Elliptic curves, eta-quotients and hypergeometric functions

David Pathakjee, Zef RosnBrick and Eugene Yoong
Elliptic curves, eta-quotients and hypergeometric functions

David Pathakjee, Zef RosnBrick and Eugene Yoong

(Communicated by Kenneth S. Berenhaut)

The well-known fact that all elliptic curves are modular, proven by Wiles, Taylor, Breuil, Conrad and Diamond, leaves open the question whether there exists a nice representation of the modular form associated to each elliptic curve. Here we provide explicit representations of the modular forms associated to certain Legendre form elliptic curves $2E_1(\lambda)$ as linear combinations of quotients of Dedekind’s eta-function. We also give congruences for some of the modular forms’ coefficients in terms of Gaussian hypergeometric functions.

1. Introduction and statement of results

Wiles and Taylor [1995] proved that all semistable elliptic curves over \mathbb{Q} are modular. Their result was later extended by Breuil, Conrad, Diamond and Taylor [Breuil et al. 2001] to all elliptic curves over \mathbb{Q}.

This correspondence allows facts about elliptic curves to be proven using modular forms, and vice versa. (See [Koblitz 1993] for more background on the theory of elliptic curves and modular forms.)

Let E be an elliptic curve over \mathbb{Q}. If $q := e^{2\pi i z}$, $\text{GF}(p)$ is the finite field with p elements, and $N(p)$ is the number of points on E over $\text{GF}(p)$, then the modularity theorem implies that there exists a corresponding weight-2 newform $f(z) = \sum_{n=1}^{\infty} a(n)q^n$ such that if p is a prime of good reduction, then $a(p) = 1 + p - N(p)$.

For example, if $\eta(z)$ is Dedekind’s eta-function,

$$\eta(z) := q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1 - q^n),$$

then the elliptic curves $y^2 = x^3 + 1$ and $y^2 = x^3 - x$ have the corresponding modular forms $\eta(6z)^4$ and $\eta(4z)^2 \eta(8z)^2$, respectively; see [Martin and Ono 1997].

Keywords: number theory, elliptic curves, eta quotients, hypergeometric functions.

The authors wish to thank the NSF for supporting this research, and Ken Ono and Marie Jameson for their invaluable advice.
It is natural to ask which elliptic curves have corresponding modular forms that are quotients of eta-functions. Martin and Ono [1997] have answered this question by listing all such eta-quotients

$$f(z) = \prod_\delta \eta(\delta z)^{r_\delta} \quad (\delta, r_\delta \in \mathbb{Z})$$

which are weight-2 newforms, and they gave corresponding modular elliptic curves. (For more on the theory of eta-quotients, see [Ono 2004, Section 1.4].)

We show, for certain values of $\lambda \in \mathbb{Q} \setminus \{0, 1\}$, that the elliptic curves $2E_1(\lambda)$ defined by

$$2E_1(\lambda): y^2 = x(x-1)(x-\lambda) \quad (1-1)$$

correspond to modular forms which are linear combinations of eta-quotients.

Remark. The proof of Theorem 1.1 will make clear how one can generate many more such examples.

Let

$$f_\lambda(z) := \sum_{n=1}^{\infty} 2a_1(n; \lambda)q^n \quad (1-2)$$

be the weight-2 newform corresponding to the elliptic curve $2E_1(\lambda)$. It will be convenient to express eta-quotients using the notation

$$\left[\prod_\delta \delta^{r_\delta} \right] := \prod_\delta \eta(\delta z)^{r_\delta}. \quad (1-3)$$

For example, in place of $\frac{\eta(2z)^2\eta(4z)^2\eta(5z)\eta(40z)}{\eta(z)\eta(8z)}$ we write $[1^{-1}2^24^25^18^{-1}40^1]$.

