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An implementation of scatter search to train neural
networks for brain lesion recognition

Jeffrey Larson and Francis Newman

(Communicated by Kenneth S. Berenhaut)

In recent years, the use of computer aided diagnosis (CAD) has achieved accep-
tance in mammography and other areas. To facilitate automated detection of brain
abnormalities, we propose a novel method for quickly training neural networks
to classify brain images. Our method outperforms traditional neural network
training methods by achieving a better balance between classification accuracy
and training time.

1. Introduction

A variety of techniques have been implemented for lesion detection, including
image filtering methods [Kotropoulos and Pitas 1992], support vector machines
[Bilello et al. 2004], Markov random fields [Van Leemput et al. 2001], and a variety
of artificial neural networks (ANNs) [Raff and Newman 1992; Wu et al. 1993;
Yu and Guan 2000]. Nevertheless, automated pathology or lesion detection in
most medical images has become somewhat dormant in recent years. Even in
mammography, where computer-aided detection (CAD) has the greatest acceptance,
the sensitivity (percentage of abnormal pathologies identified as “abnormal”) is
high, but the specificity (percentage of normal images where no abnormality is
found) is poor. There are further difficulties for practical or commercial acceptance
of CAD outside of mammography. These are often a combination of algorithmic
and technical limitations. For example, when ANNs are used, backpropagation is
frequently the method of choice for training. Backpropagation employs a multilayer
feed forward architecture where error minimization is achieved via some form of
gradient descent. Backpropagation (and its variants) can be slow to train, but a
bigger problem for medical image diagnosis is the fact that the algorithm is likely
to settle on an unsatisfactory local minimum [Gori and Tesi 1992; Sontag and
Sussmann 1989].

MSC2000: primary 90C59, 92B20; secondary 90C90, 92C50.
Keywords: computer-aided diagnosis, scatter search, artificial neural networks, health care, diagnosis.
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204 JEFFREY LARSON AND FRANCIS NEWMAN

Though the problem is difficult, correct classification of pathology and lesions
in medical images could offer great benefits in reducing diagnostic errors and labor
costs. It is estimated that 10-30% of breast cancers that are retrospectively visible
are missed by radiologists upon initial reading [Brake et al. 1998], and 17-21%
of polyps in computed tomography (CT) colonography are given false negative
diagnoses due to human perception errors [Fletcher et al. 2000]. Missed tumors in
lung CTs are disturbingly common [White et al. 1996], and brain tumors especially
are frequently misdiagnosed [Wang et al. 2003]. Recent studies have found that
physicians’ clinical diagnoses are proven wrong 10-15% of the time by autopsy
findings [Shojania et al. 2003; Roulson et al. 2005]. In an effort to reduce the number
of misdiagnoses, researchers in the radiological sciences have been pursuing CAD
since the early ascendancy of the computer [Schwartz 1970; Raff and Newman
1992; Chan et al. 1987]. Nevertheless, CAD has had limited impact in the field of
human radiology, aside from some impact in mammography, where commercial
systems have been available since 1998 [Vyborny et al. 2000].

In this effort we pursue a novel method to minimize the classification error for a
feed-forward ANN in the medical image diagnosis problem using a scatter search
meta-heuristic. The method, which is trained on a small subset of images and then
validated on a larger set of images, greatly outperforms traditional classification
methods.

2. Background

Scatter search [Glover 1999; Glover et al. 2000] is a population-based meta-heuristic
that uses a local search algorithm to find an optimum. In this application, the
population to be optimized is a set of random weights. Diverse individuals from the
ANN population are then combined to form a “best” set according to some metric.
This best set is then incorporated into the next population to be evaluated. The
implementation of scatter search discussed here permits comparative evaluation of
various feature vectors extracted from medical images.

For ease of reference, we define the terms to be used in this paper. An artificial
neural network (ANN) is a mathematical model that simulates the structure of
biological neural networks. It consists of interconnected nodes, each of which is
a functional that acts on a linear combination of its inputs. Supervised ANNs are
adaptive models that adjust the weights on the network arcs during a training phase
in order to match each individual input to its target.

For example, a person might wish to construct a neural network to determine
whether individuals should be diagnosed with colon cancer after their first screening.
One might train the model using data (age, weight, height, . . . , race, etc.) collected
for 100 patients, as well as an indicator of whether or not they were diagnosed with
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Figure 1. An example of an ANN.

colon cancer. To train the network, the weights on the arcs need to be adjusted
until an acceptable percentage of the training set has the correct output (perhaps a
network output of +1 for people who are diagnosed with cancer and −1 for those
who are not). An example of such a three-layer network with m inputs and n hidden
nodes is shown in Figure 1.

Our method employs a population of feed forward neural network architectures.
According to the literature, three-layer networks are suitable for most problems,
but the number of hidden nodes is frequently chosen by trial and error [Fausett
1994; Hassoun 1995, pp. 318–322]. It is important to note that our population
consists of networks with identical three-layer architectures. Our process finds the
network in the population that has the best weights and then uses these weights in an
ANN to classify brain images. Though each network in our population has a fixed
architecture with the same number of nodes, the method described in this paper
permits easy and fast comparison of different hidden node architectures. Training a
feed-forward ANN usually involves thousands of iterations (also known as epochs)
to update the weights between layers in an effort to minimize the mean squared
error. For a good treatment of neural networks, see [Fausett 1994; Hassoun 1995].

For a fixed architecture, training a neural network is a task in optimization.
If a network has n different weights, training involves finding n weights that
minimize the total error between the network output and the target values. Since
backpropagation is a gradient descent method, its performance depends on initial
network weights; if weights aren’t well-initialized, backpropagation might perform
poorly. Therefore, using a heuristic to find weights might yield a better neural
network than backpropagation, in less time. Various heuristics have been proposed
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to solve the problem of training neural networks [Kelly et al. 1996; Ye et al. 2007].
A heuristic such as scatter search, which explores many basins of attraction, could
drastically outperform backpropagation.

Since this ANN is a supervised learning scheme, the a priori target values are
available, and the algorithm seeks to minimize the error between the targets and the
outputs for the training set. When the training returns an error below a particular
threshold, the training is halted and a validation set is used for testing. (The threshold
for the error term is problem and user-dependent.)

3. Implementation

3.1. General scatter search implementation. Scatter search is a population-based
meta-heuristic, where a collection of preferred solutions are maintained and re-
combined in order to generate new solutions. If the new solutions are preferred
enough, they enter the population for the next iteration. For any given problem,
the scatter search population has two subsets, good solutions and diverse solutions.
The general framework for the algorithm is this:

(1) Generate a starting population.

(2) Perform a local search on every member of the population.

(3) Form a reference set of good solutions and diverse solutions using an appro-
priate metric.

(4) Form appropriate subsets from elements in the reference set.

(5) For each subset, generate new member(s) of the population.

(6) Return to step 2 and repeat until a satisfactory solution is found, or time runs
out.

3.2. Our implementation. We attempt to find optimal weights for a neural network
of fixed architecture; each instance is a fixed number of hidden nodes in a single layer.
Each node in every implementation is a hyperbolic tangent activation function, which
has been recommended as the best activation function for classification problems
[Kalman and Kwasny 1992]. As with many meta-heuristics, any implementation
allows for many degrees of freedom. For the purpose of classifying brain images
as normal or abnormal, we adapted the scatter search algorithm as follows:

(1) Starting population: Generate 105 three layer networks with the same architec-
ture. The weights (including biases) in each network are random numbers between
−1 and 1.

(2) Local search: Perform a local search on the error function for each network
using the Nelder–Mead method. From our initial weights, we are looking for a
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local minimum of the total difference between the target output and the network
output (for all training vectors).

(3) Form reference set: Select the 5 networks with the lowest total error to form
the “good set”. With this set fixed, we now create the “diverse set” by selecting
networks that vary significantly from the good solutions. Select the network with
the largest minimum Euclidean distance between its weights and the weights of
the networks already in the reference set. Add this network to the reference set,
and recalculate the minimum distance to the reference set for each network in
the remaining population. Repeat this process until the reference set contains 10
networks: 5 good and 5 diverse.

(4) Form subsets of the reference set: For the 10 elements of the reference set,
generate all possible unique pairs of networks. This creates

(10
2

)= 45 subsets.

(5) Generate new population: For each subset {x, y}, we generate three new
elements of the population:

x1 = x − v, x2 = x + v, x3 = y+ v,

where v = r(x − y)/2 and r is a random number between 0 and 1. Thus, for each
{x, y} pair, we are create 3 points on the line through x and y. These 135 networks,
along with 10 random networks to ensure diversity, form our new population. Also,
the previous reference set is included in the population, though no local search
needs to be performed on these networks.

4. Results

Normal and abnormal magnetic resonance images (MRIs) of the brain are used in this
study (see Figure 2 for examples). Even with high-resolution images, representing
individual images in a structure suitable for analysis is itself a considerable task.
Though input of the entire image is desirable, the amount of data contained in a
256× 256 gray-scale matrix is large. One widely used way to represent the data is
to select regions of interest (ROIs) from an image; such an approach is widely used.
Regions of interest are selected manually from each image and a single feature
vector is generated for each region.

We examined a total of 250 normal images and 100 abnormal images. The neural
network was trained on 10 of each type, while the remaining 330 were used as a
validations set. To transform the images, we used the Haralick transform (a texture
transform composed of second-order statistics) to generate feature vectors for each
ROI. This transform uses the gray level co-occurrence matrix to uncover how often
image pixel values appear adjacent to one another. If then computes quantities such
as energy, correlation and homogeneity from that gray level co-occurrence matrix.
For a complete discussion of the Haralick transform, see [Haralick et al. 1973].
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Figure 2. Normal (left) and abnormal (right) brain images.

Our training algorithm was used to classify 10 randomly selected normal images
and 10 randomly selected abnormal images. Each network in the population
consisted of 10 hidden nodes and 1 output node. With targets of −1 for normals
and +1 for abnormals, a classification is considered successful when a given output
is within 0.5 of the target. (Rounding is required since the output transfer function
is a hyperbolic tangent function, and therefore ±1 is only reached at infinity.)

For comparison, we used the same training vectors to train an identical neural
network architecture 10,000 times using back propagation (from 10,000 different
random starting weights). With the various random starting points, different net-
works converged to a variety of weights. The “best” network (the one that best
classified the training vectors) was validated using the remaining vectors. These
results are summarized in Table 1.

training
set

training
error

normals
classified

abnormals
classified

our
classification

rate

best back-
propagation
classification

rate

random 10(a) 8.23× 10−5 199 56 77.27% 67.58%
random 10(b) 2.48 185 48 70.61% 59.39%
random 10(c) 0.49 209 56 80.06% 51.96%
random 10(d) 4.32 206 53 78.48% 55.76%
random 10(e) 3.50 210 57 80.91% 66.36%
random 10(f) 0.93 178 83 79.09% 62.12%

Table 1. Comparison of classification results between our train-
ing method and the best network (out of 10,000) trained using
backpropagation for 6 different randomly selected training sets.
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5. Discussion

The results reflect a dramatic improvement in the classification rate compared to
that of backpropagation. This improvement is surprising given that the local search
for our implementation is rudimentary. One would expect a rigorous local search,
similar to what is used in backpropagation, to outperform Nelder–Mead. While
there may not be a logical explanation for why taking a linear combination of the
weights from two decent networks results in a worthwhile network, generating our
population in the manner prescribed certainly allows us to identify many different
basins of attraction. The fact that these results were achieved with only 20 training
vectors is even more surprising since the number of training vectors usually used
for the medical image recognition problem is orders of magnitude greater than 20
[Baum and Haussler 1989]. Expanding the training set would likely improve the
classification rate.

The proposed method has many strengths. For example, the error function can
easily be varied for different applications. In this implementation, false positives
and false negatives were weighted equally. If sensitivity is more important than
specificity, for example, it might be preferential to weight the error corresponding to
missed abnormals higher than misclassified normals. Also, this training method has
an ease of implementability. Although different network architectures (number of
hidden nodes, layers, activation functions, etc.) might be better suited for different
problem classes, this algorithm allows for quick testing of different networks.
Changing any network parameter is simple, and training these different networks
can be accomplished in a few minutes. Interested parties can receive the MATLAB
code used in our implementation by emailing the corresponding author.

This success opens a number of avenues for further exploration. For example,
the number of hidden nodes can be varied to determine whether a larger or smaller
network better suits a given problem. A desire for the ability to meaningfully
compare different feature vectors has been expressed in the literature [Duda et al.
2001; Egmont-Petersen et al. 2002], and the proposed network training algorithm
can facilitate this well. Aside from feature vectors, different sizes of networks,
different activation functions, and different network architectures can all easily be
tested and compared with this algorithm.

6. Conclusion

In this paper, we propose a novel method for training neural networks for the
specific task of classifying medical images as normal or abnormal. Our proposed
method shows great promise for this task, but also has an ease of implementation
that allows for quick training of neural networks for general classification problem.
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P1 subalgebras of Mn(C)

Stephen Rowe, Junsheng Fang and David R. Larson

(Communicated by Charles R. Johnson)

A linear subspace B of L(H) has the property P1 if every element of its pre-
dual B∗ has the form x + B⊥ with rank(x) ≤ 1. We prove that if dim H ≤ 4
and B is a unital operator subalgebra of L(H) which has the property P1, then
dim B ≤ dim H . We consider whether this is true for arbitrary H .

