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For fixed a and b, let Qn be the family of polynomials q(x) all of whose roots are
real numbers in [a, b] (possibly repeated), and such that q(a)= q(b)= 0. Since
an element of Qn is completely determined by it roots (with multiplicity), we
may ask how the polynomial is sensitive to changes in the location of its roots. It
has been shown that one of the Bernstein polynomials bi (x)= (x−a)n−i (x−b)i ,
i = 1, . . . , n − 1, is the member of Qn with largest supremum norm in [a, b].
Here we show that for p ≥ 1, b1(x) and bn−1(x) are the members of Qn that
maximize the L p norm in [a, b]. We then find the associated maximum values.

1. Introduction

A monic polynomial q(x) is completely determined by its roots (with multiplicity),
since it can be written as the product

q(x)=
n∏

i=1

(x − ri ),

where the ri are the roots. So it is a fair question to ask how the polynomial q is
sensitive to changes in the location of its roots. Boelkins, Miller and Vugteveen
[Boelkins et al. 2006] have shown that, among degree-n monic polynomials q(x)
all of whose roots are real, belong to [a, b], and include a and b, the value of the
supremum norm, max

a≤x≤b
q(x), is maximized by the polynomials

(x − a)n−1(x − b) and (x − a)(x − b)n−1.

So these are in some sense the “largest” polynomials in the class just described.
We will show that these are also the largest polynomials with respect to another

measure of size, namely, the L p norm for p≥ 1. (For p= 1 this is simply the area
enclosed by the graph between a and b.)
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Throughout this paper we let q(x) be a monic polynomial of degree n all of
whose roots are real and lie in [a, b]; we assume further that q(a)= q(b)= 0. We
denote the family of all such polynomials by Qn . We show that given any q ∈ Qn ,∫ b

a
|q(x)| dx ≤ (b− a)n+1 1

n(n+ 1)
,

and for any p ∈ N∫ b

a
|q(x)|p dx ≤ (b− a)pn+1 1

pn+ 1

(
(pn− p)! p!

(pn)!

)
.

We then use these bounds to verify the results of [Boelkins et al. 2006]. That is,
for a < x < b,

|q(x)| ≤
(b− a)n

n

(
n− 1

n

)n−1

.

2. Preliminary information

We are interested in how “large” a polynomial in Qn can be and therefore need a
way to tell when one polynomial is larger than another. We will use the L p norms
to measure the size of a polynomial. Given a polynomial q we use the notation
‖q‖L p

[a,b]
to denote the L p norm of q:

‖q‖L p
[a,b]
=

(∫ b

a
|q(x)|p dx

)1/p

and

‖q‖L∞
[a,b]
= max

x∈[a,b]
|q(x)|.

In particular, the L1 norm of q ,

‖q‖L1
[a,b]
=

∫ b

a
|q(x)| dx,

measures the area enclosed by q.
Our goal is to understand how the L p norm of q ∈ Qn is a function of the

location of its roots. Specifically, we would like to understand how the smallest
root of q which is greater than a will affect the L p norm of q . We let r0 = a and
r1 represent the smallest root greater than r0. With this in mind, we study how r1

affects the L p norm of polynomials of the form

q(x)= (x − r1)
ks(x)
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where s(x)= (x − r0)
l(x − r2)(x − r3) · · · (x − rm−1) and n = l+ k+m− 2. That

is, q is a degree n polynomial with roots

r0 = a < r1 < r2 ≤ r3 · · · ≤ rm−1 = b,

which takes into account having possibly repeated roots at r0 and r1. To understand
how r1 affects the L p norm of q we study the function

Ap(q)(r1)= ‖q‖
p
L p
[a,b]
=

∫ r1

a
(r1− x)kp

|s(x)|p dx +
∫ b

r1

(x − r1)
kp
|s(x)|p dx,

where we allow r1 ∈ [r0, r2].
The following two basic results of calculus will be used later, when we optimize

the L p norm.

Lemma 2.1. If f (x) is twice differentiable and concave up on [a, b], then

max{ f (a), f (b)}> f (x)

for all x ∈ (a, b).

Lemma 2.2 (Leibniz’s formula). If F(x, y) and Fx(x, y) are continuous in both x
and y in some region of the xy-plane including a ≤ y ≤ x and u(x) is a continuous
function of x , then

d
dx

∫ u(x)

a
F(x, y) dy = F(x, u(x))

d
dx

u(x)+
∫ u(x)

a
Fx(x, y) dy.

3. Maximizing the enclosed area

We are now ready to find the member of Qn that encloses the largest area. In order
to do so we show that A1(q)(r1) is concave up on [r0, r2].