Theorem 1.1. If $\lambda \in \{\frac{27}{16}, 5, \frac{81}{49}, -\frac{7}{25}\}$, then $2E_1(\lambda)$ corresponds to the modular forms given here:

<table>
<thead>
<tr>
<th>λ</th>
<th>conductor N</th>
<th>eta-quotient $f_\lambda(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{27}{16}$</td>
<td>33</td>
<td>$[1^211^2] + 3 \cdot [3^233^2] + 3 \cdot [1^13^111^133^1]$</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>$[1^{-1}2^24^25^18^{-1}40^1] + [1^15^{-1}8^110^220^240^{-1}]$</td>
</tr>
<tr>
<td>$\frac{81}{49}$</td>
<td>42</td>
<td>$2 \cdot [1^{-1}2^23^17^214^{-1}42^1] - 3 \cdot [3^16^121^142^1]$ + $[2^13^26^{-1}7^121^{-1}42^2] + [1^13^{-1}6^214^121^242^{-1}]$</td>
</tr>
<tr>
<td>$-\frac{7}{25}$</td>
<td>70</td>
<td>$[1^{-1}2^25^27^{-1}10^{-1}14^235^270^{-1}] - [1^22^{-1}5^{-1}7^210^214^{-1}35^{-1}70^2]$</td>
</tr>
</tbody>
</table>

We show, for all $\lambda \in \mathbb{Q} \setminus \{0, 1\}$, that the Fourier coefficients of all $f_\lambda(z)$ satisfy an interesting hypergeometric congruence. For a prime p and an integer n, define
ord$_p(n)$ to be the power of p dividing n, and if $\alpha = \frac{a}{b} \in \mathbb{Q}$, then set ord$_p(\alpha) = \text{ord}_p(a) - \text{ord}_p(b)$. We show that with this notation, the numbers $2a_1(p; \lambda)$ satisfy the following congruences.

Theorem 1.2. Let $\lambda \not\in \{0, 1\}$ be rational and let $p = 2f + 1$ be an odd prime such that ord$_p(\lambda(\lambda - 1)) = 0$. Then

$$2a_1(p; \lambda) \equiv (-1)^{\frac{p+1}{2}}(p-1) \sum_{k=0}^{f} \binom{f+k}{k} \binom{f}{k} (-\lambda)^k \pmod{p}.$$

Remarks. In light of Theorem 1.1, this implies that the congruence in Theorem 1.2 holds for the coefficients of the linear combinations of eta-quotients given above.

- A well-known theorem of Hasse states that for every prime p,

$$|a(p)| < 2\sqrt{p}.$$

Theorem 1.2 therefore determines $2a_1(p; \lambda)$ uniquely for primes $p > 16$.

Example. Consider $\lambda = \frac{27}{16}$. Then $\lambda(\lambda - 1) = \frac{3^3 \cdot 11}{2^5}$ and so for $p \not\in \{2, 3, 11\}$ prime we observe the congruence by inspecting the coefficients of $2E_1(\frac{27}{16})$ for applicable primes $p < 30$, where $B(p; \lambda)$ is defined to be the right-hand side of the congruence in Theorem 1.2:

<table>
<thead>
<tr>
<th>p</th>
<th>$2a_1(p; \frac{27}{16})$</th>
<th>$B(p; \frac{27}{16})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$-2 \equiv 3 \pmod{5}$</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>$4 \equiv 4 \pmod{7}$</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>$-2 \equiv 11 \pmod{13}$</td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>$-2 \equiv 15 \pmod{17}$</td>
<td>15</td>
</tr>
<tr>
<td>19</td>
<td>$0 \equiv 0 \pmod{19}$</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>$8 \equiv 8 \pmod{23}$</td>
<td>8</td>
</tr>
<tr>
<td>29</td>
<td>$-6 \equiv 23 \pmod{29}$</td>
<td>23</td>
</tr>
</tbody>
</table>

2. Elliptic curves and modular forms

In this section we prove Theorem 1.1. If E is an elliptic curve over \mathbb{Q}, then its conductor N is a product of the primes p of bad reduction for E, with exponents determined by the extent to which E is singular over GF(p). (An algorithm by Tate for computing conductors is given in [Cremona 1997].) Moreover, the modularity theorem implies that the modular form $f(z)$ corresponding to E is an element of $S_2(\Gamma_0(N))$. In particular, for an elliptic curve $2E_1(\lambda)$, proving the correctness of any representation of $f_\lambda(z)$ in terms of eta-quotients amounts to checking that the given eta-quotients are elements of $S_2(\Gamma_0(N))$ and checking a finite number of coefficients of their Fourier expansions against those of f_λ.

