Vol. 5, No. 1, 2012

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 5, 723–899
Issue 4, 543–722
Issue 3, 363–541
Issue 2, 183–362
Issue 1, 1–182

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-4184 (online)
ISSN 1944-4176 (print)
 
Author index
To appear
 
Other MSP journals
Total positivity of a shuffle matrix

Audra McMillan

Vol. 5 (2012), No. 1, 61–65
Abstract

Holte introduced a n × n matrix P as a transition matrix related to the carries obtained when summing n numbers base b. Since then Diaconis and Fulman have further studied this matrix proving it to also be a transition matrix related to the process of b-riffle shuffling n cards. They also conjectured that the matrix P is totally nonnegative. In this paper, the matrix P is written as a product of a totally nonnegative matrix and an upper triangular matrix. The positivity of the leading principal minors for general n and b is proven as well as the nonnegativity of minors composed from initial columns and arbitrary rows.

Keywords
total positivity, shuffle, minors
Mathematical Subject Classification 2010
Primary: 15B48, 60C05
Milestones
Received: 24 February 2011
Revised: 17 July 2011
Accepted: 4 September 2011
Published: 28 April 2012

Communicated by John C. Wierman
Authors
Audra McMillan
School of Mathematics and Statistics
University of Sydney
Sydney, NSW 2006
Australia