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The zero forcing number of a graph is the minimum size of a zero forcing set.
This parameter is useful in the minimum rank/maximum nullity problem, as it
gives an upper bound to the maximum nullity. The path cover number of a graph
is the minimum size of a path cover. Results for comparing the parameters are
presented, with equality of zero forcing number and path cover number shown
for all cacti and equality of zero forcing number and maximum nullity for a
subset of cacti. (A cactus is a graph where each edge is in at most one cycle.)

1. Introduction

Throughout this paper, a graph G = (VG, EG) will mean a simple (no loops, no
multiple edges) undirected graph. We will assume a finite and non-empty vertex set
VG . The edge set EG consists of two-element subsets of vertices. If {x, y} ∈ EG ,
we say x and y are neighbors or x and y are adjacent, and write x ∼ y.

The zero forcing number of a graph was introduced in [AIM 2008] and the
related terminology was developed in [Barioli et al. 2009], [Barioli et al. 2010],
and [Hogben 2010]. Referring to it as the graph infection number, physicists have
used this parameter in studying quantum systems control [Burgarth and Giovannetti
2007; Burgarth and Maruyama 2009; Severini 2008]. Consider a black and white
vertex coloring of a graph G. From the initial coloring, vertices change color
according to the color-change rule: If v is the only white neighbor of a black
vertex u, then change the color of v to black. Applying the color-change rule to
u to change the color of v, we say u forces v and write u → v. Given an initial
coloring of G, the derived set is the set of vertices colored black after the color-
change rule is applied until no more changes are possible. If the set Z of vertices
initially colored black has derived set that is all the vertices of G, we say Z is a
zero forcing set for G. A zero forcing set with the minimum number of vertices is
called an optimal zero forcing set, and this minimum size of a zero forcing set for
a graph G is the zero forcing number of the graph, denoted Z(G).
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The path cover number P(G) of a graph G is the smallest positive integer m
such that there are m vertex-disjoint induced paths in G such that every vertex of
G is a vertex of one of the paths.

An association between graphs and matrices is made in the following way. De-
note by Sn(R) the set of n× n real symmetric matrices. The graph of A ∈ Sn(R),
denoted G(A), is the graph with vertices {1, . . . , n} and edges {{i, j} : ai j 6= 0, 1≤
i < j ≤ n}. Given a graph G, the set of symmetric matrices described by G is
S(G)={A∈ Sn(R) :G(A)=G}. The minimum rank of G is mr(G)=min{rank A :
A ∈ S(G)} and the maximum nullity of G is M(G) = max{null A : A ∈ S(G)}.
Clearly mr(G)+M(G)= |G|, where the order |G| is the number of vertices in G.
Because of this relationship, finding the value of one of these two parameters for
a graph is equivalent to finding the value for both.

Following are theorems relating the zero forcing number to path cover number
and maximum nullity of a graph. These bounds will be used in later results.

Theorem 1.1 [Hogben 2010]. For any graph G, P(G)≤ Z(G).

Theorem 1.2 [AIM 2008]. For any graph G, M(G)≤ Z(G).

It is well known that if G is a tree then P(G)= Z(G) [AIM 2008] and P(G)=

M(G) [Johnson and Duarte 1999], so the three parameters are equal.
In this paper, we compare the graph parameters Z(G), P(G), and M(G). In

Section 2, we present the effect on the parameters after the deletion of a single ver-
tex or the deletion of a single edge. These (mostly known) results will be utilized in
later sections. Results of similar type for each of the graph parameters are presented
in a unified format to emphasize the relationship to each other. The main result
of Section 3 is equality of zero forcing number and path cover number for cacti,
where a cactus is a graph where each edge is in at most one cycle. In Section 4,
we prove zero forcing number is equal to maximum nullity for a restricted family
of cacti. Section 5 summarizes our results and suggests further research.

Additional properties and some notation. Here we present additional terminol-
ogy, notation, and theorems that will be used. For a given zero forcing set Z , a
chronological list of forces is a listing of the forces used to construct the derived
set in the order they are performed. A forcing chain for a chronological list of
forces is a sequence of vertices (v1, v2, . . . , vk) such that for i = 1, . . . , k − 1,
vi → vi+1, and a maximal forcing chain is a forcing chain that is not a proper
subsequence of any other forcing chain. The collection of maximal forcing chains
for a chronological list of forces is called the chain set of the chronological list of
forces, and an optimal chain set is a chain set from a chronological list of forces
of an optimal zero forcing set. When a chain set contains a chain consisting of a
single vertex, we say that the chain set contains the vertex as a singleton. For a
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zero forcing set Z , a reversal of Z is the set of vertices which are last in the forcing
chains in the chain set of some chronological list of forces [Barioli et al. 2010].

