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In recent years, the use of computer aided diagnosis (CAD) has achieved accep-
tance in mammography and other areas. To facilitate automated detection of brain
abnormalities, we propose a novel method for quickly training neural networks
to classify brain images. Our method outperforms traditional neural network
training methods by achieving a better balance between classification accuracy
and training time.

1. Introduction

A variety of techniques have been implemented for lesion detection, including
image filtering methods [Kotropoulos and Pitas 1992], support vector machines
[Bilello et al. 2004], Markov random fields [Van Leemput et al. 2001], and a variety
of artificial neural networks (ANNs) [Raff and Newman 1992; Wu et al. 1993;
Yu and Guan 2000]. Nevertheless, automated pathology or lesion detection in
most medical images has become somewhat dormant in recent years. Even in
mammography, where computer-aided detection (CAD) has the greatest acceptance,
the sensitivity (percentage of abnormal pathologies identified as “abnormal”) is
high, but the specificity (percentage of normal images where no abnormality is
found) is poor. There are further difficulties for practical or commercial acceptance
of CAD outside of mammography. These are often a combination of algorithmic
and technical limitations. For example, when ANNs are used, backpropagation is
frequently the method of choice for training. Backpropagation employs a multilayer
feed forward architecture where error minimization is achieved via some form of
gradient descent. Backpropagation (and its variants) can be slow to train, but a
bigger problem for medical image diagnosis is the fact that the algorithm is likely
to settle on an unsatisfactory local minimum [Gori and Tesi 1992; Sontag and
Sussmann 1989].
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Though the problem is difficult, correct classification of pathology and lesions
in medical images could offer great benefits in reducing diagnostic errors and labor
costs. It is estimated that 10-30% of breast cancers that are retrospectively visible
are missed by radiologists upon initial reading [Brake et al. 1998], and 17-21%
of polyps in computed tomography (CT) colonography are given false negative
diagnoses due to human perception errors [Fletcher et al. 2000]. Missed tumors in
lung CTs are disturbingly common [White et al. 1996], and brain tumors especially
are frequently misdiagnosed [Wang et al. 2003]. Recent studies have found that
physicians’ clinical diagnoses are proven wrong 10-15% of the time by autopsy
findings [Shojania et al. 2003; Roulson et al. 2005]. In an effort to reduce the number
of misdiagnoses, researchers in the radiological sciences have been pursuing CAD
since the early ascendancy of the computer [Schwartz 1970; Raff and Newman
1992; Chan et al. 1987]. Nevertheless, CAD has had limited impact in the field of
human radiology, aside from some impact in mammography, where commercial
systems have been available since 1998 [Vyborny et al. 2000].

In this effort we pursue a novel method to minimize the classification error for a
feed-forward ANN in the medical image diagnosis problem using a scatter search
meta-heuristic. The method, which is trained on a small subset of images and then
validated on a larger set of images, greatly outperforms traditional classification
methods.

2. Background

Scatter search [Glover 1999; Glover et al. 2000] is a population-based meta-heuristic
that uses a local search algorithm to find an optimum. In this application, the
population to be optimized is a set of random weights. Diverse individuals from the
ANN population are then combined to form a “best” set according to some metric.
This best set is then incorporated into the next population to be evaluated. The
implementation of scatter search discussed here permits comparative evaluation of
various feature vectors extracted from medical images.

For ease of reference, we define the terms to be used in this paper. An artificial
neural network (ANN) is a mathematical model that simulates the structure of
biological neural networks. It consists of interconnected nodes, each of which is
a functional that acts on a linear combination of its inputs. Supervised ANNs are
adaptive models that adjust the weights on the network arcs during a training phase
in order to match each individual input to its target.

For example, a person might wish to construct a neural network to determine
whether individuals should be diagnosed with colon cancer after their first screening.
One might train the model using data (age, weight, height, . . . , race, etc.) collected
for 100 patients, as well as an indicator of whether or not they were diagnosed with



SCATTER-SEARCH APPROACH TO BRAIN LESION RECOGNITION 205

Output

Age

Weight

Height

Race

Layer 3

Layer 2

Layer 1

w1,1

w1,2

w1,n

f1

f2

fn

v1

v2

vn

y1

y2

y3

ym

sign
(∑n

i vi ∗ fi
)

Figure 1. An example of an ANN.

colon cancer. To train the network, the weights on the arcs need to be adjusted
until an acceptable percentage of the training set has the correct output (perhaps a
network output of +1 for people who are diagnosed with cancer and −1 for those
who are not). An example of such a three-layer network with m inputs and n hidden
nodes is shown in Figure 1.

