

A BMO theorem for ϵ -distorted diffeomorphisms on \mathbb{R}^D and an application to comparing manifolds of speech and sound Charles Fefferman, Steven B. Damelin and William Glover

A BMO theorem for ϵ -distorted diffeomorphisms on \mathbb{R}^D and an application to comparing manifolds of speech and sound

Charles Fefferman, Steven B. Damelin and William Glover

(Communicated by Kenneth S. Berenhaut)

This paper deals with a BMO theorem for ϵ -distorted diffeomorphisms on \mathbb{R}^D and an application comparing manifolds of speech and sound.

1. Introduction

From the very beginning of time, mathematicians have been intrigued by the fascinating connections which exist between music, speech and mathematics. Indeed, these connections were already in some subtle form in the writings of Gauss. The aim of this paper is to study estimates in measure for diffeomorphisms \mathbb{R}^D to \mathbb{R}^D , $D \ge 2$ of small distortion and provide an application to comparing music and speech manifolds.

This paper originated from discussions where Glover, an undergraduate student of Damelin and a passionate practitioner of music (particularly the piano), introduced Damelin to the beautiful world of beats, movements, scales, measures and time signatures. A fruitful and inspiring collaboration ensued, enriched by wonderful contributions from Fefferman.

2. Preliminaries

Fix a dimension $D \ge 2$. We work in \mathbb{R}^D . We write B(x, r) to denote the open ball in \mathbb{R}^D with centre *x* and radius *r*. We write *A* to denote Euclidean motions on \mathbb{R}^D . A Euclidean motion may be orientation-preserving or orientation reversing. We write *c*, *C*, *C'*, etc. to denote constants depending on the dimension *D*. These expressions

MSC2010: 00A65, 65D19, 97M80.

Keywords: measure, BMO, diffeomorphism, small distortion, manifold, music, sound, noise, speech, alignment.

Damelin thanks Princeton University and Wayne Country Day School for financial support. He also thanks Prof Charles Fefferman for wonderfully inspiring collaborations and his generosity.

need not denote the same constant in different occurrences. For a $D \times D$ matrix, $M = (M_{ij})$, we write |M| to denote the Hilbert–Schmidt norm

$$|M| = \left(\sum_{ij} |M_{ij}|^2\right)^{1/2}.$$

Note that if *M* is real and symmetric and if

$$(1-\lambda)I \le M \le (1+\lambda)I$$

as matrices, where $0 < \lambda < 1$, then

$$|M - I| \le C\lambda. \tag{2-1}$$

This follows from working in an orthonormal basis for which *M* is diagonal. One way to understand the formulas above is to think of λ as being close to zero. See also (2-6) below.

A function $f : \mathbb{R}^D \to \mathbb{R}$ is said to be BMO (Bounded mean oscillation)if there is a constant $K \ge 0$ such that, for every ball $B \subset \mathbb{R}^D$, there exists a real number H_B such that

$$\frac{1}{\operatorname{vol} B} \int_{B} |f(x) - H_{B}| \, dx \le K.$$
(2-2)

The least such *K* is denoted by $||f||_{BMO}$.

In harmonic analysis, a function of bounded mean oscillation, also known as a BMO function, is a real-valued function whose mean oscillation is bounded (finite). The space of functions of bounded mean oscillation (BMO), is a function space that, in some precise sense, plays the same role in the theory of Hardy spaces, that the space of essentially bounded functions plays in the theory of *Lp*-spaces: it is also called a John–Nirenberg space, after Fritz John and Louis Nirenberg who introduced and studied it for the first time [John 1961; John and Nirenberg 1961].

The John–Nirenberg inequality asserts the following: Let $f \in BMO$ and let $B \subset \mathbb{R}^D$ be a ball. Then there exists a real number H_B such that

$$\operatorname{vol} \{x \in B : |f(x) - H_B| > C\lambda \|f\|_{BMO}\} \le \exp(-\lambda)\operatorname{vol} B, \quad \lambda \ge 1.$$
 (2-3)

As a corollary of the John-Nirenberg inequality, we have

$$\left(\frac{1}{\operatorname{vol} B} \int_{B} |f(x) - H_{B}|^{4} dx\right)^{1/4} \le C\lambda \|f\|_{BMO}.$$
 (2-4)

There is nothing special about the 4th power in the above; it will be needed later.

The definition of BMO, the notion of the BMO norm, the John–Nirenburg inequality (2-3) and its corollary (2-4) carry through to the case of functions f on \mathbb{R}^D which take their values in the space of $D \times D$ matrices. Indeed, we take

 H_B in (2-2)–(2-4) to be a $D \times D$ matrix for such f. The matrix valued norms of (2-3)–(2-4) follow easily from the scalar case.

