∑
i=1

fn−2k+2 j+4i−2.

We turn to the case m odd, m = 2k+ 1. Applying Theorem 1.5 we can see that

L2 j f2k+1 fn = L2 j

( k+1∑
i=1

fn−2k−4+4i

)
.

Now distribute L2 j and apply Theorem 4.1 to each term. Rewriting terms reveals

L2 j f2k+1 fn =
j∑

i=1
fn−2k−2 j−4+4i +

j∑
i=1

fn+2k−2 j+4i + 2
k− j+1∑

i=1
fn−2k+2 j−4+4i .

We now apply Theorem 1.6 with 2k→ 2, recalling the recursion relation of the
Fibonacci sequence, which shows

L2 j f2k+1 fn =
j∑

i=1
fn−2k−2 j−4+4i +

j∑
i=1

fn+2k−2 j+4i

+

k− j+1∑
i=1

fn−2k+2 j−3+4i + fn−2k+2 j−6+4i

= fn−2k+2 j−2+ fn+2k−2 j+1+
j∑

i=1
fn−2k−2 j−4+4i +

j∑
i=1

fn+2k−2 j+4i

+

k− j∑
i=1

fn−2k+2 j−1+4i . �

5. Conclusions and future work

Having proved the Zeckendorf representation of 2 fn fm , we can see that we can
prove individual cases of k fn fm using similar methods. Further, Lemma 3.1 seems
to hold the key to many interesting Zeckendorf representations involving Lucas
numbers. We find it especially intriguing that it led to mixed products of three
variables involving even Lucas numbers. We did, however, have little luck finding
closed form Zeckendorf representation of f p Lm fn where m is odd.
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The Zeckendorf representations in Section 4 are proved using many combina-
torial mappings of our boards and bracelets to produce their Zeckendorf represen-
tations. We believe much insight into the problem could be found by proving each
with a single mapping.
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A generalization of even and odd functions
Micki Balaich and Matthew Ondrus

(Communicated by Vadim Ponomarenko)

We generalize the concepts of even and odd functions in the setting of complex-
valued functions of a complex variable. If n > 1 is a fixed integer and r is
an integer with 0 ≤ r < n, we define what it means for a function to have
type r mod n. When n = 2, this reduces to the notions of even (r = 0) and
odd (r = 1) functions respectively. We show that every function can be de-
composed in a unique way as the sum of functions of types-0 through n − 1.
When the given function is differentiable, this decomposition is compatible with
the differentiation operator in a natural way. We also show that under certain
conditions, the type r component of a given function may be regarded as a real-
valued function of a real variable. Although this decomposition satisfies several
analytic properties, the decomposition itself is largely algebraic, and we show
that it can be explained in terms of representation theory.

1. Introduction

1.1. Background. The notions of even and odd functions are well-known to most
students of high school and college algebra. A function f : R → R is even if
f (−x) = f (x) for all x ∈ R and is odd if f (−x) = − f (x) for all x ∈ R. These
concepts are important in many areas of analysis, and there are numerous useful
examples of even or odd functions. For example, the function f (x) = cos x is
even, as is any polynomial in x whose nonzero coefficients all correspond to even
powers of x . Although there are numerous functions that are neither even nor odd,
every function f :R→R decomposes in a unique way as f = fe+ fo, where fe is
even and fo is odd. For instance, the equation ex

= cosh x+ sinh x can be thought
of as the decomposition of the exponential function ex into its even and odd parts.

To motivate the following work, we revisit the definitions of even and odd func-
tions and express the defining equations slightly differently. Let f : R→ R be a
function, and write ε =−1 ∈ R. Then f is even if

f (εx)= ε0 f (x) for all x ∈ R, (1)

MSC2010: primary 30A99; secondary 20C15.
Keywords: complex function, group, representation.
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and f is odd if

f (εx)= ε1 f (x) for all x ∈ R. (2)

In other words, a function is even (or odd) if it satisfies a certain functional equation
involving a square root of unity. Note that this definition also makes sense if we
replace the field R with the field C of complex numbers.