Our method employs a population of feed forward neural network architectures.
According to the literature, three-layer networks are suitable for most problems,
but the number of hidden nodes is frequently chosen by trial and error [Fausett
1994; Hassoun 1995, pp. 318–322]. It is important to note that our population
consists of networks with identical three-layer architectures. Our process finds the
network in the population that has the best weights and then uses these weights in an
ANN to classify brain images. Though each network in our population has a fixed
architecture with the same number of nodes, the method described in this paper
permits easy and fast comparison of different hidden node architectures. Training a
feed-forward ANN usually involves thousands of iterations (also known as epochs)
to update the weights between layers in an effort to minimize the mean squared
error. For a good treatment of neural networks, see [Fausett 1994; Hassoun 1995].

For a fixed architecture, training a neural network is a task in optimization.
If a network has n different weights, training involves finding n weights that
minimize the total error between the network output and the target values. Since
backpropagation is a gradient descent method, its performance depends on initial
network weights; if weights aren’t well-initialized, backpropagation might perform
poorly. Therefore, using a heuristic to find weights might yield a better neural
network than backpropagation, in less time. Various heuristics have been proposed
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to solve the problem of training neural networks [Kelly et al. 1996; Ye et al. 2007].
A heuristic such as scatter search, which explores many basins of attraction, could
drastically outperform backpropagation.

Since this ANN is a supervised learning scheme, the a priori target values are
available, and the algorithm seeks to minimize the error between the targets and the
outputs for the training set. When the training returns an error below a particular
threshold, the training is halted and a validation set is used for testing. (The threshold
for the error term is problem and user-dependent.)

3. Implementation

3.1. General scatter search implementation. Scatter search is a population-based
meta-heuristic, where a collection of preferred solutions are maintained and re-
combined in order to generate new solutions. If the new solutions are preferred
enough, they enter the population for the next iteration. For any given problem,
the scatter search population has two subsets, good solutions and diverse solutions.
The general framework for the algorithm is this:

(1) Generate a starting population.

(2) Perform a local search on every member of the population.

(3) Form a reference set of good solutions and diverse solutions using an appro-
priate metric.

(4) Form appropriate subsets from elements in the reference set.

(5) For each subset, generate new member(s) of the population.

(6) Return to step 2 and repeat until a satisfactory solution is found, or time runs
out.

3.2. Our implementation. We attempt to find optimal weights for a neural network
of fixed architecture; each instance is a fixed number of hidden nodes in a single layer.
Each node in every implementation is a hyperbolic tangent activation function, which
has been recommended as the best activation function for classification problems
[Kalman and Kwasny 1992]. As with many meta-heuristics, any implementation
allows for many degrees of freedom. For the purpose of classifying brain images
as normal or abnormal, we adapted the scatter search algorithm as follows:

(1) Starting population: Generate 105 three layer networks with the same architec-
ture. The weights (including biases) in each network are random numbers between
−1 and 1.

(2) Local search: Perform a local search on the error function for each network
using the Nelder–Mead method. From our initial weights, we are looking for a
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local minimum of the total difference between the target output and the network
output (for all training vectors).

(3) Form reference set: Select the 5 networks with the lowest total error to form
the “good set”. With this set fixed, we now create the “diverse set” by selecting
networks that vary significantly from the good solutions. Select the network with
the largest minimum Euclidean distance between its weights and the weights of
the networks already in the reference set. Add this network to the reference set,
and recalculate the minimum distance to the reference set for each network in
the remaining population. Repeat this process until the reference set contains 10
networks: 5 good and 5 diverse.

(4) Form subsets of the reference set: For the 10 elements of the reference set,
generate all possible unique pairs of networks. This creates

(10
2

)= 45 subsets.

(5) Generate new population: For each subset {x, y}, we generate three new
elements of the population:

x1 = x − v, x2 = x + v, x3 = y+ v,

where v = r(x − y)/2 and r is a random number between 0 and 1. Thus, for each
{x, y} pair, we are create 3 points on the line through x and y. These 135 networks,
along with 10 random networks to ensure diversity, form our new population. Also,
the previous reference set is included in the population, though no local search
needs to be performed on these networks.