1. Introduction

The duality between the full algebra L(H) of bounded linear operators on a Hilbert
space H and its ideal L∗ of trace class operators plays an important role in invariant
subspace theory. Indeed, it is easy to use rank one operators in the preannihilator
of an operator algebra B to construct nontrivial invariant subspaces for B and con-
versely (see [Larson 1982]). In his proof that subnormal operators are intransitive,
S. Brown [1978] focused attention on a more subtle connection between rank one
operators and invariant subspaces. He showed that certain linear subspaces B of
L(H) have the following property: every element of its predual B∗ has the form
x + B⊥ with rank(x) ≤ 1, where B⊥ = {a ∈ L∗ : Tr(ba)= 0, for all b ∈ B} is the
preannihilator of B. This was called the P1 property in [Larson 1982]. D. Hadwin
and E. Nordgren [1982], and independently the third author, observed the connec-
tion between this property and reflexivity. Although neither property implies the
other, if an algebra B has property P1 and is also reflexive (B = AlgLat(B)) then
so are all of its ultra-weakly closed subalgebras.

Azoff obtained many results about linear subspaces of L(H) which have the
property P1. Among them, he proved the following simple, but beautiful, result
by using ideas from algebraic geometry. If dim H = n ∈ N and a linear space
S ⊂ L(H)≡ Mn(C) has the property P1, then the dimension of S is no larger than
2n−1. Furthermore, there exists a subspace S⊂Mn(C) which has the property P1

and dim S= 2n−1. For an expository account of these and related results, we refer
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to [Azoff 1986], where linear spaces with the property P1 are called elementary
spaces. For this article the original term P1 seemed more suitable because we want
to work with the more general property Pk in the same context.

In this paper we consider the analogue of Azoff’s result for the subcase of unital
operator subalgebras in L(H)≡Mn(C) (an operator algebra is unital if it contains
the identity operator of L(H)). If B is the diagonal subalgebra of L(H), it is easy
to show that B has property P1 and dim B = n. In Section 5 we show that if n ≤ 4
and B ⊂ Mn(C) is a unital subalgebra which has property P1, then dim B ≤ n. It
is natural to conjecture that this is also true for arbitrary n. We make this formal:

Question 1. Suppose dim H = n ∈N and B ⊂ L(H)≡ Mn(C) is a unital operator
algebra with property P1. Must dim B ≤ n?

Note that if the above conjecture is true, then we can deduce Azoff’s result as a
corollary. Indeed, if S ⊂ L(H)≡ Mn(C) is a linear space with property P1, then

B =
{(
λ s
0 λ

)
: λ ∈ C, s ∈ S

}
⊂ L(H (2))≡ M2n(C)

is a unital operator algebra with property P1 [Kraus and Larson 1986; 1985; Azoff
1986]. So dim B ≤ 2n implies dim S ≤ 2n− 1.

An algebra B ⊂ L(H) is called a P1 algebra if A has property P1. An algebra
B ⊂ L(H) is called a maximal P1 algebra if whenever A is a subalgebra of L(H)
having property P1 and A⊃ B, then A= B. We consider a subquestion of Question
1.

Question 2. Suppose dim H = n ∈N and B ⊂ L(H)≡ Mn(C) is a unital operator
algebra. If B has property P1 and dim B = n, is B a maximal P1 algebra?

In Section 3 and Section 4, we prove that if a unital P1 subalgebra B ⊂ Mn(C)

is semisimple or singly generated and dim B = n, then B is a maximal P1 algebra.
In [Larson 1982], the third author showed that if a weakly closed operator

algebra B has property P1, then B is 3-reflexive [Azoff 1973], that is, its three-
fold ampliation B(3) is reflexive. (This result also holds for linear subspaces with
the same proof). He raised the following problem: Suppose dim H = n ∈ N and
B⊂ L(H)≡Mn(C) is a unital operator algebra with property P1. Is B 2-reflexive?
Note that this question also makes sense for linear subspaces. Azoff [1986] showed
that the answer to the above question is affirmative for n=3 (for all linear subspaces
of M3(C) with property P1). Very little additional progress has been made on this
problem since the mid 1980’s. The purpose of the research project resulting in this
article was to push further on this problem. In Section 6 of this paper, we will
show that the answer to the above question for unital algebras is also affirmative
for n = 4. The proof requires a detailed analysis of several subcases undertaken in
the preceding sections.
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We would like to pose the following subquestion.

Question 3. Suppose dim H = n ∈N and B ⊂ L(H)≡ Mn(C) is a unital operator
algebra with property P1 and dim B = n. Is B 2-reflexive?

Throughout this paper, we will use the following notation. If H is a Hilbert
space and n is a positive integer, then H (n) denotes the direct sum of n copies of
H , that is, the Hilbert space H⊕· · ·⊕H . If a is an operator on H , then a(n) denotes
the direct sum of n copies of a (regarded as an operator on H (n)). However, we
will use In instead of I (n) to denote the identity operator on H (n). If B is a set of
operators on H , then B(n) = {b(n) : b ∈ B}.

This paper focuses on problems concerning operator algebras and linear sub-
spaces of operators in finite dimensions. All of our results and proofs are given for
finite dimensions. However, many of the definitions are given in the mathematics
literature for infinite (as well as finite) dimensions, where the Hilbert space is
assumed to be separable. The Hahn–Banach theorem and the Riesz representation
theorem, the definitions of reflexive algebras and subspaces, the properties P1 and
Pk , are all given in the literature for infinite dimensions, but we will only use them
here in the context of finite dimensions. In cases where proofs of known results
are given for the sake of exposition, we will usually just give the proofs for finite
dimensions. However, we will adopt the convention that if the statement of a result
or definition in this article does not specify finite dimensions, then the reference
we cite actually gives the infinite dimensional proof, or, if no reference is cited,
then the proof we provide is in fact valid for infinite dimensions.

We will use some standard notation: If A ∈ L(H), it is common to use Alg(A)
to denote the algebra generated by A and I and Alg0(A) to denote the algebra
generated by A alone. If L is a lattice of subspaces, then it is also common to use
Alg(L) to denote the algebra of operators that holds each element of L invariant.
The meaning of the use of Alg(·) will be clear from context so there will be no
ambiguity.

2. Preliminaries

Let H be a Hilbert space with dim H = n. Then L(H) ≡ Mn(C). Let {ei }
n
i=1 be

an orthonormal basis of H . If a ∈ L(H)≡Mn(C) is an arbitrary operator, then the
trace of a is defined as

Tr(a)=
n∑

i=1

〈aei , ei 〉.

It is easy to show that Tr(a) does not depend on the choice of {ei }
n
i=1. Moreover, the

trace has the important property that Tr(ab)=Tr(ba) for all a, b∈ L(H)≡Mn(C).
In this case, the space of trace class operators on H , denoted L∗, can be identified
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algebraically with Mn(C), and is equipped with the trace class norm

‖a‖1 = Tr((a∗a)1/2).

Recall that the dual of a linear space is the space of all (continuous) linear func-
tionals on the space. In the case of L∗ = Mn(C), every linear functional on L∗ has
the form a→ Tr(ab) for some b ∈ L(H)≡ Mn(C). In this way, L(H) is identified
as the dual space of L∗, and L∗ is called the predual of L(H). If S ⊂ L(H) is a
linear subspace, then as a linear space itself S can be identified as the dual of the
quotient linear space L∗/S⊥, where S⊥ = {a ∈ L∗|Tr(ba) = 0 for all b ∈ S} is the
preannihilator of S. Here, as usual, the quotient space L∗/S⊥ means the set of all
cosets of L∗, {x+ S⊥|x ∈ L∗}. We also write x+ S⊥ as [x]. We write S∗= L∗/S⊥.
The duality between S and S∗ is that if [x] ∈ S∗ for some x ∈ L∗, and associate the
linear functional on S given by

b→ Tr(bx), for all b ∈ S.

This is well defined by the definition of S⊥. In order to obtain S as exactly the
dual of the space S∗, one needs to apply a version of the Hahn–Banach theorem
[Han et al. 2007]. We say a linear subspace S of L(H) ≡ Mn(C) has property P1

if every element of its predual B∗ has the form x + B⊥ with rank(x)≤ 1.
Let B ⊂ L(H) ≡ Mn(C) be a unital operator subalgebra. If z ∈ L(H) is

an invertible operator, elementary computations yield (zBz−1)⊥ = z−1 B⊥z and
(zBz−1)∗ = z−1 B∗z, where the multiplication action of z on the quotient space B∗
is given by

z−1(x + B⊥)z = z−1xz+ z−1 B⊥z = z−1xz+ (zBz−1)∗.

From this it is easy to see that if B has property P1, then so does zBz−1. It is also
true that B has property P1 if and only if its adjoint algebra B∗ = {b∗|b ∈ B} has
property P1.

Lemma 2.1 [Larson 1982]. An algebra B has property P1 if and only if every
element b∗ ∈ B∗ has the form x + B⊥ with rank(x)≤ 1.

Proof. Only if is trivial. Suppose every element b∗ ∈ B∗ has the form x + B⊥ with
rank(x)≤ 1. Note that for each b∈ B and each b⊥ ∈ B⊥, Tr(bb⊥)= 0. This implies
that L(H) = B∗⊕ B⊥ with respect to the inner product 〈x, y〉 = Tr(y∗x). So for
each a ∈ L(H), a= b∗+b⊥ for some b∗ ∈ B∗ and b⊥ ∈ B⊥. Therefore, a= x+B⊥
with rank(x)≤ 1 by the assumption of the lemma. �

Lemma 2.2. Let B be a subalgebra of L(H). If B has property P1 and p ∈ B is a
projection, then pBp ⊂ L(pH) also has property P1.

Proof. Suppose z ∈ B⊥ and b ∈ B. Then Tr(pbppzp) = Tr(pbpz) = 0. So
pzp ∈ (pBp)⊥. For each a ∈ L(H), there exists a b⊥ ∈ B⊥ such that the rank of
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a+ b⊥ is at most 1. So the rank of pap+ pb⊥ p = p(a+ b⊥)p is at most 1. This
proves the lemma. �

Recall that a vector ξ ∈H is a separating vector of B if bξ = 0 for some b ∈ B
then b = 0. We say that B has the separating vector property if it has a separating
vector. A direct sum of subspaces with the separating vector property has the
separating vector property (take the direct sum of the separating vectors). If B is
similar to a subspace with a separating vector, then B has a separating vector. (If
B = T CT−1, and x separates C , then T x separates B).

Lemma 2.3. If Alg(A, I ) is a singly generated unital subalgebra of L(H) with H
finite dimensional, then B has a separating vector.

Consider a Jordan block B. The vector
0
...

0
1


separates B. Since any matrix is similar to a finite direct sum of Jordan blocks,
and each Jordan block has a separating vector, the result follows.

The following result is the finite-dimensional special case of Proposition 1.2 of
[Herrero et al. 1991].

Theorem 2.4. If B is a subalgebra of L(H), with H finite dimensional, such that
either B or B∗ has a separating vector, then B has property P1.

Property Pk , a generalization of property P1, was also introduced by the third
author in [Larson 1982]. Recall that an algebra B has property Pk if every element
of its predual B∗ has the form x + B⊥ with rank(x)≤ k.

Lemma 2.5 [Larson 1982]. Let B be a subalgebra of L(H). Then B has property
Pk if and only if B(k) = {b(k)|b ∈ B} ⊂ L(H (k)) has property P1.

Proof. “⇒”. By Lemma 2.1, we need to show that each operator (b∗)(k), b ∈ B,
can be written as f + B⊥ with rank( f )≤ 1. Note that

B(k)
⊥
=
{
(xi j )k×k |x11+ · · ·+ xkk ∈ B⊥

}
⊃
{
(xi j )k×k |x11 · · · , xkk ∈ B⊥

}
.

By the assumption, B has property Pk . So there exists a b⊥ ∈ B⊥ such that the
rank of b∗ + b⊥ is at most k. We can write b∗ + b⊥ = ξ1 ⊗ η1 + · · · + ξk ⊗ ηk ,
where ξi ⊗ ηi is the rank one operator defined by ξi ⊗ ηi (ξ) = 〈ξ, ηi 〉ξi . Let
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zi i = kξi ⊗ ηi −
∑

1≤r≤k ξr ⊗ ηr , 1≤ i ≤ k, and let

z =


z11 kξ2⊗ η2 · · · kξk ⊗ ηk

kξ1⊗ η1 z22 · · · kξk ⊗ ηk

· · · · · · · · · · · ·

kξ1⊗ η1 kξ2⊗ η2 · · · zkk

 .
Then z ∈ B(k)

⊥
and

(b∗)(k)+ (b⊥)(k)+ z = k


ξ1⊗ η1 ξ2⊗ η2 · · · ξk ⊗ ηk

ξ1⊗ η1 ξ2⊗ η2 · · · ξk ⊗ ηk

· · · · · · · · · · · ·

ξ1⊗ η1 ξ2⊗ η2 · · · ξk ⊗ ηk


is a rank 1 matrix.

“⇒”. By the assumption, for each a ∈ L(H) there exists z ∈ B(n)
⊥

such that the
rank of a(n) + z is at most 1. Write z = (zi j )k×k . Then z11 + · · · + zkk ∈ B⊥ and
the rank of a+ zi i is at most 1. So the rank of

a+
1
k
(z11+ · · ·+ zkk)=

1
k
((a+ z11)+ · · ·+ (a+ zkk))

is at most k. �

Corollary 2.6. If B is a subalgebra of L(H) and dim H = k, then B(k) ⊂ L(H (k))

has property P1.

3. Semi-simple maximal P1 algebras

Suppose B is a subalgebra of Mn(C) which has property P1. Recall that B is
a maximal P1 algebra of Mn(C) if whenever A is a subalgebra of Mn(C) having
property P1 and A⊇ B, then A= B. The main result of this section is the following
theorem.

Theorem 3.1. Let B ⊆ Mn(C) be a unital semisimple algebra. If B has property
P1, then dim B ≤ n. Furthermore, if dim B = n, then B is a maximal P1 algebra.

To prove this theorem, we will need the following lemmas:

Lemma 3.2. Let B ⊆ L(H)= Mn(C) be a semisimple algebra. If B has property
P1, then dim B ≤ n.