1.2. Summary of results. In the following, we let f : C→ C be a function and
fix an integer n > 1. If r ∈ Z with 0 ≤ r < n, we say that the function f is of
type r mod n if f satisfies a certain functional equation (depending upon r ) for
every n-th root of unity. In the special case that n = 2, this definition reduces to
the usual notions of even and odd functions. In Theorem 5, we show (for arbitrary
n) that every function f : C→ C decomposes as f = f0 + · · · + fn−1, where fr

is of type r mod n. Moreover, we show in Theorem 6 that this decomposition is
unique. The set of all functions f : C→ C may be regarded as a vector space,
and the set of all functions of type r mod n may be regarded as a subspace. Thus
we also explain how the decomposition f = f0+· · ·+ fn−1 may be thought of in
terms of projections from a vector space onto various subspaces.

We show in Section 3 (Corollary 15) that if a given complex function f :C→C

is real (i.e., f (R) ⊆ R), then under certain assumptions, the functions fr (in the
decomposition f = f0+· · ·+ fn−1) are also real. This explains, for example, why
the functions cosh :C→C and sinh :C→C produce real outputs when the inputs
are restricted to real numbers. In the classical setting of even and odd functions,
it is well-known that the derivative of an even (resp. odd) function is odd (resp.
even), and in Section 4 we prove several analogous results that apply in our setting.
In the case of the exponential function ez , these analytic results lead to solutions to
a familiar real differential equation, and we address this connection between our
framework and differential equations in Example 20.

In Section 5, we show that some of these results may be explained by working
in the algebraic setting of representation theory. We replace the set of n-th roots
of unity with a finite group G, and we replace the field of complex numbers with a
C[G]-module, where C[G] denotes the complex group of G. Under certain condi-
tions, a function f : V →W decomposes as a sum of functions that satisfy various
functional equations analogous to those of Section 2. These conditions are easily
satisfied in the setting of a function f : C→ C.

2. Definitions and basic results

Fix an integer n > 1. A complex number ε is an n-th root of unity if εn
= 1. We

now generalize the definitions in (1) and (2) in the setting where f : C→ C is a
complex-valued function.
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Definition 1. Suppose f :C→C is a function. Fix an integer n> 1 and an integer
r with 0≤ r < n. We say that f is of type r mod n if

f (εz)= εr f (z) (3)

for every z ∈ C and every n-th root of unity ε ∈ C.

If there is no danger of ambiguity regarding n, we may shorten the notation
and say that a function f : C → C has type r . If, for example n = 3, then a
function f : C→ C may have type 0, type 1, or type 2. The third roots of unity
are ε = 1, e2π i/3, or e4π i/3. Thus a type-0 function satisfies the equations

f (1z)= 1 f (z),

f (e2π i/3z)= f (z),

f (e4π i/3z)= f (z),

a type-1 function satisfies

f (1z)= 1 f (z),

f (e2π i/3z)= e2π i/3 f (z),

f (e4π i/3z)= e4π i/3 f (z),

and a type-2 function satisfies

f (1z)= 1 f (z),

f (e2π i/3z)= e4π i/3 f (z),

f (e4π i/3z)= e2π i/3 f (z).

If ε ∈ C is an n-th root of unity and εk
6= 1 for all 1≤ k < n, we say that ε is a

primitive n-th root of unity. For example, in case n = 3 above, the primitive third
roots of unity are e2π i/3 and e4π i/3, whereas 1 is not a primitive third root of unity.
The next lemma shows that we do not need to check that a given function satisfies
(3) for every n-th root of unity. Rather, it is enough to know that (3) holds for at
least one primitive n-th root ε.

Lemma 2. Suppose f : C→ C is a function. Fix an integer n > 1 and an integer
0 ≤ r < n. Let ε ∈ C be a primitive n-th root of unity. If f has the property that
f (εz)= εr f (z) for all z ∈C, then f (ωz)= ωr f (z) for every z ∈C and every n-th
root of unity ω ∈ C.

Proof. Note that ω= εk for some integer 0≤ k<n. It follows that f (ωz)= f (εkz),
and we see that f (εkz) = εr f (εk−1z) = εrεr f (εk−2z) = · · · = (εr )k−1 f (ε1z) =
(εr )k f (z). Hence f (ωz)= f (εkz)= (εr )k f (z)= (εk)r f (z)= ωr f (z). �
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The following construction gives rise to a function of type r mod n defined
in terms of some given function f : C→ C. We shall see in Theorem 5 that this
construction leads to a way to decompose f as a sum of functions of types 0, 1, . . . ,
and n− 1.