4. Results

Normal and abnormal magnetic resonance images (MRIs) of the brain are used in this
study (see Figure 2 for examples). Even with high-resolution images, representing
individual images in a structure suitable for analysis is itself a considerable task.
Though input of the entire image is desirable, the amount of data contained in a
256× 256 gray-scale matrix is large. One widely used way to represent the data is
to select regions of interest (ROIs) from an image; such an approach is widely used.
Regions of interest are selected manually from each image and a single feature
vector is generated for each region.

We examined a total of 250 normal images and 100 abnormal images. The neural
network was trained on 10 of each type, while the remaining 330 were used as a
validations set. To transform the images, we used the Haralick transform (a texture
transform composed of second-order statistics) to generate feature vectors for each
ROI. This transform uses the gray level co-occurrence matrix to uncover how often
image pixel values appear adjacent to one another. If then computes quantities such
as energy, correlation and homogeneity from that gray level co-occurrence matrix.
For a complete discussion of the Haralick transform, see [Haralick et al. 1973].
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Figure 2. Normal (left) and abnormal (right) brain images.

Our training algorithm was used to classify 10 randomly selected normal images
and 10 randomly selected abnormal images. Each network in the population
consisted of 10 hidden nodes and 1 output node. With targets of −1 for normals
and +1 for abnormals, a classification is considered successful when a given output
is within 0.5 of the target. (Rounding is required since the output transfer function
is a hyperbolic tangent function, and therefore ±1 is only reached at infinity.)

For comparison, we used the same training vectors to train an identical neural
network architecture 10,000 times using back propagation (from 10,000 different
random starting weights). With the various random starting points, different net-
works converged to a variety of weights. The “best” network (the one that best
classified the training vectors) was validated using the remaining vectors. These
results are summarized in Table 1.

training
set

training
error

normals
classified

abnormals
classified

our
classification

rate

best back-
propagation
classification

rate

random 10(a) 8.23× 10−5 199 56 77.27% 67.58%
random 10(b) 2.48 185 48 70.61% 59.39%
random 10(c) 0.49 209 56 80.06% 51.96%
random 10(d) 4.32 206 53 78.48% 55.76%
random 10(e) 3.50 210 57 80.91% 66.36%
random 10(f) 0.93 178 83 79.09% 62.12%

Table 1. Comparison of classification results between our train-
ing method and the best network (out of 10,000) trained using
backpropagation for 6 different randomly selected training sets.



SCATTER-SEARCH APPROACH TO BRAIN LESION RECOGNITION 209

5. Discussion

The results reflect a dramatic improvement in the classification rate compared to
that of backpropagation. This improvement is surprising given that the local search
for our implementation is rudimentary. One would expect a rigorous local search,
similar to what is used in backpropagation, to outperform Nelder–Mead. While
there may not be a logical explanation for why taking a linear combination of the
weights from two decent networks results in a worthwhile network, generating our
population in the manner prescribed certainly allows us to identify many different
basins of attraction. The fact that these results were achieved with only 20 training
vectors is even more surprising since the number of training vectors usually used
for the medical image recognition problem is orders of magnitude greater than 20
[Baum and Haussler 1989]. Expanding the training set would likely improve the
classification rate.

The proposed method has many strengths. For example, the error function can
easily be varied for different applications. In this implementation, false positives
and false negatives were weighted equally. If sensitivity is more important than
specificity, for example, it might be preferential to weight the error corresponding to
missed abnormals higher than misclassified normals. Also, this training method has
an ease of implementability. Although different network architectures (number of
hidden nodes, layers, activation functions, etc.) might be better suited for different
problem classes, this algorithm allows for quick testing of different networks.
Changing any network parameter is simple, and training these different networks
can be accomplished in a few minutes. Interested parties can receive the MATLAB
code used in our implementation by emailing the corresponding author.

This success opens a number of avenues for further exploration. For example,
the number of hidden nodes can be varied to determine whether a larger or smaller
network better suits a given problem. A desire for the ability to meaningfully
compare different feature vectors has been expressed in the literature [Duda et al.
2001; Egmont-Petersen et al. 2002], and the proposed network training algorithm
can facilitate this well. Aside from feature vectors, different sizes of networks,
different activation functions, and different network architectures can all easily be
tested and compared with this algorithm.

6. Conclusion

In this paper, we propose a novel method for training neural networks for the
specific task of classifying medical images as normal or abnormal. Our proposed
method shows great promise for this task, but also has an ease of implementation
that allows for quick training of neural networks for general classification problem.
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