Proof. We will use induction on n. The case n = 1 is clear. Suppose this is
true for n ≤ k and let B ⊂ Mk+1(C) be a semisimple algebra. We need to show
dim B ≤ k+1. Suppose B has a nontrivial central projection, p, 0< p< 1. Then,
B = pBp⊕ (1− p)B(1− p). By Lemma 2.1,

pBp ⊂ L(pH) and (1− p)B(1− p)⊂ L((1− p)H),
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are both semisimple algebras with property P1. By the assumption of induction
dim pBp ≤ dim(pH) and dim(1− p)B(1− p)≤ dim(1− p)H . Therefore,

dim B = dim(pBp)+ dim((1− p)B(1− p))

≤ dim pH + dim(1− p)H

= dim H = k+ 1.

Suppose B does not have a nontrivial central projection. Then, B ∼= Mr (C). Since
B has property P1, r2

≤ n+ 1 by Lemma 2.5. So r ≤ n+ 1. �

Lemma 3.3. Suppose 0 6= a ∈ Mn(C). Then there exists a finite set of operators
b1, . . . , bk, c1, . . . , ck , such that

∑k
i=1 bi aci = In .

Proof. Note that Mn(C)aMn(C) is a two sided ideal of Mn(C) and

Mn(C)aMn(C) 6= 0.

Since Mn(C) is a simple algebra, Mn(C)aMn(C) = Mn(C), which implies the
lemma. �

The following well known lemma will be very helpful.

Lemma 3.4. There are finitely many unitary matrices u1, u2, . . . , uk ∈Mn(C) such
that 1

k

∑k
i=1 ui au∗i = (Tr(a)/n)In for all a ∈ Mn(C).

The following lemma is a special case of Lemma 3.6. However, we include its
proof to illustrate our idea.

Lemma 3.5. Suppose B is a unital subalgebra of M4(C) and B ∼= M2(C), then B
is a maximal P1 algebra.

Proof. We may write M4(C) as M2(C)⊗M2(C) and assume B=M2(C)⊗ I2. Note
that with respect to the matrix units of I2⊗M2(C), each element of B=M2(C)⊗ I2

has the following form
(

a 0
0 a

)
, a ∈ M2(C). By Corollary 2.6, B has property P1.

Assume B ( R ⊆ M4(C) and R is an algebra with property P1. We can write
R = R1 + J , where R1 ⊃ B is the semisimple part and J is the radical of R.
Since R has property P1, R1 has property P1. By Lemma 3.2, dim R1 ≤ 4. Since
dim B = 4, we have R1 = B.

Suppose 0 6= x = (xi j )1≤i, j≤2 ∈ J with respect to the matrix units I2⊗M2(C).
Without loss of generality, we may assume x11 6= 0. By Lemma 3.3, there are sets
of operators b1, . . . , bk, c1, . . . , ck ∈ M2(C), such that

k∑
i=1

bi x11ci = I2. (1)
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Let y = (yi j )1≤i, j≤2 =
∑k

i=1(bi ⊗ I2)x(ci ⊗ I2) ∈ J . By (1), we have y11 = I2.
Choose unitary matrices u1, . . . , uk as in Lemma 3.4. Let

z = (zi j )=

k∑
i=1

(ui ⊗ I2)y(u∗i ⊗ I2) ∈ J.

Then, z11 = I2 and zi j = λi j I2 for some λi j ∈ C, 1≤ i, j ≤ 2. So, z ∈ I2⊗M2(C).
Since z∈ J , z2

=0, as elements in the radical are nilpotent. By the Jordan canonical
theorem, there exists an invertible matrix w ∈ I2⊗M2(C) such that

wzw−1
= I2⊗

(
0 1
0 0

)
.

Replacing R by wRw−1, we may assume that R contains B and I2 ⊗
(

0 1
0 0

)
.

Furthermore, we may assume that R is the algebra generated by M2(C)⊗ I2 and
I2⊗

(
0 1
0 0

)
. Then

R =
{(

a b
0 a

)
: a, b ∈ M2(C)

}
.

Simple computation shows that R does not have property P1. This is a contradic-
tion. Therefore J = 0 and R = B. �

Lemma 3.6. Let B be a unital subalgebra of Mn2(C) such that B ∼= Mn(C). Then
B is a maximal P1 algebra.

Proof. We may write Mn2(C) as Mn(C)⊗Mn(C) and assume B=Mn(C)⊗In . Note
that with respect to the matrix units of In⊗Mn(C), each element of B=Mn(C)⊗ In

has the form 
a 0 · · · 0
0 a · · · 0
...
...
. . .

...

0 0 · · · a

 , a ∈ Mn(C).

By Corollary 2.6, B has property P1. Assume B ( R⊆Mn2(C) and R is an algebra
with property P1. We can write R = R1+ J , where R1 ⊃ B is the semisimple part
and J is the radical of R. Since R has property P1, R1 has property P1. By
Lemma 3.2, dim R1 ≤ n2. Since dim B = n2, we have R1 = B.

Suppose 0 6= x = (xi j )1≤i, j≤n ∈ J with respect to the matrix units In ⊗Mn(C).
Without loss of generality, we may assume x11 6= 0. By Lemma 3.3, there are finite
sets of operators b1, . . . , bk, c1, . . . , ck ∈ Mn(C), such that

k∑
i=1

bi x11ci = In. (2)
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Let y = (yi j )1≤i, j≤n =
∑k

i=1(bi ⊗ In)x(ci ⊗ In) ∈ J . By (2), we have y11 = In .
Choose unitary matrices u1, . . . , uk as in Lemma 3.4. Let

z = (zi j )=

k∑
i=1

(ui ⊗ In)y(u∗i ⊗ In) ∈ J.

Then, z11 = In and zi j = λi j In for some λi j ∈C, 1≤ i, j ≤ n. So, z ∈ In⊗Mn(C).
Since z ∈ J , zn

= 0, as elements in the radical are nilpotent. By the Jordan
Canonical theorem, there exists an invertible matrix w ∈ In ⊗ Mn(C) such that
0 6=wzw−1

=
⊕k

i=1 zi ∈ In⊗Mn(C) and each zi is a Jordan block with diagonal 0.
Replacing R by wRw−1, we may assume R contains B and wzw−1

∈ In⊗Mn(C).
Suppose r =max{rankzi :1≤ i,≤ k}. We may assume rankz1=· · ·= rankzs = r

and rank zi < r for all s < i ≤ k. Then zr−1
= In ⊗

((⊕s
i=1 zr−1

)
⊕ 0

)
. Note that

zr−1
i =



0 · · · 0 1
0 · · · 0 0
.

.

.

0 · · · 0 0


.

We may assume R is the algebra generated by Mn(C)⊗ In and zr−1.
Without loss of generality, we assume r = 2, and s = n/2. The general case can

be proved similarly. Then

R =





(
a b
0 a

)
0

. . .

0
(

a b
0 a

)


s×s

: a, b ∈ Mn(C)


.

Simple computations show that

R⊥=





(
x1 ∗

y1 x2

)
∗

. . .

∗

(
xn−1 ∗

ys xn

)


s×s

: xi , yi ∈ Mn(C),

n∑
i=1

xi =

s∑
i=1

yi = 0


.

Let

m =
(

0n 0n

In 0n

)
.
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Since R has property P1, we can write m(s)
= x + R⊥ such that the rank of x is

at most 1. This implies that In + y1, In + y2, . . . , In + ys are all rank-1 matrices
for some y1, . . . , ys ∈ Mn(C) with y1 + · · · + ys = 0. Therefore, the rank of
In+ y1+ In+ y2+· · ·+ In+ ys = s In is at most s = n

2 < n. This is a contradiction.
So J = 0 and R = B. �

The following is a key lemma to prove Theorem 3.1, which has an independent
interest.

Lemma 3.7. Let λ 6= 0 be a complex number, and let y1, y2, . . . , yn ∈ Mn(C)

satisfy y1+ y2+· · ·+ yn = 0. Suppose η1, η2, . . . , ηn ∈ Cn are linearly dependent
vectors, and

t =


λ ∗ ∗ ∗ · · · ∗

η1 In + y1 ∗ ∗ · · · ∗

η2 ∗ In + y2 ∗ · · · ∗

...
...

...
...
. . .

...

ηn ∗ ∗ ∗ · · · In + yn

 .
Then rank t > 1.

Proof. We may assume that η1, . . . , ηk−1, k ≤ n, are linearly independent vectors,
and each η j , k ≤ j ≤ n, can be written as a linear combination of η1, . . . , ηk−1.
Write

ηi =

σi1
...

σin

 .
We may assume that the (k − 1)× (k − 1) matrix (σi, j )(k−1)×(k−1) is invertible.
Using row reduction, we can transform t to a new matrix

λ ∗ ∗ ∗ · · · ∗

η′1 In + y′1 ∗ ∗ · · · ∗

η′2 ∗ In + y′2 ∗ · · · ∗

...
...

...
...
. . .

...

η′n ∗ ∗ ∗ · · · In + y′n


such that the k-th row of each η′j is 0 for 1≤ j ≤ n, and y′1+ · · ·+ y′n = 0. So the
( jk+ 1, 1)-th entry of t ′ is zero for all 1≤ j ≤ n.

Suppose t is a rank 1 matrix. Then t ′ is also a rank 1 matrix. By the assumption,
λ 6= 0. This implies that each entry of the ( jk + 1)-th row of t ′ is zero for all
1 ≤ j ≤ n. In particular, the (k, k)-th entry of In + y′j is 0 for all 1 ≤ j ≤ n.
Therefore, the (k, k)-th of In + y′1+ In + y′2+ · · · + In + y′n = nIn is zero. This is
a contradiction. So rank t > 1. �
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The following lemma is a special case of Lemma 3.10. However, we include its
proof to illustrate our idea.

Lemma 3.8. Suppose dim H = 5 and

B =


λ 0 0

0 a 0
0 0 a

 : λ ∈ C, a ∈ M2(C)

⊂ L(H)= M5(C).

Then, B is a maximal P1 algebra.

Proof. Since B has a separating vector, B has property P1 by Theorem 2.4. Suppose
B ⊂ R ⊆ M5(C) and R has property P1. We can write R = R1+ J , where R1 ⊃ B
is the semisimple part and J is the radical part. By Lemma 3.2, B = R1.

Suppose 0 6= x ∈ J . Let

p =

1 0 0
0 0 0
0 0 0

 and q =

0 0 0
0 I2 02

0 02 I2

 .
Then q Bq ⊆ q Rq ⊂ B(P H)=M4(C). By Lemma 3.5, q Bq = q Rq. This implies
that we may assume

0 6= x =

0 ξ T ηT

0 02 02

0 02 02

 , where ξ, η ∈ C2.

Case 1. ξ and η are linearly independent vectors. Note that

x ·

0 0 0
0 a 0
0 0 a

=
0 ξ T a ηT a

0 0 0
0 0 0

 ∈ R.

Since ξ and η are linearly independent, and a ∈ M2(C) is arbitrary, this implies
that

R ⊇


λ ξ T ηT

0 a 0
0 0 a

 : λ ∈ C, ξ, η ∈ C2, a ∈ M2(C)

 .
Simple computation shows that

R⊥ ⊆


0 ∗ ∗

0 y1 ∗

0 ∗ y2

 : y1, y2 ∈ M2(C), y1+ y2 = 0

 .
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Since R has property P1, we can write I5 = x + R⊥ such that the rank of x is at
most 1. This gives us a rank 1 matrix x of the form

R⊥ =

1 ∗ ∗

0 y1+ I2 ∗

0 ∗ y2+ I2

 , where y1+ y2 = 0.

This contradicts Lemma 3.7.

Case 2. ξ and η are linearly dependent. Without loss of generality, assume η= tξ .
So

x =

0 ξ T tξ T

0 02 02

0 02 02

 and x

0 0 0
0 a 0
0 0 a

=
0 ξ T a tξ T a

0 0 0
0 0 0

 .
Since ξ 6= 0, and a ∈ M2(C) is arbitrary, this implies that

R ⊃


λ ξ T tξ T

0 a 0
0 0 a

 : λ ∈ C, ξ ∈ C2, a ∈ M2(C)

 .
Simple computation shows that

R⊥ ⊂
{( 0 ∗ ∗

η1 y1 ∗
η2 ∗ y2

)
y1, y2 ∈ M2(C) : y1+ y2 = 0, η1, η2 ∈ C2, η1+ tη2 = 0

}
. (3)

Since R has property P1, we can write I5 = x + R⊥ such that the rank of x is at
most 1. This gives us a rank 1 matrix x of the form

R⊥ =

 1 ∗ ∗

η1 y1+ I2 ∗

η2 ∗ y2+ I2

 ,
where η1+ tη2 = 0 and y1+ y2 = 0. This contradicts Lemma 3.7. �

Lemma 3.9. Suppose {zi j }1≤i≤s,1≤ j≤r ⊆ Msr (C) and {c j i }1≤i≤s,1≤ j≤r ⊆ Mrs(C)

such that
s∑

i=1

r∑
j=1

zi j ac j i b = 0, for all a ∈ Mr (C), for all b ∈ Ms(C).

If c j i 6= 0 for some 1≤ i ≤ s, 1≤ j ≤ r , then zi j are linearly dependent.

Proof. We may assume c11 6= 0 and the (1, 1) entry of c11 is 1. Replacing c j i by
1 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 c j i


1 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 ,
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we may assume

c j i = λi j


1 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 , where λ11 = 1.

Let zk
i j be the k-th column of zi j . Simple computation shows that

s∑
i=1

r∑
j=1

zi j c j i = 0

is equivalent to
∑s

i=1
∑r

j=1 λi j z1
i j = 0. Let

a =


0 0 · · · 0
1 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 .
Simple computation shows that

∑s
i=1

∑r
j=1 zi j ac j i = 0 is equivalent to

s∑
i=1

r∑
j=1

λi j z2
i j = 0.