We will need some potential theory. If f is a smooth function of compact support in \mathbb{R}^D , then we can write $\Delta^{-1} f$ to denote the convolution of f with the Newtonian potential. Thus, $\Delta^{-1} f$ is smooth and $\Delta(\Delta^{-1} f) = f$ on \mathbb{R}^D .

We will use the estimate:

$$\left\|\frac{\partial}{\partial x_i}\Delta^{-1}\frac{\partial}{\partial x_j}f\right\|_{L^2(\mathbb{R}^D)} \le C\|f\|_{L^2(\mathbb{R}^D)}, \quad i, j = 1, \dots, D,$$
(2-5)

valid for any smooth function f with compact support. Estimate (2-5) follows by applying the Fourier transform.

We will work with a positive number ε . We always assume that $\varepsilon \leq \min(1, C)$. An ε -distorted diffeomorphism of \mathbb{R}^D is a one to one and onto diffeomorphism $\Phi : \mathbb{R}^D \to \mathbb{R}^D$ such as

$$(1-\varepsilon)I \le (\Phi'(x))^T (\Phi'(x)) \le (1+\varepsilon)I$$

as matrices. Thanks to (2-1), such Φ satisfy

$$\left| (\Phi'(x))^T (\Phi'(x)) - I \right| \le C\varepsilon.$$
(2-6)

We end this section with the following inequality from [Fefferman and Damelin ≥ 2012]:

Approximation Lemma. Let $\Phi : \mathbb{R}^D \to \mathbb{R}^D$ be an ε -distorted diffeomorphism. Then, there exists an Euclidean motion A such that

$$|\Phi(x) - A(x)| \le C\varepsilon \tag{2-7}$$

for all $x \in B(0, 10)$.

3. An overdetermined system

We will need to study the following elemetary overdetermined system of partial differential equations.

$$\frac{\partial \Omega_i}{\partial x_i} + \frac{\partial \Omega_j}{\partial x_i} = f_{ij}, \quad i, j = 1, \dots, D,$$
(3-1)

on \mathbb{R}^D . Here, Ω_i and f_{ij} are C^{∞} functions on \mathbb{R}^D . A result concerning (3-1) we need is:

PDE Theorem. Let $\Omega_1, \ldots, \Omega_D$ and f_{ij} , for $i, j = 1, \ldots, D$, be smooth functions on \mathbb{R}^D . Assume that (3-1) holds and suppose that

$$\|f_{ij}\|_{L^2(B(0,4))} \le 1.$$
(3-2)

Then, there exist real numbers Δ_{ij} , for i, j = 1, ..., D, such that

$$\Delta_{ij} + \Delta_{ji} = 0 \quad for \ all \ i, j \tag{3-3}$$

and

$$\left\|\frac{\partial\Omega_i}{\partial x_j} - \Delta_{ij}\right\|_{L^2(B(0,1))} \le C.$$
(3-4)

Proof. From (3-1), we see at once that

$$\frac{\partial \Omega_i}{\partial x_i} = \frac{1}{2} f_{ii}$$

for each *i*. Now, by differentiating (3-1) with respect to x_j and then summing on *j*, we see that

$$\Delta\Omega_i + \frac{1}{2} \frac{\partial}{\partial x_i} \left(\sum_j f_{jj} \right) = \sum_j \frac{\partial f_{ij}}{\partial x_j}$$

for each *i*. Therefore, we may write

$$\Delta\Omega_i = \sum_j \frac{\partial}{\partial x_j} g_{ij}$$

for smooth functions g_{ij} with

$$\|g_{ij}\|_{L^2(B(0,4)} \le C.$$

This holds for each *i*. Let χ be a C^{∞} cutoff function on \mathbb{R}^{D} equal to 1 on B(0, 2) vanishing outside B(0, 4) and satisfying $0 \le \chi \le 1$ everywhere. Now let

$$\Omega_i^{\rm err} = \Delta^{-1} \sum_j \frac{\partial}{\partial x_j} \left(\chi g_{ji} \right)$$

and let

$$\Omega_i^* = \Omega_i - \Omega_i^{\rm err}.$$

Then,

$$\Omega_i = \Omega_i^* + \Omega_i^{\text{err}} \tag{3-5}$$

each *i*. The function

$$\Omega_i^*$$
 (3-6)

is harmonic on B(0, 2) and

$$\left\|\nabla\Omega_i^{\text{err}}\right\|_{L^2(B(0,2))} \le C \tag{3-7}$$

thanks to (2-5). By (3-1), (3-2), (3-5), (3-7), we can write

$$\frac{\partial \Omega_i^*}{\partial x_j} + \frac{\partial \Omega_j^*}{\partial x_i} = f_{ij}^*, \quad i, j = 1, \dots, D,$$
(3-8)

on B(0, 2) and with

$$\|f_{ij}^*\|_{L^2(B(0,2)} \le C.$$
(3-9)

