Constructions of potentially eventually positive sign patterns with reducible positive part

Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martínez-Rivera and Antonio Ochoa
Constructions of potentially eventually positive sign patterns with reducible positive part

Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa

(Communicated by Chi-Kwong Li)

Potentially eventually positive (PEP) sign patterns were introduced by Berman et al. (Electron. J. Linear Algebra 19 (2010), 108–120), where it was noted that a matrix is PEP if its positive part is primitive, and an example was given of a 3×3 PEP sign pattern with reducible positive part. We extend these results by constructing $n \times n$ PEP sign patterns with reducible positive part, for every $n \geq 3$.

1. Introduction

A sign pattern matrix (or sign pattern) is a matrix having entries in $\{+,-,0\}$. For a real matrix A, $\text{sgn}(A)$ is the sign pattern having entries that correspond to the signs of the entries in A. If \mathcal{A} is an $n \times n$ sign pattern, the qualitative class of \mathcal{A}, denoted $Q(\mathcal{A})$, is the set of all $A \in \mathbb{R}^{n \times n}$ such that $\text{sgn}(A) = \mathcal{A}$, where $\text{sgn}(A) = [\text{sgn}(a_{ij})]$; such a matrix A is called a realization of \mathcal{A}. Qualitative matrix problems were introduced by Samuelson [1947] in the mathematical modeling of problems from economics. Sign pattern matrices have useful applications in economics, population biology, chemistry and sociology. If P is a property of a real matrix, then a sign pattern \mathcal{A} is potentially P (or allows P) if there is some $A \in Q(\mathcal{A})$ that has property P.

The spectrum of a square matrix A, denoted $\sigma(A)$, is the multiset of the eigenvalues of A, and the spectral radius of A is defined as $\rho(A) = \max\{|\lambda| : \lambda \in \sigma(A)\}$. Matrix A has the strong Perron–Frobenius property if $\rho(A) > 0$ is a simple strictly dominant eigenvalue of A that has a positive eigenvector. A matrix $A \in \mathbb{R}^{n \times n}$ is eventually positive if there exists a $k_0 \in \mathbb{Z}^+$ such that for all $k \geq k_0$, $A^k > 0$, where the inequality is entrywise. Handelman developed the following test for eventual positivity in [Handelman 1981]: a matrix A is eventually positive if and only if both A and A^T satisfy the strong Perron–Frobenius property. If there exists a k such
that $A^k > 0$ and $A^{k+1} > 0$, then A is eventually positive [Johnson and Tarazaga 2004]. A sign pattern \mathcal{A} is potentially eventually positive (PEP) if there exists an eventually positive realization $A \in Q(\mathcal{A})$.

For a sign pattern $\mathcal{A} = [a_{ij}]$, define the positive part of \mathcal{A} to be $\mathcal{A}^+ = [a^+_{ij}]$ and the negative part of \mathcal{A} to be $\mathcal{A}^- = [a^-_{ij}]$, where

$$a^+_{ij} = \begin{cases} + & \text{if } a_{ij} = +, \\ 0 & \text{if } a_{ij} = 0 \text{ or } a_{ij} = -, \\ - & \text{if } a_{ij} = -, \\ 0 & \text{if } a_{ij} = 0 \text{ or } a_{ij} = +. \end{cases}$$

Clearly $\mathcal{A} = \mathcal{A}^+ + \mathcal{A}^-$. For a matrix $A \in \mathbb{R}^{n \times n}$, the positive part A^+ of A and negative part A^- of A are defined analogously, and $A = A^+ + A^-$. A digraph $\Gamma = (V, E)$ consists of a finite, nonempty set V of vertices, together with a set $E \subseteq V \times V$ of arcs. Note that a digraph allows loops (arcs of the form (v, v)) and may have both arcs (v, w) and (w, v) but not multiple copies of the same arc. Let $A = [a_{ij}] \in \mathbb{R}^{n \times n}$. The digraph of A, denoted $\Gamma(A)$, has vertex set $\{1, \ldots, n\}$ and arc set $\{(i, j) : a_{ij} \neq 0\}$. If \mathcal{A} is a sign pattern, then $\Gamma(\mathcal{A}) = \Gamma(A)$ where $A \in Q(\mathcal{A})$. A digraph Γ is strongly connected if for any two distinct vertices v and w of Γ, there is a path in Γ from v to w.