Choosing a appropriately, we have
∑s

i=1
∑r

j=1 λi j zk
i j = 0 for all 1 ≤ k ≤ n. This

implies
∑s

i=1
∑r

j=1 λi j zi j = 0. �

Lemma 3.10. Suppose dim H = (r2
+ s2) and

B = {a(r)⊕ b(s) : a ∈ Mr (C), b ∈ Ms(C)} ⊂ L(H)= M(r2+s2)(C).

Then B is a maximal P1 algebra.

Proof. Since B has a separating vector, B has property P1 by Theorem 2.4. Suppose
B ⊆ R ⊆ M(r2+s2)(C) and R has property P1. We can write R = R1 + J , where
R1 ⊃ B is the semisimple part and J is the radical part. By Lemma 3.2, B = R1.

Suppose 0 6= x ∈ J . Let p= I (r)r ⊕0 and q=0⊕I (s)s . Then, pBp⊆ pRp⊆ B(pH)
and pRp has property P1. By Lemma 3.6, pRp = pBp. Similarly, q Rq = q Bq .
So we may assume

0 6= x =

(
0(r)r c
0 0(s)s

)
.

Write c = (ci j )1≤i≤r,1≤ j≤s . Note that c 6= 0.
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Suppose

z =



x1 ∗ · · · ∗ ∗ ∗ · · · ∗

∗ x2 · · · ∗ ∗ ∗ · · · ∗

. . .
. . .

∗ ∗ · · · xr ∗ ∗ · · · ∗

z11 z12 · · · z1r y1 ∗ · · · ∗

z21 z22 · · · z2r ∗ y2 · · · ∗

. . .
. . .

zs1 zs2 · · · zsr ∗ ∗ · · · ys


∈ R⊥.

Since R⊥ ⊂ B⊥, x1+ x2+ · · ·+ xr = 0r and y1+ y2+ · · ·+ ys = 0s . Note that

x(a(r)⊕ b(s))=

(
0(r)r cb(s)

0 0(s)s

)
.

Since x ∈ R⊥ and x(a(r)⊕ b(s)) ∈ R, we have

Tr


z11 . . . z1r
...

zs1 . . . zsr


c11 . . . c1s
...

cr1 . . . crs


b

. . .

b


= 0.

Simple computation shows that Tr(
∑s

i=1
∑r

j=1 zi j c j i b) = 0. Since b ∈ Ms(C)

is an arbitrary matrix,
∑s

i=1
∑r

j=1 zi j c j i = 0.
Note that

(a(r)⊕ 0)x(0⊕ b(s))=

(
0(r)r a(r)cb(s)

0 0(s)s

)
=

(
0(r)r (aci j b)1≤i≤r,1≤ j≤s

0 0(s)s

)
.

By similar arguments as above, we have
∑s

i=1
∑r

j=1 zi j ac j i b=0 for all a∈Mr (C)

and b ∈ Ms(C). By Lemma 3.9, this implies that {zi j }1≤i≤s,1≤ j≤r are linearly
dependent matrices.

Since R has property P1, Ir2+s2 = x + R⊥ for some x such that the rank of x is
at most 1. So x is a matrix of the form

Ir + x1 ∗ · · · ∗ ∗ ∗ · · · ∗

∗ Ir + x2 · · · ∗ ∗ ∗ · · · ∗

. . .
. . .

∗ ∗ · · · Ir + xr ∗ ∗ · · · ∗

z11 z12 · · · z1r Is + y1 ∗ · · · ∗

z21 z22 · · · z2r ∗ Is + y2 · · · ∗

. . .
. . .

zs1 zs2 · · · zsr ∗ ∗ · · · Is + ys


.
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Since x is a rank 1 matrix, (zi j )1≤i≤s,1≤ j≤r are rank 1 matrices. So there are
ξ1, . . . , ξs ∈Cs, η1, . . . , ηr ∈Cr such that zi j = ξi⊗η j for 1≤ i ≤ s and 1≤ j ≤ r .
Since {zi j }1≤i≤s,1≤ j≤r are linearly dependent matrices, either {ξi }

s
i=1 are linearly

dependent or {η j }
r
j=1 are linearly dependent. Without loss of generality, assume

{ξi }
s
i=1 are linearly dependent. Now, x is a matrix of the form

Ir + x1 ∗ · · · ∗ ∗ ∗ · · · ∗

∗ Ir + x2 · · · ∗ ∗ ∗ · · · ∗

. . .
. . .

∗ ∗ · · · Ir + xr ∗ ∗ · · · ∗

ξ1⊗ η1 ξ1⊗ η2 · · · ξ1⊗ ηr Is + y1 ∗ · · · ∗

ξ2⊗ η1 ξ2⊗ η2 · · · ξ2⊗ ηr ∗ Is + y2 · · · ∗

. . .
. . .

ξs ⊗ η1 ξs ⊗ η1 · · · ξs ⊗ ηr ∗ ∗ · · · Is + ys


.

Since x1 + · · · + xr = 0, one entry of Ir + xi is not zero for some 1 ≤ i ≤ r . We
may assume the (1, 1) entry of Ir + x1 is λ 6= 0. Let

η1 =


α1

α2
...

αr

 .
Then the matrix 

λ ∗ · · · ∗

α1ξ1 Is + y1 · · · ∗

...
. . .

α1ξs ∗ · · · Is + ys


has rank 1 since it is a submatrix of x . This contradicts Lemma 3.7. So R = B. �

Proof of Theorem 3.1. By Lemma 3.2, if B has P1, then dim B ≤ n. Assume B has
property P1, and dim B= n. We claim B=

⊕r
i=1 Mni (C)

(ni ) and n=
∑r

i=1 n2
i . We

will proceed by induction on n. If n= 1, this is clear. Assume our claim is true for
n≤ k. Let B⊆Mk+1(C) be a semisimple P1 algebra and dim B= k+1. Suppose B
has a nontrivial central projection p, 0< p< 1. Then, B= pBp⊕(1− p)B(1− p).
By Lemma 2.1, pBp ⊆ B(pH) and (1− p)B(1− p) ⊆ B((1− p)H) are both
semisimple algebras with property P1. By Lemma 3.2, dim(pBp)= dim(pH) and
dim((1− p)B(1− p))= dim((1− p)H). By induction, pBp =

⊕r1
i=1 Mni (C)

(ni ),
(1− p)B(1− p)=

⊕r2
i=1 Mmi (C)

(mi ), and
∑r1

i=1 n2
i +

∑r2
i=1 m2

i = k+ 1. Suppose
B does not have a nontrivial central projection. Then B = Mr (C)⊆ Mn+1(C) and
dim B = r2

= n+ 1 by Lemma 2.5.
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Suppose B ( R ⊆ Mk(C) ∈ L(H) and R is an algebra with property P1. Let
0 6= x ∈ R \ B. Note that B =

⊕r
i=1 Mni (C)

(ni ). Let pi be the projection of B that
corresponds to the summand Mni (C)

(ni ). Then, we have pi Bpi ⊆ pi Rpi ⊆ L(pi H)
and pi Rpi has property P1. By Lemma 3.6, pi Rpi = pi Bpi . So we may assume

0 6= x =


0(n1)

n1 x12 x13 · · · x1nr

0(n2)
n2 x23 · · · x2nr

. . .
...

0(nr−1)
nr−1 xr−1r

0 0(nr )
nr

 .

We may assume that x12 6= 0. Then

(p1+ p2)x(p1+ p2) ∈ (p1+ p2)R(p1+ p2) \ (p1+ p2)B(p1+ p2).

By Lemma 2.1, (p1+ p2)R(p1+ p2) has property P1. By Lemma 3.10,

(p1+ p2)B(p1+ p2)= Mn1(C)
(n1)⊕Mn2(C)

(n2)

is a maximal P1 algebra. This is a contradiction. So B is a maximal P1 algebra. �

4. Singly generated maximal P1 algebras

In this section, we prove the following result.

Theorem 4.1. Suppose B is a singly generated unital subalgebra of Mn(C) and
dim B = n. Then B is a maximal P1 algebra.

To prove Theorem 4.1, we need several lemmas. Let Jn be the n × n Jordan
block.

Lemma 4.2. Let B be the unital subalgebra of Mn(C) generated by the Jordan
block Jn . If N ⊃ B is a subalgebra of the upper-triangular algebra of Mn(C) and
N has property P1, then N = B.

Proof. Suppose N ) B is a subalgebra of the upper-triangular algebra and N has
property P1. Note that

B =

{
n−1∑
k=0

λk(Jn)
k
: λ0, . . . , λn−1 ∈ C

}
.
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A special case. Suppose N contains an operator x of the following form

x =


0 · · · 0 λ 0

0 · · · 0 η

0 · · · 0
. . .

...

0

 , (4)

where λ 6= η. Then N contains the algebra generated by B and x . Therefore,

N ⊃




λ1 · · · λn−2 α γ

λ1 · · · λn−2 β

λ1 · · · λn−2
. . .

...

λ1

 : λ1, . . . , λn−2, α, β, γ ∈ C


.

Simple computation shows that

N⊥ ⊂




∗ · · · ∗ 0 0
∗ · · · ∗ 0
∗ · · · ∗

. . .
...

∗




.

It is easy to see that the operator (Jn)
n−2 can not be written as a sum of a rank

one operator and an operator in N⊥. This contradicts the assumption that N has
property P1.

The general case. Suppose z ∈ N \ B. By the assumption of the lemma, z =
(zi, j )n×n is an upper-triangular matrix. Since z /∈ B, we may assume that

z j, j+k−1 6= z j+r, j+r+k−1

for some positive integers j, k, r , and zs,t = 0 for t < s + k − 1. Without loss of
generality, we assume that z1,k 6= z2,1+k and 1≤ k ≤ n− 1. If k = n− 1, then this
implies that N contains an x as in (4). If k < n − 2, then (Jn)

k+1z (or consider
z(Jn)

k+1 if zn−1,n−1 6= zn,n) is a matrix in N . If we write

(Jn)
k+1z = (yi j )n×n.

Then y1,k+1 6= y2,k+2 and ys,t = 0 for t < s + k. Repeating the above arguments,
we can see that N contains an x as in (4). This completes the proof. �

Lemma 4.3. Let B be the unital subalgebra of Mn(C) generated by the Jordan
block Jn . Then B is a maximal P1 algebra.
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Proof. Suppose N ⊃ B is a subalgebra of Mn(C) and N has property P1. By
Wedderburn’s theorem,

N = Mn1(C)⊕ · · ·Mns (C)⊕ J,

where J is the radical of N .

Case 1. n1 = · · · = ns = 1. Then N is triangularizable, that is, there exists a
unitary matrix u ∈ Mn(C) such that uNu∗ is contained in the algebra of upper-
triangular matrices (see [Christensen 1999, Proposition 2.5]). Since Jn ∈ B ⊂ N ,
u Jnu∗ is a strictly upper-triangular matrix. Simple computation shows that u has
to be a diagonal matrix. Therefore, N = u∗(uNu∗)u is contained in the algebra of
upper-triangular matrices. Since N has property P1, N = B by Lemma 4.2.

Case 2. Suppose ni ≥ 2 for some i , 1≤ i ≤ s. Choose a nonzero partial isometry
v ∈Mni (C) such that v2

= 0. Then either v /∈ B or v∗ /∈ B since B does not contain
any nontrivial projections. We may assume that v /∈ B. Consider the subalgebra Ñ
generated by v and B. An element of Ñ can be written as b1vb2v · · · vbn , where
bi ∈ J for 2 ≤ i ≤ n − 1, b1 = 1 or b1 ∈ J , bn = 1 or bn ∈ J . By Lemma 2.1
of [Christensen 1999], Ñ = C1⊕ J̃ , where J̃ is the radical part of Ñ such that
v ∈ J̃ . Note that Ñ also has property P1. By Case 1, Ñ = B. So v ∈ B. This is a
contradiction. �

Lemma 4.4. Let Bi ⊂ Mni (C) be the unital subalgebra generated by the Jordan
block Jni for i = 1, 2. Then B= B1⊕B2 is a maximal P1 subalgebra of Mn1+n2(C).

Proof. Suppose B ( N ⊂ Mn1+n2(C) and N has property P1. Let pi be the central
projections of B corresponding to Bi . Then B1 ⊂ p1 N p1 ⊂ Mn1(C) and p1 N p1

has property P1. By Lemma 4.3, p1 N p1 = B1. Similarly, p2 N p2 = B2. Suppose
x ∈ N \ B. Then we may assume that 0 6= x = p1xp2. With respect to matrix units
of Mn1(C) and Mn2(C), we can write x as

x =
(

0 (xi j )n1×n2

0 0

)
,

where (xi j )n1×n2 is a nonzero matrix. Multiplying on the left by a suitable matrix
of B, we may assume that xi j = 0 for all i ≥ 2 (which can be easily seen for the
case n2 = 1, other cases are similar). Multiplying on the right by another suitable
matrix of B, we may further assume that x1,n2 = 1 and x1, j = 0 for 1≤ j ≤ n2−1.
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So we may assume that

x =


0n1×n1


0 · · · 1
0 · · · 0
· · · · · · · · ·

0 · · · 0


n1×n2

0 0n2×n2

 .

Let Ñ be the algebra generated by B and x above. Then

Ñ =





λ1 · · · λn1

. . .
...

0 λ1




0 · · · α

0 · · · 0
· · · · · · · · ·

0 · · · 0


n1×n2

0

η1 · · · ηn2

. . .
...

0 η1




: λi , η j , α ∈ C


.

Simple computation shows that

Ñ⊥ ⊂





∗ · · · 0
. . .

...

∗ ∗



∗ · · · 0
∗ · · · ∗

· · · · · · · · ·

∗ · · · ∗


∗

∗ · · · 0
. . .