From (3-6) and (3-8), we see that each f_{ij}^* is a harmonic function on B(0, 2). Consequently, (3-9) implies

$$\sup_{B(0,1)} |\nabla f_{ij}^*| \le C.$$
 (3-10)

From (3-8), we have for each i, j, k,

$$\frac{\partial^2 \Omega_i^*}{\partial x_j \partial x_k} + \frac{\partial^2 \Omega_k^*}{\partial x_i \partial x_j} = \frac{\partial f_{ik}^*}{\partial x_j}, \quad \frac{\partial^2 \Omega_i^*}{\partial x_j \partial x_k} + \frac{\partial^2 \Omega_j^*}{\partial x_i \partial x_k} = \frac{\partial f_{ij}^*}{\partial x_k}, \quad (3-11)$$

$$\frac{\partial^2 \Omega_j^*}{\partial x_i \partial x_k} + \frac{\partial^2 \Omega_k^*}{\partial x_i \partial x_j} = \frac{\partial f_{jk}^*}{\partial x_i}.$$
(3-12)

Now adding the first two equations above and subtracting the last, we obtain:

$$2\frac{\partial^2 \Omega_i^*}{\partial x_j \partial x_k} = \frac{\partial f_{ik}^*}{\partial x_j} + \frac{\partial f_{ij}^*}{\partial x_k} - \frac{\partial f_{jk}^*}{\partial x_i}$$
(3-13)

on B(0, 1). Now from (3-10) and (3-13), we obtain the estimate

$$\left|\frac{\partial^2 \Omega_i^*}{\partial x_j \partial x_k}\right| \le C \tag{3-14}$$

on B(0, 1) for each i, j, k. Now for each i, j, let

$$\Delta_{ij}^* = \frac{\partial \Omega_i^*}{\partial x_j}(0). \tag{3-15}$$

By (3-14), we have

$$\left|\frac{\partial \Omega_i^*}{\partial x_j} - \Delta_{ij}^*\right| \le C \tag{3-16}$$

on B(0, 1) for each *i*, *j*. Recalling (3-5) and (3-7), we see that (3-16) implies that

$$\left\| \frac{\partial \Omega_i}{\partial x_j} - \Delta_{ij}^* \right\|_{L^2(B(0,1))} \le C.$$
(3-17)

Unfortunately, the Δ_{ij}^* need not satisfy (3-3). However, (3-1), (3-2) and (3-17) imply the estimate

$$|\Delta_{ij}^* + \Delta_{ji}^*| \le C$$

for each *i*, *j*. Hence, there exist real numbers Δ_{ij} , (i, j = 1, ..., D) such that

$$\Delta_{ij} + \Delta_{ji} = 0 \tag{3-18}$$

and

$$|\Delta_{ij}^* - \Delta_{ij}| \le C \tag{3-19}$$

for each i, j. From (3-17) and (3-19), we see that

$$\left\|\frac{\partial\Omega_i}{\partial x_j} - \Delta_{ij}\right\|_{L^2(B(0,1))} \le C \tag{3-20}$$

for each i and j.

Thus (3-18) and (3-20) are the desired conclusions of the theorem. $\hfill\square$

4. A BMO theorem

BMO Theorem 1. Let $\Phi : \mathbb{R}^D \to \mathbb{R}^D$ be an ε diffeomorphism and let $B \subset \mathbb{R}^D$ be a ball. Then, there exists $T \in O(D)$ such that

$$\frac{1}{\operatorname{vol} B} \int_{B} |\Phi'(x) - T| \, dx \le C\varepsilon^{1/2}. \tag{4-1}$$