A square matrix A is reducible if there exists a permutation matrix P such that

$$PAP^T = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix}$$

where A_{11} and A_{22} are nonempty square matrices and 0 is a (possibly rectangular) block consisting entirely of zero entries, or A is the 1×1 zero matrix. If A is not reducible, then A is called irreducible. It is well known that for $n \geq 2$, A is irreducible if and only if $\Gamma(A)$ is strongly connected. For a strongly connected digraph Γ, the index of imprimitivity is the greatest common divisor of the lengths of the cycles in Γ. A strongly connected digraph is primitive if its index of imprimitivity is one; otherwise it is imprimitive. The index of imprimitivity of a nonnegative sign pattern \mathcal{A} is the index of imprimitivity of $\Gamma(\mathcal{A})$ and $\mathcal{A} \geq 0$ is primitive if $\Gamma(\mathcal{A})$ is primitive, or equivalently, if the index of imprimitivity of \mathcal{A} is one.

The study of PEP sign patterns was introduced in [Berman et al. 2010], where it was shown that if \mathcal{A}^+ is primitive, then \mathcal{A} is PEP, and where the first example of a PEP sign pattern with reducible positive part was given: the 3×3 pattern

$$\mathcal{B} = \begin{bmatrix} + & - & 0 \\ + & 0 & - \\ - & + & + \end{bmatrix}.$$
In Section 3 we examine the effect of the Kronecker product on PEP sign patterns and obtain another method of constructing PEP sign patterns with reducible positive part.

2. A family of sign patterns generalizing \mathcal{B}

The sign pattern \mathcal{B} from [Berman et al. 2010] was the first PEP sign pattern with a reducible positive part. This sign pattern may be generalized by defining the $n \times n$ sign pattern

$$
\mathcal{B}_n = \begin{bmatrix}
+ & - & \cdots & - & 0 \\
+ & 0 & \cdots & 0 & - \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
+ & 0 & \cdots & 0 & - \\
- & + & \cdots & + & +
\end{bmatrix}.
$$

The following result, which is a special case of the Schur–Cohn criterion (see, e.g., [Marden 1949]), will be used in the proof that \mathcal{B}_n is PEP.

Lemma 2.1. If the polynomial $f(x) = x^2 - \beta x + \alpha$ satisfies $|\beta| < 1 + \alpha < 2$, then all zeros of $f(x)$ lie strictly inside the unit circle.

It is well known that if the characteristic polynomial of A is $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ then $a_{n-k} = (-1)^k E_k(A)$, where $E_k(A)$ is the sum of the $k \times k$ principal minors of A (see, e.g., [Horn and Johnson 1985]).

Theorem 2.2. For $n \geq 3$ the $n \times n$ sign pattern \mathcal{B}_n is PEP.

Proof. For $t > 0$, let $B_n(t)$ be the $n \times n$ matrix

$$
B_n(t) = \begin{bmatrix}
1 + (n-2)t & -t & \cdots & -t & 0 \\
1 + t & 0 & \cdots & 0 & -t \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 + t & 0 & \cdots & 0 & -t \\
-(n-2)t - \frac{1}{2}t^2 & t & \cdots & t & 1 + \frac{1}{2}t^2
\end{bmatrix}.
$$

Then $B_n(t) \in Q(\mathcal{B}_n)$, and 1 is an eigenvalue of $B_n(t)$ with positive right eigenvector $\mathbf{1}$ (the all ones vector) and positive left eigenvector

$$
\mathbf{w} = \begin{bmatrix}
\frac{2n-5}{t} & 1 & \cdots & 1 & \frac{2n-4}{t}
\end{bmatrix}^T.
$$