...

∗ ∗






.

Let

y =




0 · · · 1
0 · · · 0
· · · · · · · · ·

0 · · · 0

 0n1×n2

0


0 · · · 1
0 · · · 0
· · · · · · · · ·

0 · · · 0




.

It is easy to see that the operator y cannot be written as a sum of a rank one operator
and an operator in Ñ⊥. This contradicts the fact that Ñ has property P1. �

Proof of Theorem 4.1. Suppose B is generated by a matrix T . By the Jordan
canonical form theorem, we may assume that T =

⊕r
i=1(λi + Jni ) and

∑r
i=1 ni =

n. Note that dim(B) = n if and only if λi 6= λ j for i 6= j , and if and only if
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B =
⊕r

i=1 Bi , where each Bi is the subalgebra of Mni (C) generated by the Jordan
block Jni .

Suppose B ( N ⊂Mn(C) and N has property P1. Let pi be the central projection
of B corresponding to Bi . Then Bi ⊂ pi N pi ⊂ Mni (C) and pi N pi has property
P1. By Lemma 4.3, Bi = pi N pi . Since B 6= N , there is an element 0 6= x ∈ N
such that x = pi xp j for some i 6= j . Without loss of generality, we may assume
that 0 6= x = p1xp2. Now we have B1⊕ B2 ( (p1+ p2)N (p1+ p2)⊆ Mn1+n2(C)

and (p1+ p2)N (p1+ p2) also has property P1. On the other hand, by Lemma 4.4,
B1⊕ B2 = (p1+ p2)N (p1+ p2). This is a contradiction. �

5. P1 algebras in Mn(C), n ≤ 4

Let B be a subalgebra of Mn(C). Then B = Mn1(C)⊕· · ·⊕Mns (C)⊕ J , where J
is the radical part of B. If n1, . . . , ns = 1, then B is upper-triangularizable, that is,
there exists a unitary matrix u such that u Bu∗ is a subalgebra of the upper-triangular
algebra of Mn(C) (see [Christensen 1999, Proposition 2.5] or [Humphreys 1972,
Corollary A, page 17]). The following lemma will be useful.

Lemma 5.1. [Azoff] Let S be a subspace of L(H) and consider the subalgebras
of L(H (2)) defined by

B =
{(
λe a
0 λe

)
: λ ∈ C, a ∈ S

}
, C =

{(
λe a
0 µe

)
: λ,µ ∈ C, a ∈ S

}
.

(1) B has property P1 if and only if S has property P1.

(2) C has property P1 if and only if S has property P1 and is intransitive.

Proposition 5.2. Let B be a unital subalgebra of M2(C) with property P1. Then B
is unitarily equivalent to one of the following three subalgebras:{(

λ 0
0 λ

)
: λ ∈ C

}
,

{(
λ 0
0 η

)
: λ, η ∈ C

}
,

{(
λ η

0 λ

)
: λ, η ∈ C

}
.

Proof. It is easy to verify that the above algebras have property P1. Suppose B
has property P1. Then the semisimple part of B must be abelian. Conjugating by
a unitary matrix, we may assume that B is a subalgebra of the algebra of upper-
triangluar matrices. Note that the algebra of upper-triangular matrices does not
have property P1. So B must be one of the algebras listed in the lemma. �

Proposition 5.3. Let B be a unital subalgebra of M3(C) with property P1. Then
either B or B∗ has a separating vector. Therefore, dim B ≤ 3. Furthermore, if
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dim B = 3, then B is similarly conjugate to one of the following algebras

A1 =


λ1 0 0

0 λ2 0
0 0 λ3

 : λ1, λ2, λ3 ∈ C

, A2 =


λ1 0 λ3

0 λ1 0
0 0 λ2

 : λ1, λ2, λ3 ∈ C

,
A3 =


λ1 λ3 0

0 λ1 0
0 0 λ2

 : λ1, λ2, λ3 ∈ C

, A4 =


λ1 λ2 λ3

0 λ1 λ2

0 0 λ1

 : λ1, λ2, λ3 ∈ C

,
A5 =


λ1 λ2 λ3

0 λ1 0
0 0 λ1

 : λ1, λ2, λ3 ∈ C

, A6 =


λ1 0 λ2

0 λ1 λ3

0 0 λ1

 : λ1, λ2, λ3 ∈ C

.
Proof. Suppose B has property P1. Then the semisimple part of B must be abelian.
Conjugating by a unitary matrix, we may assume that B is a subalgebra of the
algebra of upper-triangluar matrices. We consider the following cases.

Case 1. Suppose the semisimple part of B is C ⊕ C ⊕ C. Then B = A1 by
Theorem 3.1.

Case 2. Suppose the semisimple part of B is C ⊕ C. We may assume that the
semisimple part of B consists of matricesλ1 0 0

0 λ1 0
0 0 λ2

 .
We consider two subcases.

Subcase 2.1. Suppose B is contained in the following algebra

B1 =


λ1 0 λ3

0 λ1 λ4

0 0 λ2

 : λ1, . . . , λ4 ∈ C

 .
Simple computation shows that B1 does not have property P1 (the identity matrix
can not be written as x + (B1)⊥ such that the rank of x is at most 1). So B is a
proper subalgebra of B1. This implies that there exist α, β such that

B1 =


λ1 0 λ3α

0 λ1 λ3β

0 0 λ2

 : λ1, λ2, λ3 ∈ C

 .
If α 6= 0, let

s =

α 0 0
β 1 0
0 0 1

 .
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Simple computation shows that s A2s−1
= B, that is, s−1 Bs = A2. If α= 0, β 6= 0,

let

s =

0 1 0
β 0 0
0 0 1

 .
Then s A2s−1

= B, that is, s−1 Bs = A2. If α = β = 0, then clearly B has a
separating vector.

Subcase 2.2. Suppose B is not contained in B1. Since B is an algebra, B contains
A3. It is easy to see that A3 is the algebra generated by the matrix0 1 0

0 0 0
0 0 1


and dim A3 = 3. So B = A3 by Theorem 4.1.

Case 3. Suppose the semisimple part of B is C. Then B is contained in the fol-
lowing algebra

B3 =


λ1 λ2 λ3

0 λ1 λ4

0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B3 does not have property P1. So B is a proper subalgebra of
B3. We consider the following subcases.

Subcase 3.1. Suppose B contains an element

b =

0 α γ

0 0 β

0 0 0

 ,
such that α 6= 0 and β 6= 0. Conjugating by an invertible upper-triangular matrix,
we may assume that b= J3 is the Jordan block. So B contains A4. By Theorem 4.1,
B = A4.

Subcase 3.2. Suppose B does not contain an element b as in subcase 3.2. Then
B ⊆ A5 or B ⊆ A6. Note that A∗5 has a separating vector and A6 has a separating
vector. So both A5 and A6 have property P1. �

Lemma 5.4. Let

B =



λ1 λ2 λ3 λ4

0 λ1 λ2 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

⊂ M4(C).
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Then B is a maximal P1 algebra.

Proof. Note that B∗ has a separating vector. So B has property P1. Suppose A ) B
is a P1 algebra. Suppose A contains a matrix

a1 =


0 α ∗ ∗

0 0 β ∗

0 0 λ1 γ

0 0 0 λ1

 ,
such that γ 6= 0. Since B ⊂ A, we may assume that α 6= 0 and β 6= 0. Conjugating
by an upper-triangular invertible matrix, we may assume that A contains the matrix

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
So A is the algebra generated by the Jordan block by Theorem 4.1 and dim A= 4.
However, dim B = 4 and B ( A. This is a contradiction.

Therefore, A is contained in

λ1 ∗ ∗ ∗

0 λ1 ∗ ∗

0 0 λ1 0
0 0 0 λ1

 : λ1 ∈ C

 .
Since A is an algebra containing B and A 6= B, we may assume that A contains a
matrix of the following form

a2 =


0 0 0 0
0 0 s t
0 0 0 0
0 0 0 λ1

 ,
where either s 6= 0 or t 6= 0. Furthermore, we can assume that s = 1 and t 6= 0. Let
A1 be the algebra generated by B and a2. Then

A1 =



λ1 λ2 λ3 λ4

0 λ1 λ2+ λ5 tλ5

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ5 ∈ C

 .
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Simple computation shows that the predual space of A1 is

η1 ∗ ∗ ∗

tη5 η2 ∗ ∗

0 −tη5 η3 0
0 η5 0 η4

 : η1, . . . , η4 ∈ C, η1+ η2+ η3+ η4 = 0

 .
It is easy to show that the matrix 

0 0 0 0
0 0 0 0
−t 0 0 0
1 1 0 0


cannot be written as x + (A1)⊥ such that the rank of x is at most 1. This is a
contradiction. So B is a maximal P1 algebra. �

Proposition 5.5. Let B be a unital subalgebra of M4(C) with property P1. Then B
satisfies one of the following conditions:

(i) B has a separating vector.

(ii) B∗ has a separating vector.

(iii) B is similarly conjugate to an algebra of the form{(
λI2 s
0 ηI2

)
: λ, η ∈ C, s ∈ S

}
,

where S is a subspace of M2(C) with dimension 2.

In particular, dim B ≤ 4.

Proof. Suppose B has property P1. Then the semisimple part of B must be
M2(C) or abelian. If the semisimple part of B is M2(C), then B = M2(C)

(2)

by Theorem 3.1. So B has a separating vector. Suppose the semisimple part of B
is abelian. Conjugating by a unitary matrix, we may assume that B is a subalgebra
of the algebra of upper triangluar matrices. We consider the following cases.

Case 1. Suppose the semisimple part of B is C⊕C⊕C⊕C. Then

B =



λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 : λ1, . . . , λ4 ∈ C


by Theorem 3.1. So B has a separating vector.
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Case 2. Suppose the semisimple part of B is C⊕C⊕C. We may assume that the
semisimple part of B consists of matrices

λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 .
Let

e1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , e2 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , e3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .
By Lemma 2.1, (e2 + e3)B(e2 + e3) ⊂ M2(C) has property P1. By Theorem 3.1
and the assumption of Case 2,

(e2+ e3)B(e2+ e3)=

{(
λ2 0
0 λ3

)
: λ2, λ3 ∈ C

}
.

We consider two subcases.

Subcase 2.1. Suppose B is contained in the following algebra

λ1 0 λ4 λ6

0 λ1 λ5 λ7

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ7 ∈ C

 .
By Lemma 2.1, (e1+ e2)B(e1+ e2)⊂ M3(C) has property P1. Note that

(e1+ e2)B(e1+ e2)⊆


λ1 0 λ4

0 λ1 λ5

0 0 λ2

 : λ1, . . . , λ5 ∈ C

 .
By the proof of Subcase 2.1 of Proposition 5.3, there exists an invertible matrix

s =

∗ ∗ ∗∗ ∗ ∗

0 0 1

 ,
such that

s−1
[(e1+ e2)B(e1+ e2)]s ⊆


λ1 0 λ3

0 λ1 0
0 0 λ2

 : λ1, λ2, λ3 ∈ C

 .
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Conjugating by (s ⊕ 1)−1
∈ M4(C), we may assume that B is contained in the

algebra

B1 =



λ1 0 λ4 λ5

0 λ1 0 λ6

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ6 ∈ C

 .
It is easy to see that B1 is similarly conjugate to the algebra


λ1 0 λ5 0
0 λ1 λ6 λ4

0 0 λ3 0
0 0 0 λ2

 : λ1, . . . , λ6 ∈ C

 .
So we may assume that

B1 =



λ1 0 λ4 0
0 λ1 λ5 λ6

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ6 ∈ C

 .
Repeating the above arguments, we may assume that B is contained in the algebra

B2 =



λ1 0 λ4 0
0 λ1 0 λ5

0 0 λ3 0
0 0 0 λ2

 : λ1, . . . , λ5 ∈ C

 .
Simple computation shows that B2 does not have property P1 (the identity matrix
can not be written as x + (B2)⊥ such that the rank of x is at most 1). So B is a
proper subalgebra of B2. Therefore, there exist α, β such that

B =



λ1 0 λ4α 0
0 λ1 0 λ4β

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
If α = β = 0, then clearly B has a separating vector.

If α 6= 0 and β 6= 0, let

t =


α−1 0 0 0

0 β−1 0 0
0 0 1 0
0 0 0 1

 .
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Simple computation shows that

t Bt−1
=



λ1 0 λ4 0
0 λ1 0 λ4

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
So B has a separating vector.

If α 6= 0, β = 0 or α = 0, β 6= 0, then B is similarly conjugate to the algebra

λ1 0 λ4 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
So B has a separating vector.

Subcase 2.2. Suppose B is not contained in B1. Since B is an algebra, B contains
the algebra

B3 =



λ1 λ4 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B3 is the algebra generated by the matrix

0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 2


and dim B3 = 4. So B = B3 by Theorem 4.1 and B has a separating vector.

Case 3. Suppose the semisimple part of B is C⊕C.

Subcase 3.1. Suppose B contains the following subalgebra

λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ2

 : λ1, λ2 ∈ C

 .
Let

f1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , f2 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 .
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By Lemma 2.1, fi B fi ⊂ M2(C) has property P1. By Proposition 5.2,

fi B fi =

{(
λ 0
0 λ

)
: λ ∈ C

}
or fi B fi =

{(
λ η

0 λ

)
: λ, η ∈ C

}
.

We consider the following subsubcases.

Subsubcase 3.1.1. Suppose

f1 B f1 = f2 B f2 =

{(
λ 0
0 λ

)
: λ ∈ C

}
.

This implies that

B ⊂
{(
λI2 ∗

0 ηI2

)
: λ, η ∈ C

}
.