Proof. Estimate (4-1) is preserved by translations and dilations. Hence we may assume that

$$B = B(0, 1). \tag{4-2}$$

Now we know that there exists an Euclidean motion $A : \mathbb{R}^D \to \mathbb{R}^D$ such that

$$|\Phi(x) - A(x)| \le C\varepsilon \tag{4-3}$$

for $x \in B_{(0,10)}$. Our desired conclusion (4-1) holds for Φ if and only if it holds for $A^{-1}o\Phi$ (with a different T). Hence, without loss of generality, we may assume that A = I. Thus, (4-3) becomes

$$|\Phi(x) - x| \le C\varepsilon, \quad x \in B(0, 10). \tag{4-4}$$

We set up some notation: We write the diffeomorphism Φ in coordinates by setting:

$$\Phi(x_1, \dots, x_D) = (y_1, \dots, y_D)$$
(4-5)

where for each i, $1 \le i \le D$,

$$y_i = \psi_i(x_1, \dots, x_D). \tag{4-6}$$

<u>First claim</u>: For each $i = 1, \ldots, D$,

$$\int_{B(0,1)} \left| \frac{\partial \psi_i(x)}{\partial x_i} - 1 \right| \le C\varepsilon.$$
(4-7)

For this, for fixed $(x_2, \ldots, x_D) \in B'$, we apply (4-4) to the points $x^+ = (1, \ldots, x_D)$ and $x^- = (1, \ldots, x_D)$. We have

$$\left|\psi_1(x^+) - 1\right| \le C\varepsilon$$

and

$$\left|\psi_1(x^{-1})+1\right|\leq C\varepsilon.$$

Consequently,

$$\int_{-1}^{1} \frac{\partial \psi_1}{\partial x_1}(x_1, \dots, x_D) dx_1 \ge 2 - C\varepsilon.$$
(4-8)

On the other hand, since,

$$(\psi'(x))^T (\psi'(x)) \le (1+\varepsilon)I,$$

we have for each i = 1, ..., D the inequality

$$\left(\frac{\partial\psi_i}{\partial x_i}\right)^2 \le 1 + \varepsilon.$$

Therefore,

$$\left|\frac{\partial \psi_i}{\partial x_i}\right| - 1 \le \sqrt{1 + \varepsilon} - 1 \le \varepsilon.$$
(4-9)

Set

$$I^{+} = \left\{ x_{1} \in [-1, 1] : \frac{\partial \psi_{1}}{\partial x_{1}}(x_{1}, \dots, x_{D}) - 1 \leq 0 \right\},$$
$$I^{-1} = \left\{ x_{1} \in [-1, 1] : \frac{\partial \psi_{1}}{\partial x_{1}}(x_{1}, \dots, x_{D}) - 1 \geq 0 \right\},$$
$$\Delta^{+} = \int_{I^{+}} \left(\frac{\partial \psi_{1}}{\partial x_{1}}(x_{1}, \dots, x_{D}) - 1 \right) dx_{1},$$
$$\Delta^{-} = \int_{I^{-}} \left(\frac{\partial \psi_{1}}{\partial x_{1}}(x_{1}, \dots, x_{D}) - 1 \right) dx_{1}.$$

The inequality (4-8) implies that $-\Delta^{-1} \le C\varepsilon + \Delta^+$. The inequality (4-9) implies that

$$\frac{\partial \psi_1}{\partial x_1} - 1 \le C\varepsilon.$$

Integrating the last inequality over I^+ , we obtain $\Delta^+ \leq C\varepsilon$. Consequently,

$$\int_{-1}^{1} \left| \frac{\partial \psi_1}{\partial x_1}(x_1, \dots, x_D) - 1 \right| dx_1 = \Delta^+ - \Delta^- \le C\varepsilon.$$
 (4-10)

Integrating this last equation over $(x_2, \ldots, x_D) \in B'$ and noting that $B(0, 1) \subset [-1, 1] \times B'$, we conclude that

$$\int_{B(0,1)} \left| \frac{\partial \psi_1}{\partial x_1}(x_1,\ldots,x_D) - 1 \right| dx \le C\varepsilon.$$

Similarly, for each i = 1, ..., D, we obtain (4-7). Second claim: For each $i, j = 1, ..., D, i \neq j$, we have

$$\int_{B(0,1)} \left| \frac{\partial \psi_i(x)}{\partial x_j} \right| dx \le C\sqrt{\varepsilon}.$$
(4-11)

Since

$$(1-\varepsilon)I \le (\Phi'(x))^T (\Phi'(x)) \le (1+\varepsilon)I,$$

we have

$$\sum_{i,j=1}^{D} \left(\frac{\partial \psi_i}{\partial x_j}\right)^2 \le (1+C\varepsilon)D.$$
(4-12)

Therefore,

$$\sum_{i \neq j} \left(\frac{\partial \psi_i}{\partial x_j} \right)^2 \le C\varepsilon + \sum_{i=1}^D \left(1 - \frac{\partial \psi_i}{\partial x_i} \right) \left(1 + \frac{\partial \psi_i}{\partial x_i} \right).$$