We show that for some choice of $t > 0$, 1 is a simple strictly dominant eigenvalue of $B_n(t)$ and hence $B_n(t)$ is eventually positive. Since $1 \in \sigma(B_n(t))$ and rank $B_n(t) \leq 3$, the characteristic polynomial $p_{B_n(t)}(x)$ of $B_n(t)$ is of the form

$$
p_{B_n(t)}(x) = x^{n-3}(x-1)(x^2 - \beta x + \alpha) = x^n - (1 + \beta)x^{n-1} + (\alpha + \beta)x^{n-2} - \alpha x^{n-3}.
$$
Computing α and β using the sums of principal minors to evaluate the characteristic polynomial gives $\beta = \frac{1}{2}t^2 + (n - 2)t + 1$ and $\alpha = (n - 2)t(1 + 2t + \frac{1}{2}t^2)$. For $n > 3$, setting $t = 1/(2(n - 2))$ gives $|\beta| < 1 + \alpha < 2$, which, using Lemma 2.1, guarantees that the two nonzero eigenvalues of B_n other than 1 have modulus strictly less than 1 (recall that a 3×3 eventually positive matrix $B_3 \in Q(\mathcal{B}_3)$ was given in [Berman et al. 2010] so we have not been concerned with this case in choosing t). □

We illustrate this theorem with an example.

Example 2.3. Let $n = 5$. Following the proof of Theorem 2.2, we choose $t = \frac{1}{6}$ and define

$$B_5 = B_5\left(\frac{1}{6}\right) = \frac{1}{6} \begin{bmatrix} 9 & -1 & -1 & -1 & 0 \\ 7 & 0 & 0 & 0 & -1 \\ 7 & 0 & 0 & 0 & -1 \\ 7 & 0 & 0 & 0 & -1 \\ \frac{37}{12} & 1 & 1 & 1 & \frac{73}{12} \end{bmatrix}.$$

Moreover, we have

$$\sigma(B_5) = \{1, \frac{1}{144}(109 + i\sqrt{2087}), \frac{1}{144}(109 - i\sqrt{2087}), 0, 0\}$$

$$\approx \{1, 0.7569 + 0.3172i, 0.7569 - 0.3172i, 0, 0\},$$

and $[1 \ 1 \ 1 \ 1]^T$ and $[\frac{5}{6} \ \frac{1}{36} \ \frac{1}{36} \ 1]^T$ are right and left eigenvectors, respectively, corresponding to $\rho(B_5) = 1$. Therefore B_5 and B_5^T have the strong Perron–Frobenius property, so B_5 is eventually positive by Handelman’s criterion.

In [Berman et al. 2010] it was shown that if the sign pattern \mathcal{A} is PEP, then any sign pattern achieved by changing one or more zero entries of \mathcal{A} to be nonzero is also PEP. Applying this to \mathcal{B}_n yields a variety of additional PEP sign patterns having reducible positive part.

3. Kronecker products

The Kronecker product (sometimes called the tensor product) is a useful tool for generating larger eventually positive matrices and thus PEP sign patterns. The **Kronecker product** of $A = [a_{ij}]$ and $B = [b_{ij}]$ is defined as

$$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \cdots & a_{nn}B \end{bmatrix}.$$

It is clear that if $A > 0$ and $B > 0$, then $A \otimes B > 0$. The following facts can be found in many linear algebra books; see [Reams 2006], for example. For $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$, $(A \otimes B)^k = A^k \otimes B^k$. For A, C, B, D of appropriate dimensions,
we have \((A \otimes B)(C \otimes D) = (AC) \otimes (BD)\). There exists a permutation matrix \(P\) such that \(B \otimes A = P(A \otimes B)P^T\).

Proposition 3.1. If \(A\) and \(B\) are eventually positive matrices, then \(A \otimes B\) is eventually positive.