By Lemma 5.1,

B =
{(
λI2 S
0 ηI2

)
: λ, η ∈ C

}
,

where S has property P1 and is intransitive. By [Azoff 1973, Table 5A, page 34],
S is equivalent to one of the following spaces: zero space, or{(

ζ 0
0 0

)
: ζ ∈ C

}
,

{(
ζ 0
0 ζ

)
: ζ ∈ C

}
,

{(
ζ ξ

0 0

)
: ζ, ξ ∈ C

}
,{(

ζ 0
ξ 0

)
: ζ, ξ ∈ C

}
,

{(
ζ 0
0 ξ

)
: ζ, ξ ∈ C

}
,

{(
ζ ξ

0 ζ

)
: ζ, ξ ∈ C

}
.

Note that in the last four cases, neither B nor B∗ has a separating vector.

Subsubcase 3.1.2. Suppose

f1 B f1 = f2 B f2 =

{(
λ η

0 λ

)
: λ, η ∈ C

}
.

This implies that B contains the following subalgebra

B4 =



λ1 λ2 0 0
0 λ1 0 0
0 0 λ3 λ4

0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B4 is the algebra generated by the matrix

0 1 0 0
0 0 0 0
0 0 1 1
0 0 0 1


and dim B4 = 4. So B = B4 by Theorem 4.1, and B has a separating vector.
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Subsubcase 3.1.3. Suppose

f1 B f1 =

{(
λ 0
0 λ

)
: λ ∈ C

}
and f2 B f2 =

{(
λ η

0 λ

)
: λ, η ∈ C

}
.

If dim B > 3, then B contains a nonzero matrix

b =
(

02 a
02 02

)
.

Let B5 be the subalgebra generated by f1 B f1, f2 B f2 and b. Then dim B5 = 4 and
B5 is the algebra generated by the matrix02 a

02

(
1 1
0 1

) .
So B = B5 by Theorem 4.1 and

B =


λ1 I2 λ4a

02

(
λ2 λ3

0 λ2

) : λ1, . . . , λ4 ∈ C

 ,
where a is a 2× 2 matrix. Let

t =
(

b 0
02 I2

)
.

Then

t Bt−1
=


λ1 I2 λ4ba

02

(
λ2 λ3

0 λ2

) : λ1, . . . , λ4 ∈ C

 .
So we can choose b appropriately such that ba = 02, or ba = I2, or

ba =
(

1 0
0 0

)
, or ba =

(
0 1
0 0

)
, or ba =

(
1 1
0 0

)
, or ba =

(
1 0
1 0

)
.

In each case, B has a separating vector.

Subcase 3.2. Suppose B contains the following subalgebra

λ1 0 0 0
0 λ2 0 0
0 0 λ2 0
0 0 0 λ2

 : λ1, λ2 ∈ C

 .
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Let

p =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
By Lemma 2.1, pBp ⊂ M3(C) has property P1. By Proposition 5.2,

pBp =


λ1 λ2 λ3

0 λ1 λ2

0 0 λ1

 : λ1, λ2, λ3 ∈ C


or

pBp =


λ1 0 λ2

0 λ1 0
0 0 λ1

 : λ1, λ2 ∈ C

 .
We consider the following subsubcases.

Subsubcase 3.2.1. Suppose

pBp =


λ2 λ3 λ4

0 λ2 λ3

0 0 λ2

 : λ2, λ3, λ4 ∈ C

 .
Then B contains the following subalgebra

B6 =



λ1 0 0 0
0 λ2 λ3 λ4

0 0 λ2 λ3

0 0 0 λ2

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B6 is the algebra generated by the matrix

0 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1


and dim B6 = 4. So B = B6 by Theorem 4.1, and B has a separating vector.

Subsubcase 3.2.2. Suppose

pBp =


λ1 0 λ2

0 λ1 0
0 0 λ1

 : λ1, λ2 ∈ C

 .
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If dim B > 3, then B contains a nonzero matrix

b =
(

0 a
0 03

)
.

Let B7 be the subalgebra generated by (1 − p)B(1 − p), pBp and b. Then
dim B7 = 4 and B7 is the algebra generated the matrix

0 a

0

1 0 1
0 1 0
0 0 1


 .

So B = B7 by Theorem 4.1 and

B =



λ1 λ4a

0

λ2 0 λ3

0 λ2 0
0 0 λ2


 : λ1, . . . , λ4 ∈ C

 .
Conjugating by an appropriate invertible matrix

t =


1 0 0 0
0 λ ∗ ∗

0 0 η ∗

0 0 0 λ

 ,
we have

t Bt−1
=



λ1 λ2 0 0
0 λ2 0 λ3

0 0 λ2 0
0 0 0 λ2

 : λ1, . . . , λ4 ∈ C

 ,

t Bt−1
=



λ1 0 λ2 0
0 λ2 0 λ3

0 0 λ2 0
0 0 0 λ2

 : λ1, . . . , λ4 ∈ C

 ,
or

t Bt−1
=



λ1 0 0 λ2

0 λ2 0 λ3

0 0 λ2 0
0 0 0 λ2

 : λ1, . . . , λ4 ∈ C

 .
In each case, B∗ has a separating vector.
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Case 4. Suppose the semisimple part of B is C. Consider matrices in B with the
form

b =


0 α ∗ ∗

0 0 β ∗

0 0 0 γ

0 0 0 0

 .
Subcase 4.1. B contains a matrix b with α 6= 0, β 6= 0, γ 6= 0. Conjugating by an
upper-triangular invertible matrix, we may assume that B contains the matrix

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
So B is the algebra generated by the Jordan block by Theorem 4.1. Note that B
has a separating vector.

Subcase 4.2. B does not contain a matrix b as in Subcase 4.1 and B contains a
matrix b with two elements of α, β, γ nonzero. We may assume that α 6= 0 and
β 6= 0. Conjugating by an upper-triangular invertible matrix, we may assume that
B contains the matrix

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 and therefore B ⊇



λ1 λ2 λ3 0
0 λ1 λ2 0
0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 .
By the assumption of Subcase 4.2, we have

B ⊂



λ1 ∗ ∗ ∗

0 λ1 ∗ ∗

0 0 λ1 0
0 0 0 λ1

 : λ1 ∈ C

 . (5)

Subsubcase 4.2.1. Suppose the (2, 4)-entry of every matrix in B is zero. Then B
is contained in the algebra

B8 ⊂



λ1 λ2 λ4 λ5

0 λ1 λ3 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ5 ∈ C

 .
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Simple computation shows that B8 does not have property P1. So B is a proper
subalgebra of B8. By (5), there exist α, β such that

B =



λ1 λ2 λ3 λ4α

0 λ1 λ2+ λ4β 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
If α = 0 and β 6= 0, then B does not have property P1. So we may assume that
α 6= 0. It is easy to see that B∗ has a separating vector.

Subsubcase 4.2.2. Suppose the (2, 4)-entry of a matrix in B is not zero. By (5),
B contains an element

b =


0 0 0 α

0 0 β γ

0 0 0 0
0 0 0 0

 ,
where γ 6= 0. Since B is an algebra, B contains

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 b =


0 0 β γ

0 0 0 0
0 0 0 0
0 0 0 0

 .
By (5), B contains 

0 0 0 γ

0 0 0 0
0 0 0 0
0 0 0 0

 .
Since B is an algebra, B contains the subalgebra

B9 ⊆



λ1 λ2 λ3 λ4

0 λ1 λ2 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
By Lemma 5.4, B9 is a maximal P1 algebra. Hence, B= B9 and B∗ has a separating
vector.

Subcase 4.3. B does not contain a matrix b as in subcase 4.1, subcase 4.2, and
B contains a matrix b with one element of α, β, γ nonzero. We may assume that
α 6= 0. Conjugating by an upper-triangular invertible matrix, we may assume that
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B contains the matrix 
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
By the assumption of subcase 4.3, B is contained in the algebra

B10 =



λ1 λ2 λ3 λ4

0 λ1 0 λ5

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ5 ∈ C

 .
Simple computation shows that B10 does not have property P1. So B is a proper
subalgebra of B10. We consider the following subsubcases.

Subsubcase 4.3.1. . If the (1, 3) entry of each element of B is zero, then B is
contained in the algebra

B11 =



λ1 λ2 0 λ3

0 λ1 0 λ4

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
Simple computation shows that B11 does not have property P1. So there exist α, β
such that

B =



λ1 λ2 0 λ3α

0 λ1 0 λ3β

0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 .
If β = 0, then B∗ has a separating vector. If β 6= 0, then B has a separating vector.

Subsubcase 4.3.2. If the (2, 4) entry of each element of B is zero, then B is con-
tained in the algebra

B12 =



λ1 λ2 λ3 λ4

0 λ1 0 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
Note that B∗12 has a separating vector and hence B∗ has a separating vector.



P1 SUBALGEBRAS OF Mn(C) 247

Subsubcase 4.3.3. Suppose B contains an element

b =


0 0 α β

0 0 0 γ

0 0 0 0
0 0 0 0

 ,
where α 6= 0 and γ 6= 0. Let

t =


1 0 0 0
0 1 0 0
0 0 α−1

−
β

αγ

0 0 0 γ−1

 .
Then

t−1bt =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 .
Conjugating by t−1 if necessary, we may assume that α = γ = 1 and β = 0. Since
B is a proper subalgebra of B10, B is the algebra,

B =



λ1 λ2 λ3 λ4

0 λ1 0 λ3

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B∗ has a separating vector.

Subcase 4.4. B does not contain a matrix B as in subcase 4.1, subcase 4.2, and
subcase 4.3. Then

B ⊂



λ1 0 λ2 λ3

0 λ1 0 λ4

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
Combining Lemma 5.1 [Azoff 1973, Table 5A, page 34], and similar arguments
as in Subsubcase 3.1.1,

B =



λ1 λ2 λ3 0
0 λ1 0 0
0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 ,
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or

B =



λ1 0 0 λ2

0 λ1 0 λ3

0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 ,
or

B =



λ1 0 λ2 λ3

0 λ1 0 λ2

0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 ,
or

B =



λ1 0 λ2 0
0 λ1 0 λ3

0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 .
It is easy to show that in each case either B or B∗ has a separating vector. �

6. 2-reflexivity and property P1

Let H be a Hilbert space. The usual notation Lat(B) will denote the lattice of
invariant subspaces (or projections) for a subset B⊆ L(H), and Alg(L)will denote
the algebra of bounded linear operators leaving invariant every member of a family
L of subspaces (or projections). An algebra B is called reflexive if B=AlgLat(B).
An algebra B is called n-reflexive if the n-fold inflation B(n)={b(n) : b∈ B}, acting
on H(n), is reflexive [Azoff 1986]. In [Larson 1982], the third author proved the
following result: An algebra B is n-reflexive if and only if B⊥, the preannihilator
of B, is the trace class norm closed linear span of operators of rank≤ n. In [Larson
1982], the third author also showed the following connection between n-reflexivity
and the P1 property: If an algebra B has property P1, then B is 3-fold reflexive.
(This result also holds for linear subspaces with the same proof). He raised the
following problem: Suppose dim H = n ∈ N and B ⊂ L(H) ≡ Mn(C) is a unital
operator algebra with property P1. Is B 2-reflexive? Note that this question also
makes sense for linear subspaces. Azoff [1986] showed that the answer to the
above question is affirmative for n = 3 (for all linear subspaces of M3(C) with
property P1). In this section, we prove the following result.

Proposition 6.1. If dim H=4 and B⊂ L(H)≡M4(C) is a unital operator algebra
with property P1, then B is 2-reflexive.
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Proof. By Proposition 5.5, either B or B∗ has a separating vector or B is similarly
conjugate to an algebra of the form{(

λI2 s
0 ηI2

)
: λ, η ∈ C, s ∈ S

}
,

where S is a subspace of M2(C) with dimension two. If B has a separating vector
or B∗ has a separating vector, then the fact that B is 2-reflexive follows from the
proofs of Corollary 7 of [Larson 1982] and Proposition 1.2 of [Herrero et al. 1991].
If B is similarly conjugate to an algebra of the form{(

λI2 s
0 ηI2

)
: λ, η ∈ C, s ∈ S

}
,

where S is a subspace of M2(C) with dimension two, then the fact that B is 2-
reflexive follows from Proposition 1 of [Kraus and Larson 1985]. �
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On three questions concerning groups with perfect
order subsets

Lenny Jones and Kelly Toppin

(Communicated by Kenneth S. Berenhaut)

In a finite group, an order subset is a maximal set of elements of the same order.
We discuss three questions about finite groups G having the property that the
cardinalities of all order subsets of G divide the order of G. We provide a new
proof to one of these questions and evidence to support answers to the other two
questions.

1. Introduction

Let G be a finite group. Carrie E. Finch and the first author [Finch and Jones 2002;
2003] defined the order subset of G determined by x 2G to be the set of elements
in G with the same order as x. They defined G to have perfect order subsets —
in short, to be a POS group — if the number of elements in each order subset of
G divides the order jGj. It is easy to see that any nontrivial POS group has even
order.

The next three theorems, whose proofs are given in [Finch and Jones 2002],
allow us to refine the search for abelian POS groups to a particular class of groups.

Theorem 1.1. Let G' .Zpa/t�M and yG' .ZpaC1/t�M , where M is an abelian
group and p is a prime not dividing jM j. If G is a POS group, then so is yG.

Theorem 1.2. Suppose G ' Zpa1 �Zpa2 � � � ��Zpas�1 � .Zpas /t �M , where M

is an abelian group, p is a prime not dividing jM j, and a1� a2� : : :� as�1 < as .
If G is a POS group, then so is yG ' .Zpas /t �M .

Theorem 1.3. If G is a POS group with G ' .Zpa/t �M , where M is an abelian
group and p is a prime not dividing jM j, then yG' .Zp/t�M is also a POS group.

The previous theorems provide motivation for the following definition.

Definition 1.4. Let G ' .Z2/t �M , where jM j is odd, be a POS group. We say
that G is minimal if .Z2/t � yM is not a POS group for any subgroup yM of M .