Theorem 1.3 [Barioli et al. 2010]. If Z is a zero forcing set of G then so is any
reversal of Z.

Observation 1.4. If Z ′ is a reversal of Z , then |Z ′| = |Z |. In particular, if Z is an
optimal zero forcing set, then a reversal Z ′ of Z is also an optimal zero forcing set.

A vertex v is called terminal if it is the endpoint of a path in some minimum
path cover. It is called doubly terminal if it is in a path by itself in some minimum
path cover, and is called simply terminal if it is terminal but not doubly terminal.

For a graph G = (VG, EG) and W ⊆ VG , the induced subgraph G[W ] is the
graph with vertex set W and edge set {{v, w} ∈ EG : v, w ∈ W }. The subgraph
induced by W = VG \W will be denoted by G −W , or in the case W is a single
vertex {v}, by G− v. For e ∈ EG , the subgraph (VG, EG \ {e}) will be denoted by
G− e.

A graph is called connected if any two vertices are linked by a path. If a graph
is not connected, we say it is disconnected. The maximal connected subgraphs
of a graph are called the components of the graph. If the graph G − v has more
connected components than G, then v is called a cut-vertex of G. Similarly, a
cut-edge of a graph is one such that its deletion increases the number of connected
components.

2. Edge spread and vertex spread

We present a number of (mostly known) results which will be used in later sec-
tions. They are grouped and formatted in such a way as to emphasize commonality
between the types of results for the different parameters.

Edge spread. In this subsection, we consider the effects on zero forcing number,
path cover number, and maximum nullity when deleting a single edge from a graph.
For a graph G and an edge e of G, the rank edge spread of e in G is re(G) =

mr(G)−mr(G− e), the null edge spread of e in G is ne(G)=M(G)−M(G− e),
and the zero edge spread of e in G is ze(G) = Z(G)− Z(G − e) [Edholm et al.
2010]. Here we make an analogous definition concerning change in path cover
number when deleting an edge.

Definition 2.1. The path edge spread of e in G is pe(G)= P(G)−P(G− e).

First we present the bounds on the zero edge spread and path edge spread and
attempt to characterize edges with a given edge spread value.

Theorem 2.2 [Edholm et al. 2010]. For every graph G and every edge e = {v, w}

of G, −1 ≤ ze(G) ≤ 1. If ze(G) = 1, then there exists an optimal chain set such
that e is not an edge in any chain.
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Theorem 2.3. For every graph G and every edge e={v, w} of G,−1≤pe(G)≤1.
If pe(G)= 1, then there exists a minimum path cover such that v and w are not in
the same path.

Proof. Let G be a graph and e = {v, w} be an edge in G. Consider a minimum
path cover of G. If v and w are not covered by the same path, then this path cover
of G is also a path cover of G− e. If v and w are covered by the same path in the
path cover of G, then splitting the path into two paths will create a path cover of
G− e. Either way, P(G− e)≤ P(G)+ 1 so pe(G)≥−1.

Consider a minimum path cover of G − e. If v and w are not covered by the
same path, then this path cover of G − e is also a path cover of G (observe that
this case cannot occur if pe(G) = 1). If v and w are covered by the same path in
the path cover of G − e, there must be a vertex on the path between them. Let x
be the vertex that is between v and w on the path and adjacent to v. Split the path
between v and x . This is a path cover of G, but with one more than P(G−e) paths.
In the case pe(G)= 1, this is a minimum path cover of G with v and w in different
paths. Regardless of the path edge spread, P(G)≤ P(G− e)+ 1 so pe(G)≤ 1. �

Theorem 2.4 [Edholm et al. 2010]. Let e={v, w} be an edge of G. If ze(G)=−1,
then for every optimal zero forcing chain set of G, e is an edge in a chain.

Theorem 2.5. Let e = {v, w} be an edge of G. If pe(G) = −1, then for every
minimum path cover of G, v and w are in the same path.