Theorem 3.1. If q(x)= (x−r1)
ks(x), where s(x)= (x−r0)

l(x−r2) · · · (x−rm−1)

and r0 < r1 < r2 ≤ r3 ≤ · · · ≤ rm−1, then

d2

dr2
1

A1(q)(r1) > 0 on [r0, r2].

Proof. Let F(r1, x) = (x − r1)
ks(x), and observe that F(r1, r1) = 0. Applying

Leibniz’s formula to each term in d A1(q)(r1)/dr1, we have

d
dr1

∫ r1

a
(r1− x)k |s(x)| dx = k

∫ r1

a
(r1− x)k−1

|s(x)| dx

and
d

dr1

∫ b

r1

(x − r1)
k
|s(x)| dx =−k

∫ b

r1

(x − r1)
k−1
|s(x)| dx .
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If k = 1, the fundamental theorem of Calculus implies that

d2

dr2
1

∫ r1

a
(r1− x)|s(x)| dx = |s(r1)| and

d2

dr2
1

∫ b

r1

(x − r1)|s(x)| dx = |s(r1)|.

Since r1 is not a root of s(x), it follows that

d2

dr2
1

A1(q)(r1)= 2|s(r1)|> 0.

If k ≥ 2, then

d2

dr2
1

∫ r1

a
(r1− x)k |s(x)| dx = k(k− 1)

∫ r1

a
(r1− x)k−2

|s(x)| dx

and
d2

dr2
1

∫ b

r1

(x − r1)
k
|s(x)| dx = k(k− 1)

∫ b

r1

(x − r1)
k−2
|s(x)| dx .

Therefore,

d2

dr2
1

A1(q)(r1)= k(k− 1)
∫ b

a
|(x − r1)

k−2s(x)| dx > 0

and A1(q)(r1) is concave up on [r0, r2]. �

Corollary 3.2. One of the Bernstein polynomials

bi (x)= (x − a)n−i (x − b)i , i = 1, . . . , n− 1,

is the member of Qn that encloses the largest area on [a, b].

Theorem 3.1, along with Lemma 2.1, tells us that we can always find a polyno-
mial in Qn with a larger L1 norm by “dragging” r1 to either r0 or r2. Playing this
game a finite number of times leaves us a polynomial with roots only at a and b.
So, one of the Bernstein polynomials,

bi (x)= (x − a)n−i (x − b)i , i = 1, . . . , n− 1,

will be the member of Qn that encloses the largest area.

4. Other values of p

We now extend the method of the previous section to values of p > 1. Let

q(x)= (x − r1)
ks(x),

where
s(x)= (x − r0)

l(x − r2) · · · (x − rm−1)
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with r0 < r1 < r2 ≤ r3 ≤ · · · ≤ rm−1, and consider

Ap(q)(r1)=

∫ r1

a
(r1− x)kp

|s(x)|p dx +
∫ b

r1

(x − r1)
kp
|s(x)|p dx . (1)

If we can show that Ap(q)(r1) is concave up on [r0, r2], then one of the Bernstein
polynomials will be the member of Qn with the largest L p norm. Using the same
argument as the p = 1 case, two applications of Leibniz’s formula yields

d2

dr2
1

Ap(q)(r1)= kp(kp− 1)
∫ b

a
|(x − r1)

kp−2
||s(x)|p dx > 0,

and Ap(q)(r1) is concave up on the interval [r0, r2] when p > 1.
In the above calculation, we have to be careful when kp−2<0. Since kp−1>0

(k ≥ 1 and p > 1) the hypothesis of Leibniz’s formula are satisfied for the first
application with

d
dr1

Ap(q)(r1)=kp
∫ r1

a
(r1−x)kp−1

|s(x)|p dx−kp
∫ b

r1

(x−r1)
kp−1
|s(x)|p dx . (2)

When applying Leibniz’s formula to the first term on the right-hand side, we need

∂

∂r1
(r1− x)kp−1

|s(x)|p

to be continuous in both x and r1 in some region including a ≤ x ≤ r1. Although
this may not be true at x = r1, we can still justify the application of Leibniz’s
formula by considering the interval [a, r1− ε] and letting ε→ 0+. That is,

d2

dr2
1

∫ r1

a
(r1− x)kp

|s(x)|p dx = lim
ε→0+

(
d

dr1
kp
∫ r1−ε

a
(r1− x)kp−1

|s(x)|p dx
)
.