Definition 3. Suppose f :C→C is a function. Given an integer n> 1, a primitive
n-th root of unity ε ∈ C, and r ∈ Z with 0≤ r < n, define f(r,ε) : C→ C by

f(r,ε)(z)=
1
n

n−1∑
k=0

ε−kr f (εkz). (4)

Theorem 4. Suppose f : C→ C is a function. Given an integer n > 1, a primitive
n-th root of unity ε ∈C, and r ∈Z with 0≤ r < n, define f(r,ε)(z) as in Definition 3.
Then f(r,ε) is of type r mod n.

Proof. By Lemma 2, it suffices to show that f(r,ε)(εz)= εr f(r,ε)(z). Note that

f(r,ε)(εz)=
1
n

n−1∑
k=0

ε−kr f (εk+1z)=
1
n

n∑
l=1

ε−r(l−1) f (εl z), where l = k+ 1.

Also note that ε−r(n−1) f (εnz)= ε−r(0−1) f (ε0z), so

f(r,ε)(εz)=
1
n

n−1∑
l=0

ε−r(l−1) f (εl z)=
εr

n

n−1∑
l=0

ε−rl f (εl z)= εr f(r,ε)(z). �

Theorem 5. Suppose f : C→ C is a function. Fix an integer n > 1, and let ε ∈ C

be a primitive n-th root of unity. Then f =
∑n−1

r=0 f(r,ε), where f(r,ε) is given by
Definition 3.

Proof. Note that

n−1∑
r=0

f(r,ε)(z)=
n−1∑
r=0

1
n

n−1∑
k=0

ε−kr f (εkz)=
1
n

n−1∑
k=0

( n−1∑
r=0

ε−kr
)

f (εkz).

Since
n−1∑
r=0

ε−kr
=

n−1∑
r=0

(ε−k)r =


1−(ε−k)n

1−ε−k = 0 if 0< k < n,

n if k = 0,

it follows that

n−1∑
r=0

f(r,ε)(z)=
1
n

n−1∑
k=0

( n−1∑
r=0

ε−kr
)

f (εkz)=
n
n

f (ε0z)= f (z). �
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Although Theorem 5 asserts that every function can be written as a sum of
functions of types 0 through n−1, it does not preclude the possibility that this can
be done in several ways. Theorem 6 addresses this issue.

Theorem 6. Suppose f : C→ C is a function, and fix an integer n > 1. If f =
f0 + · · · + fn−1 and f = g0 + · · · + gn−1 where fr and gr have type r mod n for
0≤ r < n, then fr = gr for all r .

Proof. Suppose that f = f0 + · · · + fn−1 and f = g0 + · · · + gn−1 where fr and
gr have type r . Then h0+ · · ·+ hn−1 = 0 where hr = fr − gr has type r for all r .
Thus it is sufficient to prove that if h0+· · ·+ hn−1 = 0, where hr has type r , then
hr = 0 for all r .

Suppose the result is false. There exists a strictly increasing sequence r1, . . . , rk ,
with ri ∈ {0, 1, . . . , n− 1} for all i , along with functions qri (i = 1, . . . , k) so that
qri is a nonzero function of type ri and

qr1 + · · ·+ qrk = 0. (5)

Furthermore, we may suppose we have chosen such a counterexample with k min-
imal.

Let ε be a primitive n-th root of unity. Evaluating both sides of (5) at εz implies
that 0= (qr1 + · · ·+ qrk )(εz)= εr1qr1(z)+ · · ·+ ε

rk qrk (z), while multiplying both
sides of (5) by εr1 yields εr1qr1 + ε

r1qr2 +· · ·+ ε
r1qrk = 0. After subtracting these

two equations, we see that

(εr2 − εr1)qr2 + · · ·+ (ε
rk − εr1)qrk = 0.

