A nonextendable Diophantine quadruple arising from a triple of Lucas numbers

A. M. S. Ramasamy and D. Saraswathy
A nonextendable Diophantine quadruple arising from a triple of Lucas numbers

A. M. S. Ramasamy and D. Saraswathy

(Communicated by Filip Saidak)

We establish that the only positive integral solutions common to the two Pell’s equations $U^2 - 18V^2 = -119$ and $Z^2 - 29V^2 = -196$ are $U = 41$, $V = 10$ and $Z = 52$.

1. Introduction

Let n be a nonzero integer. We say that two integers α and β have the Diophantine property $D(n)$ if $\alpha\beta + n$ is a prefect square. A set of numbers has the property $D(n)$ if every pair of distinct elements of the set has this property. A Diophantine set S with property $D(n)$ is said to be extendable if, for some integer d, with d not belonging to S, the set $S \cup \{d\}$ is also a Diophantine set with property $D(n)$.

Sets consisting of Fibonacci numbers $\{F_m\}$ and Lucas numbers $\{L_m\}$ with the Diophantine property $D(n)$ have attracted the attention of many number theorists recently. A. Baker and H. Davenport [1969] dealt with the quadruple $\{1, 3, 8, 120\}$ with property $D(1)$ in which the first three terms are F_2, F_4 and F_6. They proved that the set cannot be extended further. V. E. Hoggatt and G. E. Bergum [1977] proved that the four numbers F_{2k}, F_{2k+2}, F_{2k+4} and $d = 4F_{2k+1}F_{2k+2}F_{2k+3}$, for $k \geq 1$, have the Diophantine property $D(1)$ and conjectured that no other integer can replace d here. The result of Baker and Davenport [1969] was an assertion of the conjecture for $k = 1$. A. Dujella [1999] proved the Hoggatt-Bergum conjecture for all positive integral values of k.

Dujella [1995] also considered Diophantine quadruples for squares of Fibonacci and Lucas numbers. In this paper we consider the Lucas numbers L_n, which are defined by $L_0 = 2$, $L_1 = 1$, $L_{n+2} = L_{n+1} + L_n$. The three Lucas numbers L_1, L_6 and L_7 have the property $D(7)$. The aim of this paper is to determine whether this set $\{1, 18, 29\}$ is extendable.

MSC2010: primary 11B39; secondary 11D09, 11B37.

Keywords: Lucas numbers, Diophantine property, recurrence relation, simultaneous Pell’s equations, characteristic number, factorization, Jacobi symbol.
2. Formulation of the problem

Suppose the natural number x extends the set $S = \{1, 18, 29\}$. Then we have

\[x + 7 = V^2, \]
\[18x + 7 = U^2, \]
\[29x + 7 = Z^2, \]

for some integers U, V, Z. Solving (1), (2) and (3) is equivalent to solving simultaneously the two Pell’s equations

\[U^2 - 18V^2 = -119, \]
\[Z^2 - 29V^2 = -196. \]

We prove that there is essentially a unique solution, so the set S can be extended by exactly one element:

Theorem. The only positive integral solutions common to the two Pell’s equations $U^2 - 18V^2 = -119$ and $Z^2 - 29V^2 = -196$ are $U = 41$, $V = 10$ and $Z = 52$.

Using these values in (1) yields $x = 93$. Therefore:

Corollary. The triple $\{1, 18, 29\}$ of Lucas numbers is extendable; the quadruple $\{1, 18, 29, 93\}$ has the Diophantine property $D(7)$ and cannot be extended further.

3. Methodology

For the determination of the common solutions of the system of Pell’s equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$, Baker and Davenport [1969] gave a method based on the linear forms of logarithms of algebraic numbers. P. Kanagasabapathy and T. Ponnudurai [1975] applied quadratic reciprocity to the same system. S. P. Mohanty and A. M. S. Ramasamy [1985] introduced the concept of the characteristic number of two simultaneous Pell’s equations and solved the system $U^2 - 5V^2 = -4$ and $Z^2 - 12V^2 = -11$. N. Tzanakis [2002] gave a method in for solving a system of Pell’s equations using elliptic logarithms, and earlier [1993] described various methods available in the literature for finding out the common solutions of a system of Pell’s equations. (For a history of numbers with the Diophantine property, one may refer to [Ramasamy 2007].)