Proof. The contrapositive will be proved. Let G be a graph and e = {v, w} be
an edge of G. Suppose there is a minimum path cover of G in which v and w

are not in the same path. This path cover of G is also a path cover of G − e, so
P(G− e)≤ P(G). Hence pe(G)≥ 0. �

Theorem 2.5 can be viewed as a partial converse to the second statement in
Theorem 2.3. Here we provide an example showing that the converse of the second
statement in Theorem 2.3 is not true. This example also shows the converse of the
second statement in Theorem 2.2 is false.

Example 2.6. Let G be this graph:

x

u

y

v

z

w

For e = {v, y} we have pe(G) = 0, but v and y are not in the same path in the
minimum path cover.
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Although the bounds on ze(G) and pe(G) are the same, the parameters are not
generally comparable, as can be seen in Examples 2.7 and 2.8 below. Null edge
spread has the same bounds as well, and [Edholm et al. 2010] gives examples
showing the incomparability of ze(G) with ne(G).

Example 2.7. Let G be this graph:

e

Here Z(G) = 3 and Z(G − e) = P(G) = P(G − e) = 2. Therefore, ze(G) = 1 >

0= pe(G).

Example 2.8. Let G be this graph:

e

Here Z(G) = 5, Z(G − e) = 6, and P(G) = P(G − e) = 4. Therefore, ze(G) =

−1 < 0= pe(G).

Under the conditions of Observation 2.9 we can use one of parameters ze(G) or
pe(G) to determine the other.

Observation 2.9. Let G be a graph such that P(G) = Z(G) and let e be an edge
of G. Then:

(1) pe(G)≥ ze(G).

(2) If ze(G)= 1, then pe(G)= 1.

(3) If pe(G)=−1, then ze(G)=−1.

Next we consider edge spreads when the edge is a cut-edge.

Theorem 2.10 [Barioli et al. 2004]. Let e = {v1, v2} be a cut-edge of a connected
graph G. Let G1 and G2 be the connected components of G − e with v1 ∈ G1 and
v2 ∈ G2. Then

re(G)=

{
0 if maxi=1,2{rvi (Gi )} = 2,

1 otherwise.
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Corollary 2.11. Let e = {v1, v2} be a cut-edge of a connected graph G. Let G1

and G2 be the connected components of G− e with v1 ∈ G1 and v2 ∈ G2. Then

ne(G)=

{
0 if mini=1,2{nvi (Gi )} = −1,

−1 otherwise.

Proof. This follows from Theorem 2.10 and the fact that re(G)+ ne(G) = 0 for
any graph G and any edge e of G. �

Theorem 2.12. Let e= {v1, v2} be a cut-edge of a connected graph G. Let G1 and
G2 be the connected components of G− e with v1 ∈ G1 and v2 ∈ G2. Then

ze(G)=

{
−1 if vi is in an optimal zero forcing set in Gi for i = 1, 2,

0 otherwise.

Proof. Let Z1 and Z2 be optimal zero forcing sets for G1 and G2, respectively. Let
Z = Z1∪Z2. Color the vertices of Z black and the remaining vertices white. Forces
can be performed in G1 until v1 is black. Forces can be performed in G2 until v2

is black. Now the remaining forces can take place in G1 and in G2. Therefore Z
is a zero forcing set for G and Z(G) ≤ |Z | = Z(G1)+Z(G2)= Z(G − e). Hence
ze(G)≤ 0.

Suppose v1 is an optimal zero forcing set Z1 for G1 and v2 is in an optimal
zero forcing set Z2 in G2. Let Z ′1 be a reversal of Z1. Then by Observation 1.4,
Z ′1 is an optimal zero forcing set for G1 and there is a chronological list of forces
in which v1 does not perform a force (i.e., v1 is last in the maximal forcing chain
which contains it). Let Z = Z ′1 ∪ Z2 \ {v2}. Color the vertices of Z black and the
remaining vertices white. Forces can be performed in G1 until all vertices of G1

are black and v1 has not performed a force. Now v1 is black and v2 is the only
white neighbor of v1, so v1→ v2. Now all the vertices of Z2 are black and none
has performed a force, so all other vertices of G2 can be forced black. Therefore
Z is a zero forcing set for G and Z(G)≤ |Z | =Z(G1)+Z(G2)−1=Z(G−e)−1.
Theorem 2.2 gives ze(G)≥−1, so ze(G)=−1.