By assumption qri 6= 0 and εri − εr1 6= 0 since ε is a primitive n-th root of unity
and ri 6= r1. Hence r2 · · · rk is a strictly increasing sequence with r2, . . . , rk ∈

{0, 1, . . . , n − 1} such that (εri − εr1)qri (2 ≤ i ≤ n − 1) is a nonzero function of
type ri with (εr2 − εr1)qr2 + · · · + (ε

rk − εr1)qrk = 0, contradicting the fact that k
was minimal. It follows that qri = 0 for all i . �

Corollary 7. Suppose f : C→ C is a function. Fix an integer n > 1, and let r ∈ Z

with 0≤ r < n. Let ε, ω ∈ C be primitive n-th roots of unity. Then f(r,ε) = f(r,ω).

Proof. By Theorem 4 and Lemma 2 it follows that f(r,ε)(εz) = εr f(r,ε)(z) and
f(r,ω)(εz)=εr f(r,ω)(z) for all z∈C. From Theorem 5 we know that f =

∑n−1
r=0 f(r,ε)

and f =
∑n−1

r=0 f(r,ω). Theorem 6 implies that f(r,ε) = f(r,ω) for all r . �

Remark 8. We have shown that f(r,ε)= f(r,ω) whenever ε, ω∈C are primitive n-th
roots of unity. Thus it is unambiguous to define the notation fr by the equation

fr = f(r,ε), (6)

where ε is any primitive n-th root of unity and f(r,ε) is given by Definition 3.
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An obvious corollary of Theorem 6 is that there is a unique way to write the zero
function as a sum of functions of various types. This can essentially be regarded
as the statement that functions of differing types (mod n) are linearly independent,
and thus it makes sense to phrase these results in terms of linear algebra.

Definition 9. Let F be the vector space of all functions f :C→C. Fix an integer
n > 1, and let r ∈ Z with 0≤ r < n. Define Fr ⊆ F by

Fr = { f ∈ F | f has type r mod n}.

It is straightforward to show that if f, g ∈ Fr and c ∈C, then c f + g ∈ Fr . Thus
the subset Fr is in fact a vector subspace of F . Note that Theorem 5 and Theorem 6
may be summarized by noting that F decomposes as

F = F0⊕ · · ·⊕ Fn−1.

Definition 10. Let f ∈ F . Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n.
Define πr ( f ) to be the unique type-r summand that corresponds to writing f as a
sum of functions of types 0 through n− 1.

In light of the decomposition F= F0⊕· · ·⊕Fn−1, the map πr is well-defined and
may be regarded as the projection from F onto the subspace Fr . From Theorem 5
and Theorem 6, it follows that πr ( f )= fr , where fr is defined as in (6). Although
this equation could be used as a definition for πr : F→ Fr , Definition 10 has the
advantage of that the next results follow almost immediately from this definition.

Lemma 11. Let f ∈ F. Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n. Then
( fr )r = fr .

Proof. This is equivalent to the assertion that πr ◦πr = πr . Since πr ( f ) is of type
r , Definition 10 implies that πr (πr ( f ))= πr ( f ). �

Lemma 12. Let f ∈ F. Fix an integer n > 1, and let r, s ∈ Z with 0 ≤ r, s < n.
Then ( fr )s = 0 if r 6= s.

Proof. If fr ∈ Fr is decomposed according to the direct sum F = F0⊕· · ·⊕ Fn−1,
then the r -th component of fr is fr , and every other component is 0, so it follows
that ( fr )s = 0 when r 6= s. �

3. Relationship to real-valued functions

Several important complex-valued functions f : C → C have the property that
f (z) = f (z) for all z ∈ C. For example, the functions ez , sin z, cos z, sinh z, and
cosh z have this property, as do all polynomial functions with real coefficients. In
this section, we show that this property carries over to the type-r component of f .
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Lemma 13. Suppose f : C→ C is a function with the property that f (z) = f (z)
for all z ∈ C. Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n. Define πr as in
Definition 10. Then πr ( f )(z)= πr ( f )(z) for all z ∈ C.

Proof. Let ε be a primitive n-th root of unity. Since z1+ z2 = z1+ z2 and z1 · z2 =

z1 · z2 for all z1, z2 ∈ C, it follows that

πr ( f )(z)=
1
n

n−1∑
k=0

ε−kr f (εkz)=
1
n

n−1∑
k=0

ε−kr f (εkz)=
1
n

n−1∑
k=0

ε−kr f (εkz).