Using (4-9) for *i*, we have $|\partial \psi_i / \partial x_i| + 1 \le C$. Therefore,

$$\sum_{i \neq j} \left(\frac{\partial \psi_i}{\partial x_j} \right)^2 \le C\varepsilon + C \left| \frac{\partial \psi_i}{\partial x_i} - 1 \right|.$$

Now integrating the last inequality over the unit ball and using (4-7), we find that

$$\int_{B(0,1)} \sum_{i \neq j} \left(\frac{\partial \psi_i}{\partial x_j} \right)^2 dx \le C\varepsilon + \int_{B(0,1)} \left| \frac{\partial \psi_i}{\partial x_i} - 1 \right| dx \le C\varepsilon.$$
(4-13)

Consequently, by the Cauchy-Schwarz inequality, we have

$$\int_{B(0,1)} \sum_{i \neq j} \left| \frac{\partial \psi_i}{\partial x_j} \right| dx \le C \sqrt{\varepsilon}.$$

Third claim:

$$\int_{B(0,1)} \left| \frac{\partial \psi_i}{\partial x_i} \right| dx \le C\sqrt{\varepsilon} \tag{4-14}$$

Since,

$$\int_{B(0,1)} \left(\frac{\partial \psi_i}{\partial x_i} - 1\right)^2 dx \le \int_{B(0,1)} \left|\frac{\partial \psi_i}{\partial x_i} - 1\right| \left|\frac{\partial \psi_i}{\partial x_i} + 1\right| dx,$$

using (4-7) and $|\partial \psi_i / \partial x_i| \le 1 + C\varepsilon$, we obtain

$$\int_{B(0,1)} \left(\frac{\partial \psi_i}{\partial x_i}\right)^2 dx \le C\varepsilon.$$

Thus, an application of Cauchy-Schwarz, yields (4-14).

Final claim: By the Hilbert-Schmidt definition, we have

$$\int_{B(0,1)} |\Psi'(x) - I| \, dx = \int_{B(0,1)} \left(\sum_{i,j=1}^{D} \left(\frac{\partial \psi_i}{\partial x_j} - \delta_{ij} \right)^2 \right)^{1/2}$$
$$\leq \int_{B(0,1)} \sum_{i,j=1}^{D} \left| \frac{\partial \psi_i}{\partial x_j} - \delta_{ij} \right| \, dx.$$

The estimate (4-11) combined with (4-14) yields:

$$\int_{B(0,1)} \left| \Phi'(x) - I \right| dx \le C \varepsilon^{1/2}.$$

Thus we have proved (4-1) with T = I. The proof of the BMO Theorem 1 is complete.

Corollary. Let $\Phi : \mathbb{R}^D \to \mathbb{R}^D$ be an ε -distorted diffeomorphism. For each, ball $B \subset \mathbb{R}^D$, there exists $T_B \in O(D)$, such that

$$\left(\frac{1}{\operatorname{vol} B}\int_{B}\left|\Phi'(x)-T\right|^{4}dx\right)^{1/4} \leq C\varepsilon^{1/2}.$$

Proof. The proof follows from that of BMO Theorem 1 just proved and the John Nirenberg inequality. (See (2-4).)

5. A refined BMO theorem

BMO Theorem 2. Let $\Phi : \mathbb{R}^D \to \mathbb{R}^D$ be an ε diffeomorphism and let $B \in \mathbb{R}^D$ be a ball. Then, there exists $T \in O(D)$ such that

$$\frac{1}{\operatorname{vol} B} \int_{B} \left| \Phi'(x) - T \right| dx \le C\varepsilon.$$
(5-1)

Proof. We may assume without loss of generality that

$$B = B(0, 1). (5-2)$$

We know that there exists $T_B^* \in O(D)$ such that

$$\left(\int_B |\Phi'(x) - T_B^*|^4 dx\right)^{1/4} \le C\varepsilon^{1/2}.$$

Our desired conclusion holds for Φ if and only if it holds for $(T_B^*)^{-1}o\Phi$. Hence without loss of generality, we may assume that $T_B^* = I$. Thus we have

$$\left(\int_{B} |\Phi'(x) - I\rangle|^4 dx\right)^{1/4} \le C\varepsilon^{1/2}.$$
(5-3)

Let

$$\Omega(x) = \left(\Omega_1(x), \Omega_2(x), \dots, \Omega_D(x)\right) = \Phi(x) - x, \quad x \in \mathbb{R}^D.$$
(5-4)