We first provide a formula for the dimension of the space of cusp forms of weight 2 and level \(N \), \(S_2(\Gamma_0(N)) \). We then show that the eta-quotients making up the linear combinations are elements of \(S_2(\Gamma_0(N)) \) and use the dimension formula to show that equality of two elements of \(S_2(\Gamma_0(N)) \) always depends only on some finite set of coefficients.

The linear combinations of eta-quotients in this paper were generated by the following algorithm:

1. Given a rational number \(\lambda / \in \{0, 1\} \), compute the conductor \(N \) of \(2E_1(\lambda) \). (The modular form corresponding to \(2E_1(\lambda) \) will be an element of \(S_2(\Gamma_0(N)) \).)
2. Compute \(\dim \mathbb{C} S_2(\Gamma_0(N)) \).
3. Generate eta-quotients which are elements of \(S_2(\Gamma_0(N)) \).
4. Attempt to construct a basis for \(S_2(\Gamma_0(N)) \) using these eta-quotients.

Of course, once one is armed with a basis of eta-quotients for \(S_2(\Gamma_0(N)) \), it is simple to express \(f_\lambda(z) \) in terms of this basis.

Dimension of \(S_2(\Gamma_0(N)) \). It will be useful to know not only that \(S_2(\Gamma_0(N)) \) is finite-dimensional for every positive integer \(N \), but also its exact dimension \(d_N := \dim \mathbb{C} S_2(\Gamma_0(N)) \).

The following formula for \(d_N \) is a simplification of [Ono 2004, Theorem 1.34], which gives a formula for the quantity \(\dim \mathbb{C} S_k(\Gamma_0(N), \chi) - \dim \mathbb{C} M_{2-k}(\Gamma_0(N), \chi) \), in the case where \(k = 2 \) and \(\chi = \epsilon \) is the trivial character modulo \(N \).

Proposition 2.1. If \(N \) is a fixed positive integer and \(r_p := \text{ord}_p(N) \), define

\[
\lambda_p := \begin{cases} p^{r_p \over 2} + p^{r_p \over 2} - 1 & \text{if } r_p \equiv 0 \pmod{2}, \\ 2p^{r_p - \over 2} & \text{if } r_p \equiv 1 \pmod{2}. \end{cases}
\]

With this notation,

\[
d_N = 1 + \frac{N}{12} \prod_{p | N} (1 + p^{-1}) - \frac{1}{2} \prod_{p | N} \lambda_p - \frac{1}{4} \sum_{x \pmod{N}} 1 - \frac{1}{3} \sum_{x \pmod{N}} 1.
\]

Proof. This follows from [Ono 2004, Theorem 1.34], noting that the conductor of the trivial character is 1 and that \(M_0(\Gamma_0(N), \epsilon) \) is the space of constant functions and hence has dimension 1.

Proof of Theorem 1.1. Let \(N \) be the conductor of \(E = 2E_1(\lambda) \) and let \(d_N = \dim \mathbb{C} S_2(\Gamma_0(N)) \) as before. Conditions under which an eta-quotient is an element of \(S_2(\Gamma_0(N)) \) are provided in [Ono 2004, Theorems 1.64 and 1.65]: If \(f(z) = \prod_{\delta | N} \eta(\delta z)^{r_\delta} \) is an eta-quotient which vanishes at each cusp of \(\Gamma_0(N) \), such that the pairs \((\delta, r_\delta) \) satisfy \(\sum_{\delta | N} r_\delta = 4, \sum_{\delta | N} \delta r_\delta \equiv 0 \pmod{24}, \) and \(\sum_{\delta | N} {N \over \delta} r_\delta \equiv 0 \pmod{24}, \)
then \(f(z) \in S_2(\Gamma_0(N)) \). The order of vanishing of such an \(f(z) \) at the cusp \(\frac{c}{d} \) is given by [Ono 2004, Theorem 1.65] as

\[
\frac{N}{24} \sum_{d|N} \frac{\gcd(d,\delta)^2 r_\delta}{\gcd(d, \frac{N}{d})d\delta}.
\]

(2-1)

It is straightforward to check that the formula above gives a positive order of vanishing for each eta-quotient at each cusp, that each eta-quotient satisfies the given congruence conditions, and that the \(r_\delta \) of each eta-quotient sum to 4. These conditions guarantee that each eta-quotient appearing in the table above lies in \(S_2(\Gamma_0(N)) \).