Observe that ε = ε−1 because |ε| = 1, and thus

πr ( f )(z)=
1
n

n−1∑
k=0

ε−kr f (εkz)=
1
n

n−1∑
k=0

ω−kr f (ωkz),

where ω = ε. Since ω = ε−1, ω is also a primitive n-th root of unity, whence
πr ( f )(z)= f(r,ω)(z)= πr ( f )(z) for all z ∈ C by Remark 8. �

Recall that a complex function f :C→C is said to be real if f (x)∈R whenever
x ∈ R. The next lemma provides a criterion to show that a function is real, and a
proof can be found in [Churchill and Brown 2008, page 87].

Lemma 14. Suppose f : C→ C is a function. If f has the property that f (z) =
f (z) for all z ∈ C, then f is real.

The following result is now obvious in light of Lemma 14 and Lemma 13.

Corollary 15. Suppose f :C→C is a function with the property that f (z)= f (z)
for all z ∈ C. Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n. If z ∈ R, then
fr (z) ∈ R.

Since cosh z and sinh z may be regarded as π0(ez) and π1(ez) (with n = 2),
we recover the obvious facts that cosh x, sinh x ∈ R if x ∈ R. More interestingly
(n = 3), we see for example that if ε = e2π i/3

= −
1
2 +

√
3

2 i and r ∈ {0, 1, 2}, then
1
3

(
ex
+ ε−r eεx

+ ε−2r eε
2x
)
∈ R for all x ∈ R.

It is not immediately obvious whether the condition that f : C→ C is real is
sufficient to guarantee that fr is real whenever 0≤ r < n. Define f : C→ C by

f (z)=
{

0 if z ∈ R,

i if z ∈ C \R.

Then, if n = 3, it is straightforward to compute that

f0(1)=
2i
3

and f1(1)= f2(1)=
i
3
(
e2π i/3

+ e4π i/3)
=−

i
3
,
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which implies that fr (1) 6∈ R for r = 0, 1, 2. In particular, this shows that f must
satisfy a stronger condition (than the condition that f is real) in order to guarantee
that fr is real for 0≤ r < n.

4. Relationship to the derivative

Recall that F denotes the space of all functions f : C→ C.

Definition 16. Define the vector space F by

F= { f ∈ F | f is holomorphic}.

Definition 17. Let f ∈ F . Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n.
Define the subspace Fr by

Fr = F∩ Fr .

If f : C→ C is a holomorphic function, the following theorem establishes a
relationship between the projection maps πr and the differentiation operator.

Theorem 18. Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n. Define πr and
πr−1 as in Definition 10, and let d

dz : F→ F denote the differentiation operator.
Then, for f ∈ F, we have(

d
dz
◦πr

)
( f )=

(
πr−1 ◦

d
dz

)
( f ),

where we read the integer r − 1 modulo n.

Proof. Let f ∈F and fix a primitive n-th root of unity ε ∈C. Note that by definition(
πr−1 ◦

d
dz

)
( f )(z)= πr−1( f ′)(z)=

n−1∑
k=0

ε−k(r−1) f ′(εkz).

From the chain rule, the derivative of the function z 7→ f (εkz) is the function
z 7→ εk f ′(εkz), so we have(

d
dz
◦πr

)
( f )(z)=

n−1∑
k=0

εkε−kr f ′(εkz)=
n−1∑
k=0

ε−k(r−1) f ′(εkz). �

The following corollary generalizes the fact that the derivative of an odd (resp.
even) function is even (resp. odd). Although it can be demonstrated directly from
the definition [Ahlfors 1979, page 24] of the complex derivative, we prove the
result using Theorem 18.

Corollary 19. Let f ∈ F. Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n. If
f ∈ Fr , then f ′ ∈ Fr−1, where we read the integer r − 1 modulo n.

