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(Communicated by John Baxley)

We consider a weighted least squares finite element approach to solving con-
vection-dominated elliptic partial differential equations, which are difficult to
approximate numerically due to the formation of boundary layers. The new
approach uses adaptive mesh refinement in conjunction with an iterative process
that adaptively adjusts the least squares functional norm. Numerical results show
improved convergence of our strategy over a standard nonweighted approach.
We also apply our strategy to the steady Navier–Stokes equations.

1. Introduction

In this paper we consider numerically approximating solutions to the convection-
diffusion partial differential equation{

−ε1u+ b · ∇u = f in �,

u = g on ∂�.
(1)

Here, u=u(x, y) is the solution, ∇u and1u are the gradient and Laplacian of u,
∂� is the boundary of domain �, f is a known data function, g is a known bound-
ary function, and ε and b are coefficients for diffusion and convection, respectively.
For ε� |b| we say that this represents a convection-dominated diffusion problem.
In such cases, solutions tend to develop boundary layers, that is, components of
the solution that have steep gradients near the boundary. To illustrate this, consider
the following ordinary differential equation analogy:

−εu′′+ bu′ = 0 in (0, 1),

u(0)= 1,

u(1)= 0,

(2)
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Figure 1. Solution of (2) for ε = 1 (left), ε = 0.1 (middle), and
ε = 0.01 (right).

where bu′ is the convection term and −εu′′ the diffusion term. We call the ODE
convection-dominated when ε�|b|, and to illustrate this we set b=1 and consider
the following solution plots for different values of ε in Figure 1.

We can see that as ε→ 0, a boundary layer forms near x = 1. This behavior
is difficult to approximate computationally and is also present in the solution of
system (1) for regions of � near boundary points with n · b > 0, where n is
an outward unit normal to ∂�. See [Brenner and Scott 1994; Braess 2001] for
background on finite element methods for such problems.

The method we develop here is a generalization of a least squares finite element
discretization for scalar elliptic equations. In general, a least squares approach to
(1) tends to be an effective way to approximate solutions; however, convergence
is degraded in the presence of dominant convection. We consider a least squares
functional minimized with respect to a weighted L2-norm, where the weights are
chosen adaptively in the context of an adaptive mesh refinement routine. This idea
is inspired by work of Westphal et al. [Lee et al. 2006; 2008; Cai and Westphal
2008], where a weighted functional is used to improve solutions to problems with
singularities.

The organization of this paper is as follows: in Section 2 we introduce a reformu-
lated version of (1) and the adaptively weighted procedure; in Section 3 we provide
several numerical tests to demonstrate the effectiveness of the method compared
to a more standard approach; and in Section 4 we show the robustness of the idea
by applying it analogously to a moderately high Reynolds number Navier–Stokes
system for steady fluid flow.

2. Methodology

The L2(�) norm of a function f is defined to be

‖ f ‖ = ‖ f ‖L2(�) =

(∫
�

| f |2
)1/2

,

and L2(�) is the space of functions in � that have finite L2(�) norms. Likewise,
we define H 1(�) as the subspace of L2(�) where all first partial derivatives of
functions are also in L2(�).
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With the substitution σ =−ε∇u, we rewrite (1) as the first-order equations

5 · σ + b · ∇u = 0 in �,

σ + ε∇u = 0 in �,

∇ × σ = 0 in �,

u = g on ∂�,

τ̂ · σ =−ετ̂ · ∇g on ∂�.

(3)

The third equation holds because ∇×σ =∇×(−ε∇u)=−ε(∇×∇u)= 0. In the
fifth equation, τ̂ is a unit tangent vector to ∂� and this new boundary condition is
simply a statement about the directional derivative of g along ∂�.

We first consider what we refer to as the standard least squares approach. Since
we seek a finite element solution, we partition � into an initial triangulation de-
noted as �h . Here, h denotes the size, or width of the triangles and (uh, σ h)

represents an approximate solution to (u, σ ), the exact solution of system (3).
Define

V = {v ∈ H 1(�) : v = g on ∂�},

6 = {s ∈ H 1(�)2 : τ · s =−ετ · ∇g on ∂�}

as sets of admissible solutions, and let V h
⊆ V and 6h

⊆6 be finite dimensional
subsets in which we seek approximate solutions.

A standard LS approach seeks a pair of solutions (uh, σ h) ∈ V h
× 6h which

minimizes the functional

G(uh, σ h
; f )= ‖∇ · σ h

+ b · ∇uh
− f ‖2+‖σ h

+ ε∇uh
‖

2
+‖∇ × σ h

‖
2. (4)

For elliptic problems that are diffusion dominated, minimizing (4) using stan-
dard finite element spaces results in good convergence. However, for convection-
dominated problems, minimizing (4) results in slow convergence until h is very
small (typically h ≈ O(ε)). Other finite element approaches tend to be unstable in
convection-dominated regimes and solutions may exhibit oscillatory behavior; see,
e.g., [Bochev and Gunzburger 2009; Strang and Fix 1973].