Suppose now that at least one of v1 or v2 is not in any optimal zero forcing
set for the respective component. Without loss of generality, say v1 is not in any
optimal zero forcing set for G1. Let Z be an optimal zero forcing set for G and
consider the chronological list of forces. Examine the following cases.

Case 1: Suppose v1→v2. Then v1 cannot force any vertex of G1. Since v1 is not
in any optimal zero forcing set for G1, it is not at the end of a forcing chain for any
optimal zero forcing set of G1. Thus v1 forcing v2 requires |Z∩VG1 |≥Z(G1)+1. It
must also be that |Z∩VG2 |≥Z(G2)−1. Then Z(G)=|Z |= |Z∩VG1 |+|Z∩VG2 |≥

Z(G1)+Z(G2)= Z(G− e), so ze(G)≥ 0.
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Case 2: Suppose v1 6→ v2. Then |Z ∩ VG2 | ≥ Z(G2). Since v1 is not in any
optimal zero forcing set for G1, it must be that |Z ∩ VG1 | ≥ Z(G1). Then Z(G)=

|Z | = |Z ∩ VG1 | + |Z ∩ VG2 | ≥ Z(G1)+Z(G2)= Z(G− e), so ze(G)≥ 0. �

Theorem 2.13 [Barioli et al. 2004]. Let e = {v1, v2} be a cut-edge of a connected
graph G. Let G1 and G2 be the connected components of G − e with v1 ∈ G1 and
v2 ∈ G2. Then

pe(G)=

{
−1 if vi is terminal in Gi for i = 1, 2,

0 otherwise.

The converse of Theorem 2.4 is open from [Edholm et al. 2010], and the con-
verse of Theorem 2.5 is left open in this paper. We will show that the converses of
these theorems are true for a cut-edge.

Theorem 2.14. Let e = {v, w} be a cut-edge of G. If e is an edge in a chain for
every optimal zero forcing chain set of G, then ze(G)=−1.

Proof. The contrapositive will be proved. Suppose ze(G) 6=−1. By Theorem 2.12,
ze(G)= 0. Let G1 and G2 be the connected components of G−e with v ∈G1 and
w ∈ G2. Let Z1 and Z2 be optimal zero forcing sets for G1 and G2, respectively.
Let Z = Z1 ∪ Z2. Color the vertices of Z black and the remaining vertices white.
Forces can be performed in G1 until v is black. Forces can be performed in G2 until
w is black. Now the remaining forces can take place in G1 and in G2. Therefore
Z is a zero forcing set for G and e = {v, w} is not an edge in any chain. Also,
|Z | = Z(G1)+ Z(G2) = Z(G − e) = Z(G)− ze(G) = Z(G), so Z is an optimal
zero forcing set for G. �

Theorem 2.15. Let e= {v, w} be a cut-edge of G. If v and w are in the same path
for every minimum path cover of G, then pe(G)=−1.

Proof. The contrapositive will be proved. Suppose pe(G) 6=−1. By Theorem 2.13,
pe(G)= 0. Let G1 and G2 be the connected components of G−e with v ∈G1 and
w ∈G2. Consider a path cover of G consisting of minimum path covers of G1 and
G2. Then v and w are not in the same path of this path cover of G. Also, since
pe(G)= 0, this path cover of G is minimum. �

Vertex spread. In this section, we consider the effects on minimum rank, maxi-
mum nullity, zero forcing number, and path cover number when deleting a single
vertex from a graph. For a graph G and a vertex v of G, the rank spread of v in
G is rv(G) = mr(G)−mr(G − v) [Barioli et al. 2004], the null spread of v in G
is nv(G) =M(G)−M(G − v) [Edholm et al. 2010], the zero spread of v in G is
zv(G)= Z(G)−Z(G − v) [Edholm et al. 2010], and the path spread of v in G is
pv(G)= P(G)−P(G− v) [Barioli et al. 2005].
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Theorem 2.16 [Edholm et al. 2010; Huang et al. 2010]. For every graph G and
vertex v of G, −1≤ zv(G)≤ 1.

Theorem 2.17 [Barioli et al. 2004; Barioli et al. 2005]. For every graph G and
vertex v of G, −1≤ pv(G)≤ 1.