Thus (5-3) asserts that

$$\left(\int_{B(0,1)} |\nabla\Omega(x)|^4 \, dx\right)^{1/4} \le C\varepsilon^{1/2}.\tag{5-5}$$

We know that

$$\left| (\Phi'(x))^T \Phi'(x) - I \right| \le C\varepsilon, \quad x \in \mathbb{R}^D.$$
(5-6)

In coordinates, $\Phi'(x)$ is the matrix $\left(\delta_{ij} + \frac{\partial \Omega_i(x)}{\partial x_j}\right)$; hence $\Phi'(x)^T \Phi'(x)$ is the matrix whose *ij*-th entry is

$$\delta_{ij} + \frac{\partial \Omega_j(x)}{\partial x_i} + \frac{\partial \Omega_i(x)}{\partial x_j} + \sum_l \frac{\partial \Omega_l(x)}{\partial x_i} \frac{\partial \Omega_l(x)}{\partial x_j}$$

Thus (5-6) says that

$$\left|\frac{\partial\Omega_{j}}{\partial x_{i}} + \frac{\partial\Omega_{i}}{\partial x_{j}} + \sum_{l} \frac{\partial\Omega_{l}}{\partial x_{i}} \frac{\partial\Omega_{l}}{\partial x_{j}}\right| \le C\varepsilon$$
(5-7)

on \mathbb{R}^D , i, j = 1, ..., D. Thus, we have from (5-5), (5-7) and the Cauchy–Schwarz inequality the estimate

$$\left\|\frac{\partial\Omega_i}{\partial x_j} + \frac{\partial\Omega_j}{\partial x_i}\right\|_{L^2(B(0,10))} \le C\varepsilon.$$

By the PDE Theorem, there exists, for each *i*, *j*, an antisymmetric matrix $S = (S)_{ij}$, such that

$$\left\| \frac{\partial \Omega_i}{\partial x_j} - S \right\|_{L^2(B(0,1))} \le C\varepsilon.$$
(5-8)

Recalling (5-4), this is equivalent to

$$\|\Phi' - (I+S)\|_{L^2(B(0,1))} \le C\varepsilon.$$
 (5-9)

Note that (5-5) and (5-8) show that

$$|S| \le C\varepsilon^{1/2}$$

and thus,

$$|\exp(S) - (I+S)| \le C\varepsilon.$$

Hence, (5-9) implies via Cauchy–Schwarz.

$$\int_{B(0,1)} \left| \Phi'(x) - \exp(S)(x) \right| dx \le C\varepsilon^{1/2}.$$
 (5-10)

This implies the result because *S* is antisymmetric, which means that $\exp S \in O(D)$.

6. A BMO theorem for diffeomorphisms of small distortion

Theorem. Let $\Phi : \mathbb{R}^D \to \mathbb{R}^D$ be an ε distorted diffeomorphism. Let $B \subset \mathbb{R}^D$ be a ball. Then, there exists $T_B \in O(D)$ such that for every $\lambda \ge 1$,

$$\operatorname{vol}\left\{x \in B : |\Phi'(x) - T_B| > C\lambda\varepsilon\right\} \le \exp(-\lambda)\operatorname{vol}(B).$$
(6-1)

Moreover, the result (6-1) is sharp in the sense of small volume if one takes a slow twist defined as follows: For $x \in \mathbb{R}^D$, let S_x be the block-diagonal matrix

1	$(D_1(x))$	0		0		0)
	0	$D_2(x)$	0	0	0	0
	0	0	•	0	0	0
	0	0	0		0	0
	0	0	0	0	•	0
	0	0	0	0	0	$D_r(x)$

where, for each *i*, either $D_i(x)$ is the 1×1 identity matrix or else

$$D_i(x) = \begin{pmatrix} \cos f_i(|x|) & \sin f_i(|x|) \\ -\sin f_i(|x|) & \cos f_i(|x|) \end{pmatrix}$$

for a function f_i of one variable.

Now define for each $x \in \mathbb{R}^D$, $\Phi(x) = \Theta^T S_x(\Theta x)$ where Θ is any fixed matrix in SO(D). One checks that Φ is ε -distorted, provided for each $i, t |f'_i(t)| < c\varepsilon$ for all $t \in [0, \infty)$.