Proof. By Theorem 18, d
dz
( f )= d

dz
(πr ( f ))= πr−1

( d
dz
( f )

)
∈ Fr−1. �
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Example 20. Fix an integer n > 1, and let f (z) = ez . We saw in Corollary 15
that for 0≤ k < n, fk(x) ∈ R whenever x ∈ R. Moreover Theorem 18 implies that
d fr/dz = πr−1(d f/dz)= fr−1. Thus if we let fk |R denote the restriction of fk to
the real numbers, it follows that

d
dx
( fr |R)= fr−1|R,

where d/dx denotes the real differentiation operator and the subscripts r and r−1
are read modulo n. Thus the function fr |R is a solution to the (real) differential
equation dn y/dxn

= y. If, for example, n=3, it is straightforward to check that the
functions f0|R, f1|R, and f2|R form a basis for the solution space of dn y/dxn

= y.

5. Relationship to representation theory

The previous setting can be generalized considerably. For a fixed integer n > 1,
the set G of all n-th roots of unity in C forms a multiplicative group. This group
acts on the space C as follows. For g ∈ G ⊆ C and z ∈ C, the action is given by
g.z= gz. (Here, we use the dot notation for group actions, as in [Fulton and Harris
1991].) Thus the domain and codomain of a function f : C→ C are G-modules.
Because of this, it is natural to conjecture that the above results can explained
module-theoretically. Indeed, many of the previous concepts may be regarded as
special cases of module-theoretic results. For example, Definition 21 is a module-
theoretic analogue of Definition 3, and Corollary 28 yields Theorem 5 as a special
case.

If G is a finite group, we define the group algebra C[G] as in [Isaacs 1976]. We
define the notions of a module, a simple module, and a module homomorphism as
in [Isaacs 1993] or any other standard text. Note that the function f : V → W in
Definition 21 need not be linear.

Definition 21. Let G be a finite group, and V and W be C[G]-modules. Suppose
f : V → W is a function and φ : G → G is a homomorphism. Then define
fφ : V →W by

fφ(v)=
1
|G|

∑
h∈G

φ(h−1). f (h.v).

Note that if G is the group of n-th roots of unity in C and φ :G→G is given by
φ(g)= gr , then the function fφ is exactly the function f(r,ε) given in Definition 3.
The following theorem states that not only does fφ generalize f(r,ε), but it behaves
in a manner that generalizes Theorem 4.

Theorem 22. Let G be a finite group and V and W be C[G]-modules. Suppose
f : V → W is a function and φ : G → G is a homomorphism. Then fφ(g.v) =
φ(g). fφ(v).
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Proof. From the definition of fφ , we have, with u = hg,

fφ(g.v)=
1
|G|

∑
h∈G

φ(h−1). f (hg.v)=
1
|G|

∑
u∈G

φ(gu−1). f (u.v)

= φ(g)
1
|G|

∑
u∈G

φ(u−1). f (u.v)= φ(g). fφ(v). �

In the case where G is the n-th roots of unity in C and φ(g) = gr then the
properties of the homomorphism fφ are identical to those of the function f(r,ε). The
following Theorem shows that the property of f(r,ε) shown in Lemma 11 not only
holds under these conditions, but also in the more abstract setting of Theorem 22.

Theorem 23. Let G be a finite group, and V and W be C[G]-modules. Suppose
f : V →W is a function and φ : G→ G is a homomorphism. Then ( fφ)φ = fφ .

Proof. By definition fφ(v)= 1
|G|

∑
h∈G φ(h

−1). f (h.v). It follows that

(( fφ)φ)(v)=
1
|G|

∑
h∈G

φ(h−1). fφ(h.v)=
1
|G|

∑
h∈G

φ(h−1)φ(h). fφ(v)

=
1
|G|

∑
h∈G

φ(h−1h). fφ(v)=
1
|G|

(n fφ(v))= fφ(v). �

When G is cyclic of order n, every homomorphism from G to G is determined by
the image of some generator of G. For 0≤ r < n, define φr :G→G by φr (x)= xr

for all x ∈ G. Then the set of homomorphisms G → G is {φr | 0 ≤ r < n}. As
Corollary 24 shows, this new setting allows us to generalize the property of f(r,ε)
from Theorem 4 in slightly more specific terms than those of Theorem 22.

Corollary 24. Let G be a finite cyclic group and V and W be C[G]-modules.
Suppose f : V →W is a function, and let φr :G→G be the homomorphism given
by φr (x)= xr . Then fφr (x .v)= xr . fφr (v) for all v ∈ V and x ∈ G.