Recall that v being contained as a singleton means it is in a forcing chain by
itself in an optimal chain set, and v being doubly terminal means it is in a path by
itself in a minimum path cover.

Theorem 2.18 [Edholm et al. 2010]. Let v be a vertex of G. Then zv(G) = 1 if
and only if there exists an optimal chain set of G that contains v as a singleton.

Theorem 2.19 [Barioli et al. 2005]. Let v be a vertex of G. Then pv(G)= 1 if and
only if v is doubly terminal.

Theorem 2.20 [Edholm et al. 2010]. Let v be a vertex of G. If zv(G) = −1, then
v is never in an optimal zero forcing set for G.

Theorem 2.21 [Barioli et al. 2005]. Let v be a vertex of G. If pv(G)=−1, then v

is not terminal.

The next theorems give the parameter spreads for a cut-vertex. Recall that v

being simply terminal means that v is terminal but not doubly terminal. By Theo-
rems 2.19 and 2.21, this is equivalent to the path spread being zero and v being an
endpoint in some minimal path cover.

Theorem 2.22 [Barioli et al. 2004]. Let G = (VG, EG) be a graph with cut-vertex
v ∈ VG . Let W1, . . . , Wk be the vertex sets for the connected components of G−v,
and for 1≤ i ≤ k, let Gi = G[Wi ∪ {v}]. Then

rv(G)=min

{
k∑

i=1

rv(Gi ), 2

}

Corollary 2.23. Let G = (VG, EG) be a graph with cut-vertex v ∈ VG . Let
W1, . . . , Wk be the vertex sets for the connected components of G − v, and for
1≤ i ≤ k, let Gi =G[Wi ∪{v}]. Let m denote min1≤ j≤k{nv(G j )}, and t denote the
number of the Gi ’s in which nv(Gi )= 0. Then

nv(G)=


1 if m = 1,

0 if m = 0 and t = 1,

−1 if m = 0 and t ≥ 2, or if m =−1.

Proof. This follows from Theorem 2.22 and the fact that rv(G)+ nv(G) = 1 for
any graph G and any vertex v of G. �
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Theorem 2.24 [Row 2011]. Let G = (VG, EG) be a graph with cut-vertex v ∈ VG .
Let W1, . . . , Wk be the vertex sets for the connected components of G− v, and for
1 ≤ i ≤ k, let Gi = G[Wi ∪ {v}]. Let m denote min1≤ j≤k{zv(G j )}, and t denote
the number of the Gi ’s in which zv(Gi )= 0 and v is in an optimal zero forcing set.
Then

zv(G)=


1 if m = 1,

0 if m = 0 and t ≤ 1,

−1 if m = 0 and t ≥ 2, or if m =−1.

Theorem 2.25 [Barioli et al. 2005]. Let G = (VG, EG) be a graph with cut-vertex
v ∈ VG . Let W1, . . . , Wk be the vertex sets for the connected components of G−v,
and for 1 ≤ i ≤ k, let Gi = G[Wi ∪ {v}]. Let m denote min1≤ j≤k{pv(G j )}, and t
denote the number of the Gi ’s in which v is simply terminal. Then

pv(G)=


1 if m = 1,

0 if m = 0 and t ≤ 1,

−1 if m = 0 and t ≥ 2, or if m =−1.

3. Comparing Z(G) and P(G) for cacti

A block of a graph is a maximal connected subgraph without a cut-vertex. A cactus
is a graph in which each block is either a cycle or an edge. In other words, a cactus
is a graph in which any two cycles share at most one vertex. An example of a
cactus is shown in Figure 1. In this section, we prove Z(G)= P(G) for any cactus
G. We begin with a few preliminaries.

Theorem 3.1 [Row 2011]. Let G be a unicyclic graph. Then Z(G)= P(G).

Figure 1. A cactus. No edge is in more than one cycle.
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Lemma 3.2. Let G be a graph, v a vertex in G, and H the graph constructed by
appending a leaf w to v in G. Suppose Z(G) = P(G) and Z(H) = P(H). The
vertex v is in an optimal zero forcing set for G if and only if v is terminal in G.