Proof. The theorem follows from BMO Theorem 2 and the Nirenberg inequality. The sharpness can be easily checked. \Box

7. On the approximate and exact alignment of data in Euclidean space, speech and music manifolds

Approximate and exact alignment of data. A classical problem in geometry goes as follows. Suppose we are given two sets of *D*-dimensional data, that is, sets of points in Euclidean *D*-space, where $D \ge 1$. The data sets are indexed by the same set, and we know that pairwise distances between corresponding points are equal in the two data sets. In other words, the sets are isometric. Can this correspondence be extended to an isometry of the ambient Euclidean space?

In this form the question is not terribly interesting; the answer has long known to be yes (see [Wells and Williams 1975], for example). But a related question is actually fundamental in data analysis: here the known points are samples from larger, unknown sets — say, manifolds in \mathbb{R}^D — and we seek to know what can be said about the manifolds themselves. A typical example might be a face recognition problem, where all we have is multiple finite images of people's faces from various views.

An added complication is that in general we are not given exact distances. We have noise and so we need to demand that instead of the pairwise distances being equal, they should be close in some reasonable metric. Some results on almost isometries in Euclidean spaces can be found in [John 1961; Alestalo et al. 2003].

In [Fefferman and Damelin ≥ 2012], the following two theorems are established which tell us about how to handle manifold identification when the point set function values given are not exactly equal but are close.

Theorem. Given $\varepsilon > 0$ and $k \ge 1$, there exists $\delta > 0$ such that the following holds. Let y_1, \ldots, y_k and z_1, \ldots, z_k be points in \mathbb{R}^D . Suppose

$$(1+\delta)^{-1} \le \frac{|z_i - z_j|}{|y_i - y_j|} \le 1+\delta, \quad i \ne j.$$

Then, there exists a Euclidean motion $\Phi_0: x \to Tx + x_0$ such that

$$|z_i - \Phi_0(y_i)| \le \varepsilon \operatorname{diam} \{y_1, \ldots, y_k\}$$

for each i. If $k \leq D$, then we can take Φ_0 to be a proper Euclidean motion on \mathbb{R}^D .

Theorem. Let $\varepsilon > 0$, $D \ge 1$ and $1 \le k \le D$. Then there exists $\delta > 0$ such that the following holds: Let $E := y_1, \ldots, y_k$ and $E' := z_1, \ldots, z_k$ be distinct points in \mathbb{R}^D . Suppose that

$$(1+\delta)^{-1} \le \frac{|z_i - z_j|}{|y_i - y_j|} \le (1+\delta), \quad 1 \le i, j \le k, \ i \ne j.$$

Then there exists a diffeomorphism $\Psi : \mathbb{R}^D \to \mathbb{R}^D$ with

$$(1+\varepsilon)^{-1} \le \frac{|\Psi(x) - \Psi(y)|}{|x-y|} \le (1+\varepsilon), \quad x, y \in \mathbb{R}^D, \ x \ne y$$

satisfying

$$\Psi(y_i) = z_i, \quad 1 \le i \le k.$$

The theorem above shows that any $1 + \delta$ bilipchitz mapping Φ of $1 \le k \le D$ points from \mathbb{R}^D to \mathbb{R}^D may be extended to a $1 + \varepsilon$ bilipchitz diffeomorphism of \mathbb{R}^D to \mathbb{R}^D .

Given the two theorems above, we now need to ask ourselves. Can we take, in any particular data application, an ε -distorted map and replace it by a Euclidean motion or visa versa. Clearly this is very important since the theorems themselves provide in the once case a Euclidean motion and in the other a diffeomorphism of small distortion. We understand that our main BMO theorems tell us that at least in measure, diffeomorphisms of small distortion are very close to Euclidean motions motions.

Speech and music manifolds. Recently (see [Damelin and Miller 2012] and the references cited therein) there has been much interest in geometrically motivated dimensionality reduction algorithms. The reason for this is that these algorithms exploit low dimensional manifold structure in certain natural datasets to reduce dimensionality while preserving categorical content. In [Jansen and Niyogi 2006], the authors motivated the existence of low dimensional manifold structure to voice and speech sounds. As an immediate application of our results from this paper and from [Fefferman and Damelin ≥ 2012], we are now able to answer the following question related to speech and music manifolds. Suppose that we are given two collections of data functions in time which arise from vocal tract functions used in speech and music production. These manfolds exist; see the results of [Jansen and Niyogi 2006]. Suppose that all we know is that the functions are the same within a small δ distrotion. Then what can one say about the manifolds themselves. For example, can one identify different musical instruments or people/animals via speech using Euclidean motions or diffeomorphisms of ε distortion? What can one say about the differences in measure between the Euclidean motions or diffeomorphisms themselves? The theorems proved in this paper and in [Fefferman and Damelin ≥ 2012] provide a fascinating insight into these very interesting questions.