One undesirable aspect of the standard least squares approach is that there is not
only significant error near boundary layers, but that the error may remain large even
in regions of the domain where the solution is smooth. To reduce this “pollution
effect”, we introduce weight functions into the functional (4) to redefine the metric
of the approximation space. By doing this, we are able to force the least squares
functional to choose a better solution globally (i.e., in the regions of the domain
where the solution is smooth) and segregate errors to a small region near boundary
layers. Thus, we want to choose the weight function, w, to be large (a value at or
near 1) where the error is small, and small (a value near 0) where the error is large.
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In this paper we use what we call a sigma-based weighting strategy that uses
the approximate solution for σ to construct the weight function. An alternative,
one we refer to as functional based weighting, uses locally evaluated functional
values to generate weights. Though both strategies have merits, we focus here on
sigma-based weights. Consider an approximate solution σ h evaluated on a single
finite element triangle, T :

‖σ h
‖T =

(∫
T
|σ h
|
2
)1/2

,

which we may use as a local indicator of where the solution is likely to have steep
gradients (recall the definition of σ ). We thus choose a weight function, w, on each
T by the procedure illustrated in Figure 2.

We choose wmin = e−h/ε. For coarse meshes, where weighting is most needed,
wmin is very near zero. For increasingly fine meshes, where the weight procedure
is needed less, we have limh→0wmin→ 1. Thus our algorithm remains robust for
a wide range of convection-diffusion regimes.

With such an appropriate weight function chosen we find an improved approx-
imate solution by choosing uh and σ h that minimize the weighted least squares
functional

G(uh, σ h
; f )

= ‖w(∇ · σ h
+ b · ∇uh

− f )‖2+‖w(σ h
+ ε∇uh)‖2+‖w(∇ × σ h)‖2, (5)

where we note that setting w = 1 corresponds to the original least squares func-
tional (4). Since this approach obviously requires an initial approximate solution
to choosew, it makes sense to conduct this in a nested iteration approach where the
initial approximation is found cheaply on a coarse mesh and the improved approx-
imation is found on refined mesh. In other words, our approach is to incorporate

min
T
‖σ h
‖T max

T
‖σ h
‖T

wmin

1

w

‖σ h
‖

Figure 2. The relationship between ‖σ h
‖T and the weight function.
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refining the weight function in (5) into an adaptive mesh refinement routine for
finding increasingly accurate approximations on a sequence of refined meshes.

We describe the solution process in the following algorithm:

• Start: Consider minimizing (5) on an initial coarse triangulation �H , where
H is the mesh size. Initially set w = 1.

• Coarse solve: Minimize (5) to find (u H , σ H ) ∈ V H
×6H .

• Construct weights: Using the rule illustrated in Figure 2, choose w to be a
piecewise linear function on each element in �H .

• Refine mesh: The locally evaluated least squares functional is used to deter-
mine triangles in�H with the highest concentration of error, which are refined
by splitting each into four smaller triangles. Let h = H/2 represent the mesh
size of the refined mesh, �h .

• Fine solve: Minimize (5) to find (uh, σ h) ∈ V h
× 6h . Set H ← h as the

coarse scale for the problem and repeat the procedure.

Figure 3 illustrates the multilevel iterative algorithm.

−→ −→

−→ −→

Figure 3. Iterative process for computing approximate solutions:
coarse mesh, coarse solution, weight function, refined mesh, fine
solution.
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3. Testing and results

We test several problems with various levels of difficulty. We compare our approxi-
mate solution (uh, σ h) to a control solution to get the associated error. This control
solution is obtained by computing the solution on a superfine scale mesh using
the standard LS approach over several iterations. We assume it to be sufficiently
accurate for our purpose of comparison. We compute the L2 norm of this error as a
measure of accuracy of the approximated solution. In all cases we use conforming
piecewise quadratic finite elements for each unknown. In the computational tests in
this section, we choose �= (0, 1)2 and zero Dirichlet boundary conditions on the
north, east and west boundaries, and define a nonzero g(x) on the south boundary.

The following four examples compare the efficiency of the standard LS approach
and our sigma-based weighting strategy. Both axes in all graphs are on a log10

scale. The points that are higher have larger errors than the lower ones.

Example 1. We solve the system (1) with a constant b=
(
−

1
√

10
, 3
√

10

)
, a smooth

g = 16x2(1 − x)2, and a relatively large ε = 0.005. The results are shown in
Figure 4; it can be seen that our sigma-based weighting method yields a more
accurate solution (by a factor of 3 approximately) than the standard LS approach.

Example 2. Next we take a nonconstant convection coefficient,

b=
(
−y√

x2+ y2
,

x√
x2+ y2

)
,

with g and ε as in Example 1. The results, shown in Figure 5, show that our
approach still outperforms the standard one, though by a lesser factor than before.
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Figure 4. Log-log plot of L2 norm of error (with respect to
control solution) as a function of the number of triangles, for
b=

(
−

1
√

10
, 3
√

10

)
, g = 16x2(1− x)2, ε = 0.005 (Example 1).
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Figure 5. Like Figure 4, with b=
(
−y/

√
x2+ y2, x/

√
x2+ y2

)
,

g = 16x2(1− x)2, ε = 0.005 (Example 2).
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Figure 6. Like Figure 4, with g discontinuous (Example 3).