Proof. Suppose v is in an optimal zero forcing set for G. An optimal chain set
from this optimal zero forcing set determines a path cover of G with Z(G)= P(G)

paths and v as an endpoint of a path. Hence v is terminal.
Suppose v is terminal in G. Then e = {v, w} is a cut edge and the graph

H ′ = ({w}, ∅) is a single isolated vertex. Therefore, w is terminal in H ′. By
Theorem 2.13, pe(H)=−1. By Observation 2.9, ze(H)=−1. By Theorem 2.12,
v is in an optimal zero forcing set for G. �

Theorem 3.3. Let G be a cactus. Then Z(G)= P(G).

Proof. The theorem will be proved by induction on the number of cycles in the cac-
tus. If there is one cycle, G is a unicyclic graph and by Theorem 3.1, Z(G)=P(G).
Suppose now that for some m ≥ 2 any cactus G with less than m cycles satisfies
Z(G)= P(G). Let G be a cactus with m cycles. Since the cycles are edge disjoint,
there is a cut-vertex v such that G − v has connected components with vertex
sets W1, . . . , Wk and each graph Gi = G[Wi ∪ {v}],∀i = 1, . . . k is a cactus with
fewer than m cycles. By the inductive hypothesis, Z(Gi ) = P(Gi ),∀i = 1, . . . , k
and Z(Gi − v) = P(Gi − v),∀i = 1, . . . , k, so zv(Gi ) = pv(Gi ),∀i = 1, . . . , k.
Therefore, min1≤ j≤k{zv(G j )} = min1≤ j≤k{pv(G j )}. For all i = 1, . . . k, consider
the graphs Hi constructed by appending a leaf wi to v in Gi . By the inductive
hypothesis, Z(Gi ) = P(Gi ),∀i = 1, . . . k and Z(Hi ) = P(Hi ),∀i = 1, . . . k. By
Lemma 3.2, v is in an optimal zero forcing set for G j if and only if v is terminal in
G j . Then zv(G j )= 0 and v is in an optimal zero forcing set for G j if and only if
pv(G j )= 0 and v is terminal in G j if and only if v is simply terminal in G j by the
contrapositive of Theorem 2.19. Then by Theorems 2.24 and 2.25, zv(G)= pv(G).
Hence Z(G)=

∑k
i=1 Z(Gi − v)+ zv(G)=

∑k
i=1 P(Gi − v)+ pv(G)= P(G). �

4. Comparing Z(G) and M(G) for cacti

In Section 3 we showed equality of Z(G) and P(G) for all cacti G by utilizing
Theorem 3.1 for the base case in the induction proof. Since it is not true that
Z(G)=M(G) for all unicyclic graphs, in this section we focus on a subset of cacti
and prove Z(G)=M(G) for each graph in this subset.

Let Cn be an n-cycle and let U ⊆ VCn . The graph H obtained from Cn by
appending a leaf to each vertex in U is called a partial n-sun. If U = VCn , then
H is called an n-sun. It was shown in [Barioli et al. 2005] that M(H)= P(H) for
partial n-suns except for n-suns with n > 3 odd.

If there are at least two components of the graph G − v which are paths, each
joined to v in G at only one endpoint, then vertex v is called appropriate. A
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vertex v is called a peripheral leaf if v is adjacent to only one other vertex u, and
u is adjacent to no more than two vertices. The trimmed form of a graph G is
an induced subgraph obtained by a sequence of deletions of appropriate vertices,
isolated paths, and peripheral leaves until no more such deletions are possible.

Theorem 4.1 [Row 2011]. If the trimmed form of G, Ğ, can be obtained by per-
forming n1 deletions of appropriate vertices, n2 deletions of isolated paths, and n3

deletions of peripheral leaves, then Z(G)= Z(Ğ)+ n2− n1.

Theorem 4.2 [Barioli et al. 2005]. If the trimmed form of G, Ğ, can be obtained
by performing n1 deletions of appropriate vertices, n2 deletions of isolated paths,
and n3 deletions of peripheral leaves, then M(G)=M(Ğ)+ n2− n1.

Theorem 4.3 [Barioli et al. 2005]. The trimmed form of a unicyclic graph G is
either the empty graph or a partial n-sun.

Observation 4.4. The trimmed form of a unicyclic graph G in which at least one
of the cycle vertices has only two neighbors is not an n-sun.

The following theorem and lemma will be used in the proof of Theorem 4.7, the
main result of this section.