References

[[]Alestalo et al. 2003] P. Alestalo, D. A. Trotsenko, and J. Väisälä, "The linear extension property of bi-Lipschitz mappings", *Sibirsk. Mat. Zh.* 44:6 (2003), 1226–1238. In Russian; translated as Linear bilipschitz extension property in *Sib. Math. J.* 44:6 (2003), 959–968. MR 2004k:30042 Zbl 1063.30019

172 CHARLES FEFFERMAN, STEVEN B. DAMELIN AND WILLIAM GLOVER

[Damelin and Miller 2012] S. B. Damelin and W. Miller, Jr., *The mathematics of signal processing*, Cambridge University Press, Cambridge, 2012. MR 2883645 Zbl 06002972

[Fefferman and Damelin \geq 2012] C. Fefferman and S. B. Damelin, "On the approximate and exact alignment of δ distorted data in Euclidean space I", manuscript.

[Jansen and Niyogi 2006] A. Jansen and P. Niyogi, "Intrinsic Fourier analysis on the manifold of speech sounds", in *Acoustics, speech, and signal processing: proceedings of ICASSP* (Toulouse, 2006), IEEE, Piscataway, NJ, 2006.

[John 1961] F. John, "Rotation and strain", *Comm. Pure Appl. Math.* **14** (1961), 391–413. MR 25 #1672 Zbl 0102.17404

[John and Nirenberg 1961] F. John and L. Nirenberg, "On functions of bounded mean oscillation", *Comm. Pure Appl. Math.* 14 (1961), 415–426. MR 24 #A1348 Zbl 0102.04302

[Wells and Williams 1975] J. H. Wells and L. R. Williams, *Embeddings and extensions in analysis*, Ergebnisse der Mathematik und ihrer Grenzgebiete **84**, Springer, New York, 1975. MR 57 #1092 Zbl 0324.46034

Received: 2011-04-01	Revised: 2011-10-06 Accepted: 2011-10-08				
cf@math.princeton.edu	Department of Mathematics, Princeton University, Princeton, NJ 08544, United States				
steve.damelin@gmail.com	Department of Mathematics, Wayne Country Day School, Goldsboro, NC 27530, United States				
	Department of Mathematics and Physics, Wake Technical Community College, Raleigh, NC 27603, United States				
will25655@yahoo.com	Department of Music, Albany State University, Albany, GA 31701, United States				

involve

msp.berkeley.edu/involve

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

	DUARD OF		
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Toka Diagana	Howard University, USA tdiagana@howard.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Michael E. Zieve	University of Michigan, USA zieve@umich.edu
	PRODU		
I C.i	Chaile Massham, Card	on Draduation Editor	Cover design @ 2008 Alex Second

Silvio Levy, Scientific Editor

See inside back cover or http://msp.berkeley.edu/involve for submission instructions.

The subscription price for 2012 is US \$105/year for the electronic version, and \$145/year (+\$35 shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Sheila Newbery, Senior Production Editor

Cover design: © 2008 Alex Scorpan

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOWTM from Mathematical Sciences Publishers.

A NON-PROFIT CORPORATION Typeset in I&T<u>E</u>X Copyright ©2012 by Mathematical Sciences Publishers

2012 vol. 5 no. 2

A Giambelli formula for the S ¹ -equivariant cohomology of type A Peterson varieties DARIUS BAYEGAN AND MEGUMI HARADA	115
Weak Allee effect, grazing, and S-shaped bifurcation curves EMILY POOLE, BONNIE ROBERSON AND BRITTANY STEPHENSON	133
A BMO theorem for ϵ -distorted diffeomorphisms on \mathbb{R}^D and an application to comparing manifolds of speech and sound CHARLES FEFFERMAN, STEVEN B. DAMELIN AND WILLIAM GLOVER	159
Modular magic sudoku JOHN LORCH AND ELLEN WELD	173
Distribution of the exponents of primitive circulant matrices in the first four boxes of \mathbb{Z}_n . MARIA ISABEL BUENO, KUAN-YING FANG, SAMANTHA FULLER AND SUSANA FURTADO	187
Commutation classes of double wiring diagrams PATRICK DUKES AND JOE RUSINKO	207
A two-step conditionally bounded numerical integrator to approximate some traveling-wave solutions of a diffusion-reaction equation SIEGFRIED MACÍAS AND JORGE E. MACÍAS-DÍAZ	219
The average order of elements in the multiplicative group of a finite field YILAN HU AND CARL POMERANCE	229