Because the integrand is positive, the result will follow if the limit exists.
The polynomial s(x) does not change sign on the interval (a, r2), so we may

assume without loss of generality that s(x) ≥ 0 on [a, r1− ε], with s(x)= 0 only
at x = a. Applying Leibniz’s formula on [a, r1− ε] yields

lim
ε→0+

(
d

dr1
kp
∫ r1−ε

a
(r1− x)kp−1s(x)p dx

)
= lim
ε→0+

kp(kp− 1)
∫ r1−ε

a
(r1− x)kp−2s(x)p dx + lim

ε→0+
(ε)kp−1s(r1− ε)

p

= lim
ε→0+

kp(kp− 1)
∫ r1−ε

a
(r1− x)kp−2s(x)p dx .
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In order to see that this limit exists, we integrate by parts to get

kp(kp−1) lim
ε→0+

(
−s(r1−ε)

p (ε)
kp−1

kp− 1
+

p
kp− 1

∫ r1−ε

a
(r1−x)kp−1s(x)p−1s ′(x) dx

)
= kp2

∫ r1

a
(r1− x)kp−1s(x)p−1s ′(x) dx,

where equality follows as kp−1> 0 and the integrand is a continuous function of
x on [a, r1]. Hence the limit exists and is positive from an earlier observation. A
similar argument applied to the second term on the right in (2) shows that

d2

dr2
1

∫ b

r1

(x − r1)
kp
|s(x)|p dx = lim

ε→0+

d
dr1

(
−kp

∫ b

r1+ε

(x − r1)
kp−1
|s(x)|p dx

)

exists and is positive. Therefore, d2

dr2
1

Ap(q)(r1) > 0.

From an argument similar to Theorem 3.1, we have the following result:

Theorem 4.1. If p≥ 1, one of the Bernstein polynomials is the member of Qn that
has the largest L p norm on [a, b].

Finally, we consider the case p =∞. Since [a, b] has finite measure,

lim
p→∞
‖ f (x)‖L p

[a,b]
= ‖ f (x)‖L∞

[a,b]
; (3)

see [Wheeden and Zygmund 1977, p. 126].

Corollary 4.2. One of the Bernstein polynomials is the member of Qn that has the
largest L∞ norm on [a, b].

Proof. Let m(x) ∈ Qn with m(x) 6= bi (x) for i = 1, . . . , n− 1. If we restrict p to
the positive integers, it follows from (3) that the sequences{

‖m(x)‖L p
[a,b]

}
p→‖m(x)‖L∞

[a,b]
and

{
‖bi (x)‖L p

[a,b]

}
p→‖bi (x)‖L∞

[a,b]

as p→∞. Theorem 4.1 implies that for each p ∈ N

‖m(x)‖L p
[a,b]
≤ ‖bi (x)‖L p

[a,b]
,

so that

lim
p→∞
‖m(x)‖L p

[a,b]
≤ lim

p→∞
‖bi (x)‖L p

[a,b]
.

Therefore ‖m(x)‖L∞
[a,b]
≤ ‖bi (x)‖L∞

[a,b]
and we have the desired result. �
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5. Evaluating the maximum

The process of increasing the L p norm lead us to a finite class of polynomials that
must contain the “largest” polynomial in Qn . Specifically, we arrived at the class
of Bernstein polynomials

bi (x)= (x − a)n−i (x − b)i , i = 1, . . . , n− 1.

We would like to determine which of these polynomials will maximize the L p

norm. To do so, we recall (from [Dennery and Krzywicki 1996, pp. 94–98], for
example) the beta function, defined by

B(x, y)=
∫ 1

0
t x−1(1− t)y−1dt =

0(x)0(y)
0(x + y)

,

where 0(x)=
∫
∞

0 t x−1e−t dt satisfies the property 0(n+ 1)= n!.
Initially, we answer the question when a = 0 and b = 1, and then translate the

result back to general a and b by the appropriate substitution. We observe that∫ 1

0
xn−i (x − 1)i dx = (−1)i B(n− i + 1, i + 1)= (−1)i

0(n− i + 1)0(i + 1)
0(n+ 2)

.

Since the polynomials bi (x) are either entirely positive or entirely negative on
[0, 1], we have

‖bi (x)‖L1
[0,1]
=

∣∣∣∣∫ 1

0
xn−i (x − 1)i dx

∣∣∣∣= 0(n− i + 1)0(i + 1)
0(n+ 2)

=
1

n+ 1
i ! (n− i)!

n!
.