Theorem 4.5. Let G be a unicyclic graph in which the cycle has three vertices, an
even number of vertices, or a vertex which has only two neighbors. Then Z(G) =

M(G).

Proof. Let Ğ be the trimmed form of G. By Theorem 4.3 and Observation 4.4,
Ğ is either the empty graph or a partial n-sun, but not an n-sun with n odd and
greater than three. The formulas from [Barioli et al. 2005] give M(Ğ) = P(Ğ).
Theorem 3.1 gives Z(Ğ) = P(Ğ), so Z(Ğ) = M(Ğ). Then Z(G) = M(G) by
Theorems 4.1 and 4.2. �

Lemma 4.6. Let G be a graph, v a vertex in G, and H the graph constructed from
G by appending a leaf w to v, then appending a leaf x to w. Suppose Z(G)=M(G)

and Z(H)=M(H). The vertex v is in an optimal zero forcing set for G if and only
if nv(G)= 0.

Proof. By construction, e = {v, w} is a cut edge and the graph

H ′ = {{w, x}, {{w, x}}}

is a path on two vertices. Since Z(H ′) = M(H ′), ze(H) = ne(H). Also, w is in
an optimal zero forcing set for H ′ and nw(H ′) = 0. Then nv(G) = 0⇔ ne(H) =

−1⇔ ze(H)=−1⇔ v is in an optimal zero forcing set for G by Corollary 2.11
and Theorem 2.12. �

Here we present the main result of the section.
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Theorem 4.7. Let G be a cactus in which each cycle has three vertices, an even
number of vertices, or a vertex which has only two neighbors. Then Z(G)=M(G).

Proof. Let G be a cactus in which each cycle has three vertices, an even number
of vertices, or a vertex which has only two neighbors. The theorem will be proved
by induction on the number of cycles in the cactus. If there is one cycle, G is a
unicyclic graph in which the cycle has three vertices, an even number of vertices,
or a vertex which has only two neighbors, and by Theorem 4.5, Z(G) = M(G).
Suppose now that for some m ≥ 2 any cactus G in which each cycle has three
vertices, an even number of vertices, or a vertex which has only two neighbors
with less than m cycles satisfies Z(G) =M(G). Let G be a cactus in which each
cycle has three vertices, an even number of vertices, or a vertex which has only two
neighbors with m cycles. Since the cycles are edge disjoint, there is a cut-vertex v

such that G− v has connected components with vertex sets W1, . . . , Wk and each
graph Gi = G[Wi ∪ {v}],∀i = 1, . . . k is a cactus in which each cycle has three
vertices, an even number of vertices, or a vertex which has only two neighbors with
fewer than m cycles. By the inductive hypothesis, Z(Gi )=M(Gi ),∀i = 1, . . . , k
and Z(Gi − v) = M(Gi − v),∀i = 1, . . . , k, so zv(Gi ) = nv(Gi ),∀i = 1, . . . , k.
Therefore, min1≤ j≤k{zv(G j )} = min1≤ j≤k{nv(G j )}. For all i = 1, . . . k, consider
the graphs Hi constructed by appending a leaf wi to v in Gi then appending a
leaf xi to wi . By the inductive hypothesis, Z(Gi ) = M(Gi ),∀i = 1, . . . k and
Z(Hi ) = M(Hi ),∀i = 1, . . . k. By Lemma 4.6, v is in an optimal zero forcing
set for G j if and only if nv(G j ) = 0. Then zv(G j ) = 0 and v is in an optimal
zero forcing set for G j if and only if nv(G j ) = 0. Then by Theorem 2.24 and
Corollary 2.23, zv(G)= nv(G). Hence

Z(G)=

k∑
i=1

Z(Gi − v)+ zv(G)=

k∑
i=1

M(Gi − v)+ nv(G)=M(G). �

The restrictions imposed on the cacti in this section are sufficient for Z(G) =

M(G), but are not necessary, as can be seen in the following example.

Example 4.8. The graph G shown in Figure 2 does not satisfy the property that
each odd cycle of size five or more has at least one vertex with only two neighbors,
but does satisfy Z(G)=M(G).