Example 3. We return to b and ε as in Example 1, and choose a discontinuous
boundary function,

g =
{

1 if x ∈ (0.2, 0.8),
0 else.

Here the two curves (Figure 6) come even closer than in the previous example,
but the solution with sigma-based weights is still the more accurate one. With
discontinuous data on the boundary, the solution here is much more difficult to
approximate numerically, so the overall error is larger than the previous examples.

Example 4. For our final example in this section, we decrease ε by an order of
magnitude, that is, ε = 0.0005, while b=

(
−

1
√

10
, 3
√

10

)
and g = 16x2(1− x)2 stay
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Figure 7. Like Figure 4, with b=
(
−

1
√

10
, 3
√

10

)
, g=16x2(1−x)2,

ε = 0.0005.

the same as in Example 1. Here again, our method shows an improvement over
the standard approach (Figure 7).

4. Results for Navier–Stokes equations

The preceding examples suggest that the sigma-based weighting method is gen-
erally more efficient than the standard LS approach. As a further case study, we
consider a more complicated system of equations that retains the same set of chal-
lenges as the convection-dominated diffusion problem.

In this section we directly apply the adaptively weighted norm minimization
strategy to a more difficult system of equations. We consider the stationary incom-
pressible Navier–Stokes equations in the form

−
1

Re
1u+ u · ∇u+∇ p = f in �,

∇ · u = 0 in �,

u = g on ∂�,

(6)

where u denotes the velocity of fluid flow in the x and y direction, p the pressure of
fluid flow, f a given body force, and Re denotes the Reynolds number, a measure
of the potential turbulence of the fluid. With the two substitutions

ε =
1

Re
and U =−ε∇u,

the first equation in (6) becomes

∇ ·U + u · ∇u+∇ p = f . (7)
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Utilizing a Newton linearization, we have the following approximation

u · ∇u ≈ uold · ∇u+ u · ∇uold− uold · ∇uold,

where uold ≈ u is a known approximation to u. This current solution, uold, is
initially set to be (0, 0). During the iteration process, each time we obtain a new
approximate solution to u, we assign its value to uold. Therefore, the older uold

in (6) will be replaced by the new one to better approximate the left-hand side
of (6). After the substitution, (6) is reformulated as

∇ ·U + uold · ∇u+ u · ∇uold+∇ p = f + uold · ∇uold in �,

U + ε∇u = 0 in �,

∇ ×U = 0 in �,

∇ · u = 0 in �,

u = g on ∂�.

Notice the similarity between this system and (3), which gives us confidence
that the weighted norm procedure can improve a least squares solution method
for this system. For large Re, turbulent flow characteristics, including boundary
layers, may develop, which is similar to the behavior of convection-dominated
PDEs. Therefore, we define our weighted, linearized LS functional to be

G(u, U, p; f )= ‖w(∇ ·U + uold · ∇u+ u · ∇uold+∇ p)− ( f + uold · ∇uold)‖
2

+‖w(U + ε∇u)‖2+‖w(∇ ×U)‖2+‖w(∇ · u)‖2,

where w denotes our weight function. On each mesh we carry out several steps of
Newton linearization, and then adaptively refine our mesh. Weight functions are
now constructed based on U (which is analogous to σ in the convection-dominated
diffusion system).

To test our weighting strategy, we choose our domain � to be (0, 1)2 \(0, 0.5]2.
We set ε = 1/200 and u = ((1− e−(y−0.5)/ε)(1− e−(1−y)/ε), 0) on the upper west
boundary and u = (0,−(1− e−(x−0.5)/ε)(1− e−(1−x)/ε)) on the south boundary.
We again set f to be 0 for simplicity. Figure 8 shows the control solution for our
test problem.

We set the number of Newton linearization steps on each mesh to 3. Figure 9
compares the accuracy of both approaches to solving Navier–Stokes equations.
The x- and y-axis are on a log10 scale.

The result shows again that our sigma-based weighting method is more efficient
at solving the Navier–Stokes equations than having no weight functions.
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Figure 8. The control solution for u1 (left) and u2 (right), ob-
tained on a fine mesh and presumed very accurate.

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

2.6 2.7 2.8 2.9 3 3.1 3.2

Weighted Non-weighted

Number of triangles 

L2
 e

rr
o

r 

Figure 9. Comparison of weighted and nonweighted approaches
for the Navier–Stokes example (log-log plot).

5. Conclusion

We find that defining and adaptively modifying weight functions in a least squares
functional can improve the efficiency of the method for convection-dominated
problems. Our approach uses approximate solutions on coarse meshes to adapt
the metric of the approximation space so that the error is reduced with respect to
a better scaled norm than a standard approach. The procedure is easily adapted to
more difficult convection-dominated problems, such as the steady Navier–Stokes
equations.
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