MSC2000: primary 20F99, 11Y05; secondary 11A51.
Keywords: perfect order subsets, abelian group, symmetric group.
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Theorem 1.5 [Finch and Jones 2002]. Let G Š .Z2/t �M , where t � 1 and M is
a cyclic group of odd square-free order. If G is a POS group and G Š .Z2/t � yM

is not a POS group for any subgroup yM of M , then G is isomorphic to one of

Z2;

.Z2/2
�Z3;

.Z2/3
�Z3 �Z7;

.Z2/4
�Z3 �Z5;

.Z2/5
�Z3 �Z5 �Z31;

.Z2/8
�Z3 �Z5 �Z17;

.Z2/16
�Z3 �Z5 �Z17 �Z257;

.Z2/17
�Z3 �Z5 �Z17 �Z257 �Z131071;

.Z2/32
�Z3 �Z5 �Z17 �Z257 �Z65537:

Various authors have investigated nonabelian groups in search of POS groups.
For example, certain special linear groups were considered in [Finch and Jones
2003], the dihedral groups in [Libera and Tlucek 2003], and certain semidirect
products and the alternating groups in [Das 2009]. In this article, our focus will be
on the symmetric groups and on certain abelian groups, and specifically on three
questions posed in [Finch and Jones 2002]:

Question 1.6. Is S3 the only symmetric group that is a POS group?

Question 1.7. If G is a POS group and jGj is not a power of 2, then must jGj be
divisible by 3?

Question 1.8. Are there only finitely many minimal POS groups that contain non-
cyclic Sylow p-subgroups of odd order?

Tuan and Hai [2010] answered Question 1.6 in the affirmative. We provide
here an alternative proof that is shorter and more direct. The techniques used in
our proof are similar to those of Tuan and Hai, but whereas they use a theorem of
Chebyshev [1852], we resort to a more refined version of that result [Nagura 1952].

Walter Feit (personal communication; see also [Finch and Jones 2003]) an-
swered Question 1.7 in the negative, by providing counterexamples: if p is a
Fermat prime, the Frobenius group of order p.p�1/, with Frobenius complement
Zp�1 and Frobenius kernel Zp, is a POS group but its order is not divisible by 3.
Other counterexamples to Question 1.7 were constructed in [Das 2009].

All these counterexamples are nonabelian. This leads to a modified version of
the question, for which we will show evidence of an affirmative answer:

Question 1.9 (modified Question 1.7). If G is an abelian POS group and jGj is
not a power of 2, then must jGj be divisible by 3?
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Concerning Question 1.8, the only known abelian POS group with a noncyclic
Sylow p-subgroup is

.Z2/11
�Z3 �Z5 � .Z11/2

�Z23 �Z89; (1-1)

found in [Finch and Jones 2002]. Theorem 4.3 below shows that this is, in fact, the
only such POS group whose order has exactly 5 distinct odd prime divisors and
exactly one odd square prime factor.

To summarize, these are the main results of this paper:

Theorem 1.10. The symmetric group Sn is a POS group if and only if n� 3.

Theorem 1.11. Suppose that G is an abelian POS group and jGj is not a power
of 2. If jGj is not divisible by 3, then jGj > 4:48 � 10457008, and jGj has at least
57097 distinct prime factors.

Theorem 1.12. Let G be a minimal abelian POS group such that

G ' .Z2/t
�Zp1

� � � � �Zpk�1
� .Zpk

/2
�ZpkC1

� � � � �Zpm
;

where p1 < p2 < � � �< pm are odd primes. If 1�m� 5, then

G ' .Z2/11
�Z3 �Z5 � .Z11/2

�Z23 �Z89:

2. The proof of Theorem 1.10

The proof is based on a result of Nagura, which refines a theorem of Chebyshev
[1852] (also known as Bertrand’s postulate) to the effect that for every integer
x � 4, there exists a prime p such that x < p < 2x� 2.

Theorem 2.1 [Nagura 1952]. If x � 25, then there exists a prime p such that

x < p < 6
5
x:

Proof of Theorem 1.10. It is easy to verify that Sn is a POS group when n � 3.
Suppose that n� 60. By Theorem 2.1, there exists a prime p such that 5

12
n < p <

1
2
n. Note that n� 60 and p > 5

12
n imply that p� 29. Also, since 5

12
n < p < 1

2
n, it

follows that 2p < n < 3p, so an element of order p in Sn is either a p-cycle or the
product of 2 disjoint p-cycles. Thus, the number of elements of order p in Sn is

C WD

n.n�1/.n�2/ � � � .n�pC1/

p
C

n.n�1/.n�2/���.n�pC1/
p

�
.n�p/.n�p�1/���.n�2pC1/

p

2
:

Then
n!

C
D

2p2.n�p/!

2pC .n�p/ � � � .n� 2pC 1/
:
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Define

A WD 2p2.n�p/! and B WD 2pC .n�p/ � � � .n� 2pC 1/:

We show that B does not divide A. Let q be a prime divisor of B. We consider
four ranges for q:

Case 1: q�p. Since B�2p is a product of p� q consecutive integers, at least one
of its factors is divisible by q. Thus, q divides B�.B�2p/D2p, so that qD2 or p.

Case 2: p < q < n�2pC1. Impossible, since n < 3p implies .n�2pC1/�p < 1.

Case 3: n� 2pC 1� q � n�p. Then q appears as a factor in B � 2p. So again,
q D 2 or p.

Case 4: n�p < q. Clearly q does not divide AD 2p2.n�p/! . Thus, B D 2kpm.
Observe that B is divisible by 2, but not by 4. Also, since p < n� p < 2p, we
have that p3 is the exact power of p that divides A. Hence, k D 1 and m � 3.
Therefore, B � 2p3. It follows that

2p.p� 1/.pC 1/D 2p3
� 2p � B � 2p D .n�p/.n�p� 1/ � � � .n� 2pC 1/

> p.p� 1/.p� 2/.p� 3/ � � � 3 � 2;

since n > 2p. But this is impossible since p � 29.

Finally, to complete the proof, we need the number an of elements of order 2 in
Sn, for 4 � n � 59. By a result of Chowla, Herstein and Moore [Chowla et al.
1951], this number satisfies (for any n) the recurrence relation

an D an�1C .an�2C 1/.n� 1/:

All that remains is to verify with a computer that n! is never divisible by an for
these values of n. �

3. The Proof of Theorem 1.11

In light of Theorems 1.2 and 1.3, it is enough to focus on groups all of whose
Sylow subgroups are elementary abelian. Thus, throughout this section, we let

G ' .Z2/t
� .Zp1

/t1 � � � � � .Zpm
/tm ;

where p1 < p2 < � � �< pm are odd primes, and m� 1. Let

nD jGj D 2t
mY

iD1

p
ti

i and f .n/D .2t
� 1/

mY
iD1

.p
ti

i � 1/:

The following lemma is a direct consequence of the definition of a POS group.

Lemma 3.1. The group G is a POS group if and only if n=f .n/ is an integer.
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Lemma 3.2. If mD 1 and G is a POS group then p1 D 3.

Proof. Since mD 1, we have that nD 2tp
t1

1
and f .n/D .2t � 1/.p

t1

1
� 1/. Then,

since G is a POS group, n=f .n/ is an integer by Lemma 3.1. Thus, there exist
positive integers a and b such that

a.2t
� 1/D p

t1

1
and b.p

t1

1
� 1/D 2t : (3-1)

Hence,
p

t1

1
� 2� 2t

� 1� p
t1

1
:

Thus, there are two cases to consider:

Case 1: 2t � 1D p
t1

1
� 2. Then p

t1

1
D 2t C 1, and so from (3-1) we conclude that

aD 1C2=.2t �1/. Hence, t D 1, since a is an integer, which implies that p1D 3.

Case 2: 2t � 1D p
t1

1
. We deduce from (3-1) that p

t1

1
C 1D 2t and p

t1

1
� 1D 2c ,

for some c < t . Subtracting one equation from the other gives 2c.2t�c � 1/ D 2,
which implies that c D 1 and p1 D 3. �
Proof of Theorem 1.11. By way of contradiction, assume p1 > 3. By Lemma 3.2,
we may assume that m � 2. Let q be an arbitrary prime divisor of n. Since all
prime divisors of q�1 divide n, we have that q� 2 .mod 3/ and all prime divisors
of q � 1 are congruent to 2 modulo 3. Thus, we can recursively construct the list
S of viable prime divisors of n as follows. Let S1 D Œ2; 5� and q1 D 5. For i � 2,
let qi be the smallest prime such that qi > qi�1 and all prime divisors of qi �1 are
contained in the list Si�1. Define Si WD Œ2; 5; : : : ; qi�1; qi �: Then

S2 D Œ2; 5; 11�; q2 D 11;

S3 D Œ2; 5; 11; 17�; q3 D 17;

S4 D Œ2; 5; 11; 17; 23�; q4 D 23;

S5 D Œ2; 5; 11; 17; 23; 41�; q5 D 41;

S6 D Œ2; 5; 11; 17; 23; 41; 47�; q6 D 47;

and so on. Define S WD limi!1 Si . Then

n

f .n/
D

2t

2t � 1
�

mY
iD1

p
ti

i

p
ti

i � 1
�

2m

2m� 1
�

mY
iD1

pi

pi � 1
�

2m

2m� 1
�

mY
iD1

qi

qi � 1
:

Using a computer, we have verified for 2�m� 57096 that

2m

2m� 1

mY
iD1

qi

qi � 1
< 2 and

257096

257096� 1

57096Y
iD1

qi > 4:48 � 10457008:

Clearly, n=f .n/ > 1, and since n=f .n/ must be an integer by Lemma 3.1, the
theorem follows. �
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Remark 3.3. Whether or not the list S constructed in the proof of Theorem 1.11
is finite, sieve methods [Halberstam and Richert 1974] can be used to show that
the product

2m

2m� 1

mY
iD1

qi

qi � 1
(3-2)

is bounded above. We conjecture that (3-2) is less than 2 for all m� 2, but we are
unable to provide a proof since a tight explicit bound is both tedious and difficult
to compute using sieve methods. The truth of this conjecture would imply that the
answer to Question 1.9 is affirmative.

4. The proof of Theorem 1.12

Definition 4.1. Let t be a positive integer, and let q be a prime divisor of 2t � 1.
We say that q is a primitive divisor of 2t � 1 if q does not divide 2s � 1 for any
positive integer s < t .

Theorem 4.2 [Bang 1886]. Let t � 2 be an integer. Then 2t � 1 has a primitive
divisor except when t D 6.

Theorem 4.3. Let G be a minimal abelian POS group, such that

G ' .Z2/t
�Zp1

� � � � �Zpk�1
� .Zpk

/2
�ZpkC1

� � � � �Zpm
;

where p1 <p2 < � � �<pm are odd primes. Then p1D3 and 2t�1D2pk�1Dpipj ,
for some i ¤ j .

Proof. As before, let

nD jGj D 2tp2
k

mY
iD1
i¤k

pi and f .n/D .2t
� 1/.p2

k � 1/

mY
iD1
i¤k

.pi � 1/:

Since G is a POS group, n=f .n/ is an integer by Lemma 3.1.
Next, note that n� 0 .mod 3/. For if not, then pk > 3 and p2

k
�1� 0 .mod 3/.

Then, since f .n/� 0 .mod p2
k
� 1/, we have that f .n/� 0 .mod 3/, which con-

tradicts the fact that n=f .n/ is an integer. This proves that p1 D 3.
Now, suppose that p is an odd prime divisor of t . Then 2p � 1 divides 2t � 1,

and so 2p � 1 divides n. Consequently, every prime divisor of 2p � 1 is pi for
some i , and then pi �1� 0 .mod p/. Also, for each such pi , we have that pi �1

divides n. Thus, since n is not divisible by the cube of any odd prime, it follows
that 2p � 1 has at most two distinct odd prime divisors. Therefore, we are led to
consider the following five cases:

(1) 2p � 1D p2
k

for some odd prime divisor p of t .
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(2) 2p � 1D pip
2
k

for some i , and some odd prime divisor p of t .

(3) There exists an odd prime that divides t , and for every odd prime p that divides
t , we have that 2p � 1D pi for some i .

(4) There exists at least one odd prime p that divides t such that 2p � 1D pipj

for some i ¤ j .

(5) No odd prime divides t ; that is t D 2a.

Ljunggren [1943] proved that Case (1) is impossible.
In Case (2), we have that pi � 1 � 0 .mod p/ and pk � 1 � 0 .mod p/. Then

.pi�1/.p2
k
�1/� 0 .mod p2/, which says that p2 divides n. Hence, pDpk . But

this contradicts the fact that pk � 1 � 0 .mod p/. Hence, Case (2) is impossible
as well.

For Case (3), we show first that t has exactly one odd prime divisor. Suppose
that p and q are odd prime divisors of t . Then 2p�1Dpi and 2q�1Dpj for some
i and j . Then pi�1� 0 .mod p/ and pj �1� 0 .mod q/. By Theorem 4.2, there
exists an odd prime r ¤pi ; pj such that 2pq�1�0 .mod r/. Since 2pq�1 divides
2t � 1, we have that f .n/� 0 .mod r/, and so r D pv for some v. Since pv is a
primitive divisor, it follows that pv�1� 0 .mod pq/. But then .pi�1/.pv�1/�

0 .mod p2/, and .pj � 1/.pv � 1/� 0 .mod q2/, which implies that p D q.
Thus, t has at most one odd prime divisor. Suppose t D 2apb . Let 2p � 1 D

pi . Then pi � 1 � 0 .mod p/. If b � 2, we can use Theorem 4.2 to produce
a prime divisor pj ¤ pi of 2p2

� 1 such that pj � 1 � 0 .mod p2/. But then
.pi � 1/.pj � 1/� 0 .mod p3/, which contradicts the fact that n=2t is cube-free.
Therefore, we only need to consider here the two possibilities t D 2ap and t D p,
since the possibility that t D 2a is handled separately below as Case (5).