If G is cyclic and V and W are C[G]-modules with W simple, then it is possible
to generalize Theorem 5. To demonstrate this, we rely on the following well-known
fact, whose proof can be found in [Isaacs 1976].

Lemma 25 (Schur’s Lemma). Let G be a finite group, and suppose V and W are
simple C[G]-modules and φ : V →W is a module homomorphism.

(1) Either φ is an isomorphism or φ = 0.

(2) If V =W then φ :W →W is a scalar multiple of the identity function.

If x ∈G is central in G, then the function fx :W→W defined by fx(w)= x .w is
a C[G]-module homomorphism. Thus Schur’s Lemma implies that every central
element of G acts by a scalar on any simple module W . With G cyclic, every
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element in G is central. In particular, the generator g ∈ G is central, so there must
be some scalar ξ by which g acts on the elements of simple modules. Furthermore,
G is finite so |G| = n for some integer n. The next lemma shows that this integer
allows us to be somewhat precise about the value of ξ ∈ C.

Lemma 26. Let G be a finite cyclic group with generator g and |G| = n. If W is a
simple C[G]-module, then g acts on W as multiplication by an n-th root of unity.

Proof. The group G is abelian, so by Schur’s Lemma, there exists ξ ∈ C so that
g.w= ξw for all w ∈W . This implies that an arbitrary element gk

∈G acts by the
scalar ξ k . Since |G| = n, gn is the identity element of G, and it follows that for
w ∈W , w = gn.w = ξ nw, which forces ξ n

= 1. �

In light of Theorem 23 and Corollary 24, it is reasonable to conjecture that there
is some module-theoretic analogue of Theorem 5. The following theorem estab-
lishes a formula for the sum of the functions fφ0 , fφ1 , . . . , fφn−1 . As a consequence
of working in this more general setting, the resulting formula is more complicated
than the formula in Theorem 5.

Theorem 27. Let G be a finite cyclic group with generator g and |G| = n. Let V ,
W be C[G]-modules with W simple, and let f : V →W . If g acts on all w ∈W by
the scalar ξ having multiplicative order d, then for all v ∈ V ,

n−1∑
r=0

fφr (v)=
∑

0≤k<n
d|k

f (gk .v).

Proof. For v ∈ V ,
n−1∑
r=0

fφr (v)=
1
n

n−1∑
r=0

n−1∑
k=0

(g−k)r . f (gk .v)=
1
n

n−1∑
k=0

( n−1∑
r=0

(ξ−k)r
)

f (gk .v).

Observe that
n−1∑
r=0

(ξ−k)r =


1− (ξ−k)n

1− ξ−k = 0 if d - k

n if d | k.
Hence

1
n

n−1∑
k=0

( n−1∑
r=0

(ξ−k)r
)

f (gk .v)=
1
n

∑
0≤k<n

d|k

n f (gk .v)=
∑

0≤k<n
d|k

f (gk .v),

and the desired result follows. �

Lemma 26 does not make it clear which n-th root of unity ξ is. If ξ happens
to be primitive, then |ξ | = |G| = n. Applying this reasoning to Theorem 27 leads
directly to the following module-theoretic generalization of Theorem 5.
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Corollary 28. Let G be a finite cyclic group with generator g and |G| = n. Let V
and W be C[G]-modules with W simple, and f : V → W . Let ξ ∈ C be the n-th
root of unity with the property that g.w= ξw for all w ∈W . If ξ is a primitive n-th
root of unity, then f =

∑n−1
r=0 fφr .

Proof. Theorem 27 implies that
∑n−1

r=0 fφr (v)=
∑

k∈1 f (gk .v), where

1= {0≤ k < n | n divides k}.

But 1= {0}, so it follows that
∑n−1

r=0 fφr (v)= f (v). �

This framework obviously applies in the setting of a function f :C→C, and thus
many of the results of Section 2 may be regarded as consequences of representation
theory. With the current perspective, it is, for example, possible to decompose
functions of the form f : V → C, where V is any module for the group G of
complex n-th roots of unity. For instance, if V is the set of all m×m matrices with
complex entries, then G acts on V by entry-wise multiplication. Alternatively, if
V is taken to be the group algebra C[G], then G acts on V via the regular action,
and this setting applies to functions f : C[G] → C.
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