When applying congruence methods to solve a given system of Pell’s equations, the traditional approach is to work with a modulus of the form $2^\tau \cdot 3 \cdot 5$ ($\tau \geq 1$) in the final stage of computation; see, e.g., [Kangasabapathy and Ponnudurai 1975] and [Mohanty and Ramasamy 1985]. This modulus involves only two specific odd primes, namely 3 and 5. Because of the inadequacy of such a restricted modulus for handling several problems, a method involving a general modulus was established.
in [Ramasamy 2006]. The present problem involves computational complexities and a new method is devised to overcome the computational difficulty by employing a result in this same reference. Taking D as a fixed natural number, one may refer to [Nagell 1951, pp. 204–212] for a theory of the general Pell’s equation

$$U^2 - DV^2 = N. \quad (6)$$

We follow the conventional notations in the literature. An interesting property of Equation (6) is that its solutions may be partitioned into a certain number of disjoint classes. If m and n are two distinct integers, $U_n + V_n \sqrt{D}$ and $U_m + V_m \sqrt{D}$ belong to the same class of solutions of (6) if

$$U_n + V_n \sqrt{D} = (u + v \sqrt{D})(a + b \sqrt{D})^n, \quad (7)$$
$$U_m + V_m \sqrt{D} = (u + v \sqrt{D})(a + b \sqrt{D})^m, \quad (8)$$

where $a + b \sqrt{D}$ is the fundamental solution of Pell’s equation

$$A^2 - DB^2 = 1 \quad (9)$$

and $u + v \sqrt{D}$ is the fundamental solution of (6) in the particular class. Otherwise, $U_n + V_n \sqrt{D}$ and $U_m + V_m \sqrt{D}$ belong to different classes of solutions, which are referred to as nonassociated classes (see [Nagell 1951, pp. 204–205], for example). Let $U_n + V_n \sqrt{D}$ ($n = 0, 1, 2, \ldots$) constitute a class of solutions of (6), so that we have

$$U_n + V_n \sqrt{D} = (u + v \sqrt{D})(a + b \sqrt{D})^n. \quad (10)$$

All the solutions of (9) with positive A and B are obtained from the formula

$$A_n + B_n \sqrt{D} = (a + b \sqrt{D})^n, \quad (11)$$

where $n = 1, 2, 3, \ldots$. We have the following relations from [Mohanty and Ramasamy 1985, pp. 204–205]:

$$U_n = uA_n + DvB_n, \quad (11)$$
$$V_n = vA_n + uB_n, \quad (12)$$
$$U_{n+s} = A_s U_n + DB_s V_n, \quad (13)$$
$$V_{n+s} = B_s U_n + A_s V_n. \quad (14)$$

The sequences U_n and V_n satisfy the following recurrence relations:

$$U_{n+2} = 2a U_{n+1} - U_n, \quad (15)$$
$$V_{n+2} = 2a V_{n+1} - V_n, \quad (16)$$
$$U_{n+2s} \equiv -U_n \pmod{A_s}, \quad (17)$$
$$U_{n+2s} \equiv U_n \pmod{B_s}. \quad (18)$$
\[V_{n+2s} \equiv -V_n \pmod{A_s}, \quad (19) \]
\[V_{n+2s} \equiv V_n \pmod{B_s}. \quad (20) \]

Equations (7) and (10) imply that \(U_n \) and \(V_n \) depend on the values of \(A_n \) and \(B_n \). In our present problem, we have \(D = 18 \) from (4) and therefore we have to consider the Pell equation
\[A^2 - 18B^2 = 1. \quad (21) \]