The eta-quotients given for \(\lambda = \frac{27}{16} \) form a basis for \(S_2(\Gamma_0(33)) \). Similarly, for \(\lambda = 5 \), the given eta-quotients along with \([2^210^2]\) form a basis; for \(\lambda = \frac{81}{39} \) the given eta-quotients along with \([1^{-1}2^23^26^{-1}7^{-1}14^221^242^{-1}]\) form a basis; and for \(\lambda = -\frac{7}{35} \) a complete basis is

\[
\{[5^27^2], [1^{-1}2^27^210^114^{-1}35^1], [10^214^2], [1^22^15^17^{-1}14^270^1], [1^22^15^{-1}2^110^214^{-1}35^{-1}70^2], [1^15^17^135^1], [1^15^210^{-1}14^{-1}35^{-1}70^2], [5^110^135^170^1], [1^{-1}2^22^17^135^{-1}70^2]\}.
\]

To see this, let \(g_{i,j} \) be the \(j \)-th Fourier coefficient of the \(i \)-th basis vector \(g_i \) and define \(t_1 < \cdots < t_{d_N} \) to be the first ascending set of indices for which the vectors \(\{g_{i,j}\}_{i=1}^{d_N} \) are linearly independent. One can find such a sequence by direct computation of the Fourier coefficients and inspection of the matrices \(\{g_{i,j}\}_{i=1}^{d_N} \) for various choices of small \(t_1 < \cdots < t_{d_N} \).

Now let \(v_i = (g_{i,t_1}, \ldots, g_{i,t_{d_N}}) \) and let \(b_1, \ldots, b_{d_N} \) be a basis for \(S_2(\Gamma_0(N)) \). If we have \(h_1, h_2 \in S_2(\Gamma_0(N)) \) with equal \(t_i \)-th coefficients, then these coefficients are zero in the difference \(h_1 - h_2 \). But \(h_1 - h_2 \) can be written as a linear combination \(\sum c_i b_i \) of basis elements, for constants \(c_i \). Hence \(\sum c_i v_i = 0 \) in \(\mathbb{R}^{d_N} \), so by linear independence all \(c_i = 0 \), and thus \(h_1 - h_2 = 0 \). It therefore suffices to check that the coefficients of \(f_\lambda \) on \(q^{t_1}, \ldots, q^{t_{d_N}} \) match the coefficients that result from the linear combination of eta-quotients.

\(\square \)

Remark. In practice, these computations can be done using a computer algebra system such as SAGE.

Example. We show that the modular form corresponding to \(2E_1(\frac{27}{16}) \) is

\[
g(z) := [1^211^2] + 3 \cdot [3^233^2] + 3 \cdot [1^13^111^133^1].
\]

For convenience, let \(G = \{[1^211^2], [3^233^2], [1^13^111^133^1]\} \) be the set of eta-quotients making up the linear combination \(g(z) \). The conductor of \(2E_1(\frac{27}{16}) \) is 33 and so the corresponding modular form \(f_{\frac{27}{16}}(z) \) is an element of \(S_2(\Gamma_0(33)) \).
To show that $g(z)$ is also an element of $S_2(\Gamma_0(33))$, it suffices to show that $G \subset S_2(\Gamma_0(33))$. Take $g_1(z) \in G$. By [Ono 2004, Theorem 1.64], $g_i(z)$ is a modular form of weight 2 for $\Gamma_0(33)$. By [Ono 2004, Theorem 1.65], $g_i(z)$ vanishes at all cusps of $\Gamma_0(33)$, and thus $g_i(z) \in S_2(\Gamma_0(33))$.