Suppose first that t D 2ap. As before, let 2p�1Dpi . Then pi�1� 0 .mod 3/

and pi � 1 � 0 .mod p/. Suppose that a � 1. Then 2t � 1 � 0 .mod 3/, so that
.2t � 1/.pi � 1/ � 0 .mod 9/, which implies that pk D 3. If p D 3, then 26 � 1

divides 2t �1, and so .2t �1/.pi �1/� 0 .mod 27/, which is a contradiction. On
the other hand, if p ¤ 3, then by Theorem 4.2, there exists a prime q ¤ pi such
that q � 1 � 0 .mod 2ap/. Hence, .pi � 1/.q � 1/ � 0 .mod p2/, which implies
that p D pk D 3, again a contradiction. Therefore, aD 0 and t D p, which is the
second possibility above. Again, let 2p�1Dpi . Then pi�1� 0 .mod p/, so that
p¤ pi . Also, pi �1� 0 .mod 3/. If pk ¤ 3, then .p2

k
�1/.pi �1/� 0 .mod 9/,

which is impossible since the only square that divides n is p2
k
¤ 9. Hence, pk D 3.

If p D 3 D pk , then n � 0 .mod 8/, but n 6� 0 .mod 16/. However, if p D 3,
then n would be divisible by .2pk � 1/.p2

k
� 1/D .7� 1/.32 � 1/, which implies

that n � 0 .mod 16/. This contradiction shows that p ¤ 3. Also, since p is odd,
we have that pi ¤ 3. Thus, all three primes p, pi and pk D 3 are distinct. If
p � 1 .mod 3/, then 26 � 1 divides 2p�1 � 1 D pi � 1, and so the number of
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elements of order ppi is

.p� 1/.pi � 1/D 2.p� 1/.2p�1
� 1/� 0 .mod 27/;

which does not divide n. Thus, p� 2 .mod 3/. Now, let q be an odd prime divisor
of p � 1. Then 2q � 1 and 22q � 1 divide 2p�1 � 1, and so both divide n. Let r

be a primitive divisor of 2q � 1, and let s be a primitive divisor of 22q � 1. Since
p � 2 .mod 3/, we have that q ¤ 3, and therefore the existence of s is guaranteed
by Theorem 4.2. Then

r � 1� 0� s� 1 .mod q/:

Since r ¤ s, it follows that either r ¤ p or s ¤ p. Suppose, without loss of
generality, that r ¤ p. Note that r ¤ 3 so that the number of elements of order pr

is .p� 1/.r � 1/. But

.p� 1/.r � 1/� 0 .mod q2/;

which implies that q D 3, a contradiction. Hence, we conclude that no odd primes
divide p� 1. Write p� 1D 2a. Then the number of elements of order pi is

pi � 1D 2p
� 2D 2.22a

� 1/� 0 .mod 3/:

If a� 7, then 6700417 and 274177 divide 22a

� 1, and the number of elements of
order pi � 6700417 � 274177 is

2.22a

� 1/.6700416/.274176/� 0 .mod 27/;

which does not divide n. Hence, a� 6, and it is easy to check that 2aC1 is prime
exactly when a D 1, 2 or 4. Since p � 2 .mod 3/, then a D 2 or 4. If a D 2,
then p D 5, and 31D 25� 1 divides n. But then, the number of elements of order
32 �5 �31, which is .32�1/.5�1/.31�1/D 26 �3 �5, does not divide n. Similarly, if
aD 4, then pD 17, and the power of 2 that divides f .n/ is greater than the power
of 2 that divides n. Therefore, Case (3) is impossible.

We proceed now to Case (4). Suppose that p is an odd prime dividing t such that
2p�1Dpipj , for some i¤j . Then pi�1�pj�1�0 .mod p/, so that p2 divides
the number of elements of order pipj , and thus p2 divides n. Hence, p D pk . If
there exists a prime q ¤ p that divides t , then 2pq �1 divides n. By Theorem 4.2,
there is a primitive divisor ps of 2pq � 1 with s 62 fi; j g. Then p divides ps � 1,
and hence p3 divides .pi � 1/.pj � 1/.ps � 1/, the number of elements of order
pipj ps . This contradiction shows that p D pk is the only odd prime that divides
t . An argument similar to the one used in Case (3) shows that p2 does not divide
t . Then, as in Case (3), we only have to consider the two possibilities: t D 2ap

and t D p. Suppose that t D 2ap, with a � 1. Since 2p � 1D pipj , with i ¤ j ,
it follows that p ¤ 3. Then, by Theorem 4.2, there exists a primitive divisor ps
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of 22p � 1. Thus, s 62 fi; j g and ps � 1 � 0 .mod p/. But then we have that the
number of elements in G of order pipj ps is

.pi � 1/.pj � 1/.ps � 1/� 0 .mod p3/:

Hence, aD 0 and t D p D pk .
This brings us to Case (5). Assume now that tD2a. As in Case (3), if a�7, then

6700417 and 274177 divide 22a

� 1, and n is divisible by the number of elements
in G of order 2 � 6700417 � 274177, which is .22a

� 1/.6700416/.274176/. But
.22a

� 1/.6700416/.274176/ cannot divide n since

.22a

� 1/.6700416/.274176/� 0 .mod 27/;

and n=2t is cube-free. Thus, a� 6. It is straightforward to check that each of these
cases, in some way, violates the hypotheses of the theorem. For example, if aD 6,
then n is divisible by

264
� 1D 3 � 5 � 17 � 257 � 641 � 65537 � 6700417:

Hence, .264 � 1/ � 640 and .264 � 1/ � 6700416 must also divide n. However,
.264�1/�640�0 .mod 25/ and .264�1/�6700416�0 .mod 9/, which contradicts
the fact that n is divisible by exactly one odd square. Checking the remaining cases
completes the proof of the theorem. �
Remark 4.4. Without loss of generality, we can assume that pi < pj in the state-
ment of the conclusion of Theorem 4.3. Also, this conclusion implies that 3 D

p1 < pk < pi < pj , with pk � 11. Thus, m� 4.

Proof of Theorem 1.12. Let G be a minimal abelian POS group such that

G ' .Z2/t
�Zp1

� � � � �Zpk�1
� .Zpk

/2
�ZpkC1

� � � � �Zpm
;

where p1 < p2 < � � � < pm are odd primes, with 1�m� 5. By Theorem 4.3, we
have that p1 D 3 and 2t � 1 D 2pk � 1 D pipj for some i ¤ j . By Remark 4.4,
we can also assume that pk � 11 and that mD 4 or mD 5.

Consider first the case when mD 4. In this case, we have

n

f .n/
D

2pk �3 �p2
k
�pi �pj

.2pk �1/ �2 �.p2
k
�1/ �.pi�1/ �.pj �1/

D
2pk�1 �3 �p2

k

.p2
k
�1/ �.pi�1/ �.pj �1/

:

Since pi � 1� pj � 1� 0 .mod pk/, it follows that either

(1) pk � 1D 2a � 3 and pk C 1D 2b or

(2) pk � 1D 2a and pk C 1D 2b � 3.

In (1), we get that
2D 2b

� 2a
� 3D 2a.2b�a

� 3/;
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which implies that a D 1 and b D 3. Hence, pk D 7, which contradicts the fact
that pk � 11. In (2), we get two possibilities. The first possibility gives

2D 2a.2b�a
� 3� 1/;

which implies that a D b D 0. Thus pk D 2, which is impossible. The second
possibility yields

2D 2b.3� 2a�b/;

which implies that either a D 2 and b D 1, in which case pk D 5; or a D b D 0,
in which case pk D 2. Both situations are impossible. Hence, there are no POS
groups satisfying the conditions of the theorem with mD 4.

Now suppose that mD 5. Then

n

f .n/
D

2pk � 3 �p �p2
k
�pi �pj

.2pk � 1/ � 2 � .p� 1/ � .p2
k
� 1/ � .pi � 1/ � .pj � 1/

:

Since pk < pi < pj , we have
pj

pj�1
<

pi

pi�1
<

pk

pk�1
. Thus,

n

f .n/
�

2pk � 3 � 5 �p4
k

.2pk � 1/ � 2 � 4 � .p2
k
� 1/ � .pk � 1/2

:

It is straightforward to show that

g.x/D
15 � 2x �x4

8 � .2x � 1/.x2� 1/.x� 1/2

is a decreasing function for x � 2, and that g.x/ < 2 when x � 32. It follows that
n=f .n/ < 2 when pk � 37. Clearly, n=f .n/ > 1, and since we are assuming that
n=f .n/ is an integer, we only have to check pk with 11 � pk � 31. The fact that
2pk�1 must be the product of two distinct primes rules out all primes in this range
except pk D 11 and pk D 23. If pk D 23, then 223 � 1 D 47 � 178481 divides n.
But then 178481�1D 24 �5 �23 �97 also divides n, which contradicts the fact that
m D 5. Verifying that the case pk D 11 gives the POS group in the statement of
the theorem completes the proof. �

Acknowledgments

The authors thank the referee for the many valuable suggestions.

References

[Bang 1886] A. S. Bang, “Taltheoretiske undersøgelser”, Tidsskr. Math. .5/ 4 (1886), 70–80, 130–
137. Zbl 19.0168.02

[Chebyshev 1852] P. L. Chebyshev, “Mémoire sur les nombres premiers”, J. Math. Pures Appl. .1/

17 (1852), 366–390.

http://www.emis.de/cgi-bin/MATH-item?19.0168.02
http://mathdoc.emath.fr/JMPA/PDF/JMPA_1852_1_17_A19_0.pdf


GROUPS WITH PERFECT ORDER SUBSETS 261

[Chowla et al. 1951] S. Chowla, I. N. Herstein, and W. K. Moore, “On recursions connected with
symmetric groups, I”, Canadian J. Math. 3 (1951), 328–334. MR 13,10c Zbl 0043.25904

[Das 2009] A. K. Das, “On finite groups having perfect order subsets”, Int. J. Algebra 3:13 (2009),
629–637. MR 2010j:20035 Zbl 1197.20018

[Finch and Jones 2002] C. E. Finch and L. Jones, “A curious connection between Fermat numbers
and finite groups”, Amer. Math. Monthly 109:6 (2002), 517–524. MR 2003d:11016 Zbl 1058.11009

[Finch and Jones 2003] C. E. Finch and L. Jones, “Nonabelian groups with perfect order subsets”,
JP J. Algebra Number Theory Appl. 3:1 (2003), 13–26. Corrigendum in 4:2 (2004), 413–416.
MR 2004d:20023 Zbl 1052.20016

[Halberstam and Richert 1974] H. Halberstam and H.-E. Richert, Sieve methods, London Mathe-
matical Society Monographs 4, Academic Press, London, 1974. MR 54 #12689 Zbl 0298.10026

[Libera and Tlucek 2003] S. Libera and P. Tlucek, “Some perfect order subset groups”, Pi Mu
Epsilon J. 11:9 (2003), 495–498.

[Ljunggren 1943] W. Ljunggren, “Noen setninger om ubestemte likninger av formen
xn � 1

x� 1
Dyq”,

Norsk Mat. Tidsskr. 25 (1943), 17–20. MR 8,315a Zbl 0028.00901

[Nagura 1952] J. Nagura, “On the interval containing at least one prime number”, Proc. Japan Acad.
28:4 (1952), 177–181. MR 14,355b Zbl 0047.04405

[Tuan and Hai 2010] N. T. Tuan and B. X. Hai, “On perfect order subsets in finite groups”, Int. J.
Algebra 4:21 (2010), 1021–1029. MR 2012b:20057 Zbl 1219.20023

Received: 2010-07-23 Accepted: 2011-06-15

lkjone@ship.edu Department of Mathematics, Shippensburg University,
1871 Old Main Drive, Shippensburg, PA 17257, United States

kt5638@ship.edu Department of Mathematics, Shippensburg University,
Shippensburg, PA 17257, United States

mathematical sciences publishers msp

http://dx.doi.org/10.4153/CJM-1951-038-3
http://dx.doi.org/10.4153/CJM-1951-038-3
http://www.ams.org/mathscinet-getitem?mr=13,10c
http://www.emis.de/cgi-bin/MATH-item?0043.25904
http://www.m-hikari.com/ija/ija-password-2009/ija-password13-16-2009/dasIJA13-16-2009.pdf
http://www.ams.org/mathscinet-getitem?mr=2010j:20035
http://www.emis.de/cgi-bin/MATH-item?1197.20018
http://dx.doi.org/10.2307/2695441
http://dx.doi.org/10.2307/2695441
http://www.ams.org/mathscinet-getitem?mr=2003d:11016
http://www.emis.de/cgi-bin/MATH-item?1058.11009
http://www.ams.org/mathscinet-getitem?mr=2004d:20023
http://www.emis.de/cgi-bin/MATH-item?1052.20016
http://www.ams.org/mathscinet-getitem?mr=54:12689
http://www.emis.de/cgi-bin/MATH-item?0298.10026
http://www.ams.org/mathscinet-getitem?mr=8,315a
http://www.emis.de/cgi-bin/MATH-item?0028.00901
http://dx.doi.org/10.3792/pja/1195570997
http://www.ams.org/mathscinet-getitem?mr=14,355b
http://www.emis.de/cgi-bin/MATH-item?0047.04405
http://www.m-hikari.com/ija/ija-2010/ija-21-24-2010/tuanIJA21-24-2010.pdf
http://www.ams.org/mathscinet-getitem?mr=2012b:20057
http://www.emis.de/cgi-bin/MATH-item?1219.20023
mailto:lkjone@ship.edu
mailto:kt5638@ship.edu
http://www.mathscipub.org/