Note that
i ! (n− i)!

n!
is the reciprocal of the binomial coefficient

(
n
i

)
. Since n

is fixed, we need to pick the value of i that minimizes this binomial coefficient.
Clearly this happens when i = 1 or i = n − 1. Therefore, the maximum value of
the norm is obtained for b1(x) and bn−1(x):

‖b1(x)‖L1
[0,1]
= ‖bn−1(x)‖L1

[0,1]
=

1
n+ 1

(
n
1

)−1

=
1

n(n+ 1)
. (4)

This can be generalized to the interval [a, b] by using the substitution u = (x−
a)/(b− a); for any monic degree-n polynomial q(x) with all real zeros in [a, b]
such that q(x) has roots at a and b, we have

‖q(x)‖L1
[a,b]
≤ (b− a)n+1 1

n(n+ 1)
.
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If p ∈N, the same method can be used to evaluate the L p norm of the Bernstein
polynomials. We have

‖bi (x)‖
p
L p
[0,1]
=

[
0(pn−pi+1)0(pi+1)

0(pn+ 2)

]1/p

=

[
1

pn+1
(pn−pi)! (pi)!

(pn)!

]1/p

. (5)

The maximum value is still achieved by b1(x) and bn−1(x). Inequality (5) can be
generalized to the interval [a, b] by using the substitution u = (x−a)/(b−a); for
any monic degree-n polynomial q(x) with all real zeros in [a, b] such that q(x)
has roots at a and b,

‖q(x)‖L p
[a,b]
≤

[
(b− a)pn+1 1

pn+ 1
(pn− pi)! (pi)!

(pn)!

]1/p

.

If p is not a natural number, the first equality in (5) is still valid, though we can
no longer express the result in terms of factorials. Therefore (again passing to the
case of [a, b]) we can write

‖bi (x)‖L p
[a,b]
=

[
(b− a)pn+10(pn− pi + 1)0(pi + 1)

0(pn+ 2)

]1/p

. (6)

To find the values of i that maximize this expression, we can differentiate it with
respect to i . (Although only integer values of i make sense in our context, the
quotient in (6) makes sense for all real i in the range of interest, 1≤ i ≤ n−1. The
domain of definition and differentiability of the gamma function includes (0,∞).)
The derivative of the gamma function involves another transcendental function,
known as polygamma. The upshot is that the quotient in (6) has only one critical
point in the interval 1≤ i ≤ n− 1, and it is a minimum rather than a maximum. It
follows that, once more, the local maxima in this interval must be at the endpoints
of the interval, that is, i = 1 and i = n− 1.

6. Recovering the supremum norm

As mentioned in the introduction, it was established in [Boelkins et al. 2006] that
the Bernstein polynomials b1(x) and bn−1(x) are the members of Qn with the
largest L∞ norm on [a, b]. In fact, they found that

‖b1(x)‖L∞
[a,b]
=
(b− a)n

n

(
n− 1

n

)n−1

,

a result that we now reproduce as a consequence of the work in the previous section.
We have seen that, for p ∈ N,

‖b1(x)‖L p
[a,b]
=

[
(b− a)pn+1

pn+ 1

(
(pn− p)! p!

(pn)!

)]1/p

.
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Applying Sterling’s approximation, lim
n→∞

(
n! −
√

2πn
(n

e

)n)
= 0, we obtain

‖b1(x)‖L∞
[a,b]
= lim

p→∞
‖b1(x)‖L p

[a,b]

= lim
p→∞

[
(b− a)pn+1

pn+ 1
(pn− p)! p!

(pn)!

]1/p

= lim
p→∞

[
(b− a)pn+1

pn+ 1

√
2πp(n− 1)

( p(n−1)
e

)p(n−1)√2πp
( p

e

)p

√
2πpn

( pn
e

)pn

]1/p

.

After simplification, this becomes

‖b1(x)‖L∞
[a,b]
=
(b− a)n

n

(
n− 1

n

)n−1

lim
p→∞

[
(b− a)
pn+ 1

(√
2πp(n− 1)
√

n

)]1/p

=
(b− a)n

n

(
n− 1

n

)n−1

lim
p→∞

(
b− a
√

n

)1/p

lim
p→∞

(√
2πp(n− 1)

pn+ 1

)1/p

=
(b− a)n

n

(
n− 1

n

)n−1

lim
p→∞

(√
2πp(n− 1)

pn+ 1

)1/p

.

L’Hopital’s rule implies

lim
p→∞

(√
2πp(n− 1)

pn+ 1

)1/p

= 1

and it follows that

‖b1(x)‖L∞
[a,b]
=
(b− a)n

n

(
n− 1

n

)n−1

.

We can now reasonably claim that the Bernstein polynomials are the largest monic
polynomials with all real roots in [a, b] in the full sense of all possible L p norms.
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