Since $\text{ord}_3(33) = \text{ord}_{11}(33) = 1$, we have $\lambda_3 = \lambda_{11} = 2$ and evaluation of the dimension formula in Proposition 2.1 gives

$$\dim_{\mathbb{C}} S_2(\Gamma_0(33)) = 1 + \frac{33}{12} \prod_{p \mid 33} (1 + p^{-1}) - \frac{1}{2} \prod_{p \mid 33} \lambda_p - \frac{1}{4} \sum_{x \pmod{33}} 1 - \frac{1}{3} \sum_{x \pmod{33}} 1$$

$$= 1 + \frac{33}{12} \left(1 + \frac{1}{3}\right) \left(1 + \frac{1}{11}\right) - \frac{1}{2}(\lambda_3)(\lambda_{11}) - \frac{1}{4}(0) - \frac{1}{3}(0)$$

$$= 3.$$

It remains to show that G is a basis for $S_2(\Gamma_0(33))$. Any dependence relation satisfied by the elements of G would imply a dependence relation among their coefficients. It thus suffices to find a set of indices $t_1 < t_2 < t_3$ such that the 3×3 matrix formed by the t_i-th coefficients of these eta-quotients is nonsingular. For this particular λ, the first three coefficients suffice.

This implies that any two elements of $S_2(\Gamma_0(33))$ which agree on the first three coefficients are equal. In fact, we observe that the first three coefficients of the modular form corresponding to $2E_1\left(\frac{27}{16}\right)$ are the same as the first three coefficients of $g(z)$. That is, the coefficients of $g(z) = q + q^2 - q^3 - q^4 + \cdots$ agree with the coefficients of $f_{\frac{27}{16}}(z)$.

3. Gaussian hypergeometric functions and proof of Theorem 1.2

We recall some facts about Gaussian hypergeometric functions over finite fields of prime order and use the Gaussian hypergeometric function $\text{2F1}_1\left(\phi, \phi \mid \lambda\right)$ to prove Theorem 1.2.

Gaussian hypergeometric functions. Greene [1987] defined Gaussian hypergeometric functions over arbitrary finite fields and showed that they have properties analogous to those of classical hypergeometric functions. We recall some definitions and notation from [Ono 1998] in the case of fields of prime order.

Definition 3.1. If p is an odd prime, $\text{GF}(p)$ is the field with p elements, and A and B are characters of $\text{GF}(p)$, define

$$\left(\begin{array}{c} A \\ B \end{array}\right) := \frac{B(-1)}{p} J(A, B) = \frac{B(-1)}{p} \sum_{x \in \text{GF}(p)} A(x) \bar{B}(1-x).$$
Furthermore, if \(A_0, \ldots, A_n \) and \(B_1, \ldots, B_n \) are characters of \(\text{GF}(p) \), define the Gaussian hypergeometric series \(n+1 \, F_n \left(\frac{A_0, A_1, \ldots, A_n}{B_1, \ldots, B_n} \mid x \right) \) by the following sum over all characters \(\chi \) of \(\text{GF}(p) \):

\[
n+1 \, F_n \left(\frac{A_0, A_1, \ldots, A_n}{B_1, \ldots, B_n} \mid x \right) := \frac{p}{p-1} \sum_{\chi} \left(\frac{A_0 \chi}{\chi} \right) \left(\frac{A_1 \chi}{B_1 \chi} \right) \cdots \left(\frac{A_n \chi}{B_n \chi} \right) \chi(x)
\]

In particular, we are concerned with the Gaussian hypergeometric series \(2 \, F_1(\lambda) \) defined by

\[
2 \, F_1(\lambda) := 2 \, F_1 \left(\frac{\phi, \phi}{\epsilon, \epsilon} \mid \lambda \right) = \frac{p}{p-1} \sum_{\chi} \left(\frac{\phi \chi}{\chi} \right)^2 \chi(\lambda)
\]

where \(\phi \) is the quadratic character of \(\text{GF}(p) \). It is shown in [Ono 1998] that if \(\lambda \in \mathbb{Q} \setminus \{0, 1\} \), then

\[
2 \, F_1(\lambda) = -\frac{\phi(-1) \, a_1(p; \lambda)}{p} \quad (3-1)
\]

for every odd prime \(p \) such that \(\text{ord}_p (\lambda(\lambda - 1)) = 0 \).