5. Conclusions and open questions

We utilized cut-vertex and cut-edge results for zero forcing number, path cover
number, and maximum nullity to build graphs having equality of parameters from
smaller graphs having equality of the same parameters. Specifically, from knowing
Z(G) = P(G) for unicyclic graphs we showed Z(G) = P(G) for cacti, and from
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Figure 2. A cactus G that is not in the restricted family but which
satisfies Z(G)=M(G).

Z(G)=M(G) for a restricted family of unicyclic graphs we showed Z(G)=M(G)

for a restricted family of cacti.

Question 5.1. What other graphs with equality of some parameters have addi-
tional properties that would allow cut-vertex and cut-edge results to be utilized to
“build” larger graphs having equality of the parameters?

Question 5.2. What are necessary conditions for a cactus to satisfy Z(G)=M(G)?

The converse of Theorem 2.4 is open from [Edholm et al. 2010]. We proved
the converse holds if e is a cut-edge. We also proved the converse of Theorem 2.5
holds for a cut-edge.

Question 5.3. Is the converse of Theorem 2.5 true? That is, if v and w are in the
same path for every minimum path cover of G, does pe(G)=−1 where e={v, w}?

In general, v being in an optimal zero forcing set does not imply it being ter-
minal, nor does v being terminal imply it being in an optimal zero forcing set, as
evidenced by Examples 5.5 and 5.6 below. With the hypothesis that Z(G)= P(G),
we do get v in an optimal zero forcing set implying v terminal, as can be seen
in the first part of the proof for Lemma 3.2 where the graph H is not used. The
hypothesis about H is needed in Lemma 4.6 (see Example 5.7).

Question 5.4. Is the graph H from the hypothesis of Lemma 3.2 necessary for the
conclusion? For a graph G with Z(G)= P(G), does vertex v being terminal imply
v is in an optimal zero forcing set?

Example 5.5. The vertex v is a cut-vertex for this graph G:

w1

w2

w4

v

w5

w3 w6
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Now both G[{v, w1, w2, w3}] and G[{v, w4, w5, w6}] are K4, so we can write
zv(G[{v, w1, w2, w3}]) = zv(G[{v, w4, w5, w6}]) = 1 and v is simply terminal
in G[{v, w1, w2, w3}] and G[{v, w4, w5, w6}]. Hence zv(G)= 1 and pv(G)=−1
by Theorems 2.24 and 2.25. Therefore, v is in an optimal zero forcing set but not
terminal by Theorems 2.18 and 2.21.

Example 5.6. Let G be this graph:

w1 w2 w3 w4

v

w5 w6 w7 w8

Then Z(G − v) = 5 by [AIM 2008]. By Theorem 2.16, Z(G) ≥ 4 and moreover
{w2, w3, w5, w6} is a zero forcing set, so Z(G)=4. The graph G−v is not a path, so
P(G−v)≥ 2 and {(w1, w2, w3, w4, w5), (w6, w7, w8, w9, w10)} is a path cover for
G−v. Therefore, P(G−v)=2. By Theorem 2.17, and considering G is not a path,
2≤ P(G)≤ 3. To show P(G) 6= 2, attempt to cover G with two induced paths and
consider w5. If w5 was in a path by itself, the other eight vertices cannot be covered
with a single induced path, so w5 has to be in a path with other vertices. Since the
three neighbors of w5 are all neighbors of each other, w5 has to be an endpoint of
an induced path. Consider which neighbor is in the path with w5. If w1 is with w5,
then w2 and w6 have to be in the other path, then v, w3, and w7 have to be with w5

and w1, then w4 and w8 have to be with w2 and w6, but G[{w2, w4, w6, w8}] is not
a path. If w2 is with w5, then w1 and w6 have to be in the other path, then v has to
be with w5 and w2, then w3 has to be with w1 and w6, then w7 has to be with w5,
w2, and v, but G[{v, w2, w5, w7}] is not a path. If w6 is with w5, then w1 and w2

have to be in the other path, then v has to be with w5 and w6, then w3 has to be
with w1 and w2, then w7 has to be with w5, w6, and v, but G[{v, w5, w6, w7}] is
not a path. So P(G)≥ 3. Hence zv(G)=−1 and pv(G)= 1. Hence, v is terminal
but never in an optimal zero forcing set by Theorems 2.19 and 2.20.

Example 5.7. Let G be this graph:

v
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Then Z(G) = M(G) and nv(G) = 0, but v is not in an optimal zero forcing set
for G.
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