Proof. Assume that \(A\) and \(B\) are eventually positive matrices. Since \(A\) and \(B\) are eventually positive, there exists some \(s_0, t_0 \in \mathbb{Z}\), with \(s_0, t_0 > 0\), such that for all \(s \geq s_0\) and \(t \geq t_0\), \(A^s > 0\) and \(B^t > 0\). Set \(k_0 = \max\{s_0, t_0\}\). Then for all \(k \geq k_0\), \((A \otimes B)^k = A^k \otimes B^k > 0\). \(\Box\)

Corollary 3.2. If \(A\) and \(B\) are PEP sign patterns, then \(A \otimes B\) is PEP.

If either \(A\) or \(B\) is a reducible matrix, then \(A \otimes B\) is reducible since, without loss of generality, if

\[
PAP^T = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix}
\]

then

\[
(P \otimes I)(A \otimes B)(P \otimes I)^T = \begin{bmatrix} A_{11} \otimes B & 0 \\ A_{21} \otimes B & A_{22} \otimes B \end{bmatrix}.
\]

Thus Corollary 3.2 provides another way to construct PEP sign patterns having reducible positive part.

Example 3.3. Let

\[
B = \frac{1}{100} \begin{bmatrix} 130 & -30 & 0 \\ 130 & 0 & -30 \\ -31 & 30 & 101 \end{bmatrix}.
\]

In [Berman et al. 2010] it was shown that \(B\) is eventually positive, and in fact \(B^k > 0\) for \(k \geq 10\).

Let \(A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}\). Then \(A^k > 0\) for \(k \geq 2\), hence \(A\) is eventually positive.

Then

\[
B \otimes A = \frac{1}{100} \begin{bmatrix} 260 & 390 & -60 & -90 & 0 & 0 \\ 130 & 0 & -30 & 0 & 0 & 0 \\ 260 & 390 & 0 & 0 & -60 & -90 \\ 130 & 0 & 0 & 0 & -30 & 0 \\ -62 & -93 & 60 & 90 & 202 & 303 \\ -31 & 0 & 30 & 0 & 101 & 0 \end{bmatrix}.
\]

Moreover \((B \otimes A)^{10} > 0\) and \((B \otimes A)^{11} > 0\), so \(B \otimes A\) is eventually positive and \(\text{sgn}(B \otimes A)\) is a PEP sign pattern with reducible positive part.

Any 0 in \(\text{sgn}(B \otimes A)\) from Example 3.3 may be changed to \(-\) to get yet another PEP sign pattern with reducible positive part.
References

Received: 2011-03-03 Accepted: 2011-06-10

mharcher@iastate.edu Department of Mathematics, Iowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States

catralm@xavier.edu Department of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207, United States

craig@iastate.edu Department of Mathematics, Iowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States

rhaber2010@my.fit.edu Mathematics Department, Florida Institute of Technology, Melbourne, FL 32901, United States

lhogben@iastate.edu Department of Mathematics, Iowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States

American Institute of Mathematics, 360 Portage Avenue, Palo Alto, CA 94306, United States

xavier.martinez@upr.edu Department of Mathematical Sciences, University of Puerto Rico, Mayagüez, P.R. 00681, United States

aochoa@csupomona.edu California State Polytechnic University, Pomona, Pomona, CA 91768, United States
Maximality of the Bernstein polynomials

CHRISTOPHER FRAYER AND CHRISTOPHER SHAFHAUSER

The family of ternary cyclotomic polynomials with one free prime

YVES GALLOT, PIETER MOREE AND ROBERT WILMS

Preimages of quadratic dynamical systems

BENJAMIN HUTZ, TREVOR HYDE AND BENJAMIN KRAUSE

The Steiner problem on the regular tetrahedron

KYRA MOON, GINA SHERO AND DENISE HALVERSON

Constructions of potentially eventually positive sign patterns with reducible positive part

MARIE ARCHER, MINERVA CATRAL, CRAIG ERICKSON, RANA HABER, LESLIE HOGBEN, XAVIER MARTINEZ-RIVERA AND ANTONIO OCIO

Congruence properties of S-partition functions

ANDREW GRUET, LINZHI WANG, KATHERINE YU AND JIANGANG ZENG