In addition, define the generalized Apéry number \(D(n; m, l, r) \) for every \(r \in \mathbb{Q} \) and every pair of nonnegative integers \(m \) and \(l \) by

\[
D(n; m, l, r) := \sum_{k=0}^{n} \binom{n+k}{k} m^l k^r.
\]

Ono also shows (ibid.) that if \(p = 2f + 1 \) is an odd prime and \(w = l + m \), then

\[
D(f; m, l, r) \equiv \left(\frac{p}{p-1} \right)^{w-1} w \, F_{w-1} \left(\frac{\phi, \phi, \ldots, \phi}{\epsilon, \epsilon, \ldots, \epsilon} \mid (-r)^l \right) \pmod{p}. \quad (3-2)
\]

Proof of Theorem 1.2. By (3-1) and the fact that \(\phi(-1) = (-1)^{\frac{p+1}{2}} \), we have that

\[
\frac{p}{p-1} \, 2 \, F_1(\lambda) = \frac{(-1)^{\frac{p+1}{2}} \, a_1(p; \lambda)}{p-1}.
\]

By (3-2), letting \(l = m = 1 \) (and thus \(w = 2 \)) and \(r = -\lambda \), we have

\[
\frac{p}{p-1} \, 2 \, F_1(\lambda) \equiv D(f; 1, 1, -\lambda) \pmod{p}.
\]

Combining these two equations and rearranging, we get

\[
2 \, a_1(p; \lambda) \equiv (-1)^{\frac{p+1}{2}} (p-1) D(f; 1, 1, -\lambda) \pmod{p}.
\]

Since

\[
D(f; 1, 1, -\lambda) = \sum_{k=0}^{n} \binom{f+k}{k} \binom{f}{k} (-\lambda)^k,
\]
we have
\[2a_1(p; \lambda) \equiv (-1)^{p+1} (p-1) \sum_{k=0}^{f} \binom{f+k}{k} \binom{f}{k} (-\lambda)^k \pmod{p}. \]

\[\boxed{} \]

Remark. The binomial product \(\binom{f+k}{k} \binom{f}{k} \) can be combined into the multinomial coefficient \(\binom{f+k}{k, k, f-k} \) and so the congruence in Theorem 1.2 can also be written as
\[2a_1(p; \lambda) \equiv (-1)^{p+1} (p-1) \sum_{k=0}^{f} \binom{f+k}{k, k, f-k} (-\lambda)^k \pmod{p}. \]

References

Received: 2010-05-03 Revised: 2011-04-22 Accepted: 2011-09-14
Elliptic curves, eta-quotients and hypergeometric functions
David Pathakjee, Zef RosnBrick and Eugene Yoong

Trapping light rays aperiodically with mirrors
Zachary Mitchell, Grégory Simon and Xueying Zhao

A generalization of modular forms
Adam Haque

Induced subgraphs of Johnson graphs
Ramin Naimi and Jeffrey Shaw

Multiscale adaptively weighted least squares finite element methods for convection-dominated PDEs
Bridget Kraynik, Yifei Sun and Chad R. Westphal

Diameter, girth and cut vertices of the graph of equivalence classes of zero-divisors
Blake Allen, Erin Martin, Eric New and Dane Skabelund

Total positivity of a shuffle matrix
Audra McMillan

Betti numbers of order-preserving graph homomorphisms
Lauren Guerra and Steven Klee

Permutation notations for the exceptional Weyl group F_4
Patricia Cahn, Ruth Haas, Aloysius G. Helminick, Juan Li and Jeremy Schwartz

Progress towards counting D_5 quintic fields
Eric Larson and Larry Rolen

On supersingular elliptic curves and hypergeometric functions
Keenan Monks