Equation (21) has the fundamental solution \(A_1 = 17, \ B_1 = 4 \). We check that \(-67 + 16\sqrt{18}, -13 + 4\sqrt{18}, -23 + 6\sqrt{18} \) and \(-41 + 10\sqrt{18} \) are the fundamental solutions of (4). Employing the condition stated for (7), we see that (4) has four nonassociated classes of solutions. Hence the general solution of (4) is given by
\[U_n + \sqrt{18} V_n = (-67 + 16\sqrt{18})(17 + 4\sqrt{18})^n, \quad (22) \]
\[U_n + \sqrt{18} V_n = (-13 + 4\sqrt{18})(17 + 4\sqrt{18})^n, \quad (23) \]
\[U_n + \sqrt{18} V_n = (-23 + 6\sqrt{18})(17 + 4\sqrt{18})^n, \quad (24) \]
\[U_n + \sqrt{18} V_n = (-41 + 10\sqrt{18})(17 + 4\sqrt{18})^n. \quad (25) \]

The solutions of (21) are provided by
\[A_0 = 1, \quad A_1 = 17, \quad A_{n+2} = 34A_{n+1} - A_n, \]
\[B_0 = 0, \quad B_1 = 4, \quad B_{n+2} = 34B_{n+1} - B_n. \]

4. Solutions of the form (22)

Now, we consider the solutions of (4) given by (22), namely
\[U_0 = -67, \quad U_1 = 13, \quad U_{n+2} = 34U_{n+1} - U_n, \]
\[V_0 = 16, \quad V_1 = 4, \quad V_{n+2} = 34V_{n+1} - V_n. \]

We repeatedly use the relation (19) and reason by cases.

(a) From (19) we have \(V_{n+2s} \equiv -V_n \pmod{A_s} \). From this we obtain \(V_{n+2} \equiv -V_n \pmod{A_1} \) \(\equiv -V_n \pmod{17} \). The sequence \(V_n \pmod{17} \) is periodic with period 4. By quadratic reciprocity, we see that \(n \not\equiv 0, 2 \pmod{4} \). So, we are left with odd values of \(n \) only.

(b) We have \(V_{n+4} \equiv -V_n \pmod{A_2} \equiv -V_n \pmod{577} \). The sequence \(V_n \pmod{577} \) is periodic with period 8. We obtain \(n \not\equiv 1, 3, 5, 7 \pmod{8} \). Hence no solution of (4) having the form (22) satisfies (5).
5. Solutions of the form (23)

Next we consider the solutions of (4) of the form (23), namely

\[U_0 = -13, \quad U_1 = 67, \quad U_{n+2} = 34U_{n+1} - U_n, \]
\[V_0 = 4, \quad V_1 = 16, \quad V_{n+2} = 34V_{n+1} - V_n. \]

As in the previous case, one can check that no such solution can satisfy (5).

6. Solutions of the form (24)

Next we consider the solutions of (4) of the form (24), namely

\[U_0 = -23, \quad U_1 = 41, \quad U_{n+2} = 34U_{n+1} - U_n, \]
\[V_0 = 6, \quad V_1 = 10, \quad V_{n+2} = 34V_{n+1} - V_n. \]

(a) We see that \(V_{n+4} \equiv -V_n \pmod{A_2} \equiv -V_n \pmod{577} \). The sequence \(V_n \pmod{577} \) has period 8. By evaluating the Jacobi symbol

\[
\left(\frac{V_n}{577} \right),
\]

we check that \(n \not\equiv 2, 3, 6, 7 \pmod{8} \).

(b) We have \(V_{n+6} \equiv -V_n \pmod{A_3} \equiv -V_n \pmod{1153} \). The sequence \(V_n \pmod{1153} \) has period 12. It is ascertained that \(n \not\equiv 8, 9 \pmod{12} \).

(c) We get \(V_{n+12} \equiv -V_n \pmod{A_6} \equiv -V_n \pmod{768398401} \). On factoring, we get 768398401 = 97·577·13729. Therefore \(V_{n+12} \equiv -V_n \pmod{97} \). The sequence \(V_n \pmod{97} \) has period 24. We see that \(n \not\equiv 4, 5, 16, 17 \pmod{24} \). Also, we have \(V_{n+12} \equiv -V_n \pmod{13729} \). The sequence \(V_n \pmod{13729} \) has period 24. It is seen that \(n \not\equiv 0, 12 \pmod{24} \).

So far we have excluded all possibilities other than \(n \equiv 1 \pmod{12} \).

(d) We obtain \(V_{n+16} \equiv -V_n \pmod{A_8} \equiv -V_n \pmod{886731088897} \). We see that 886731088897 = 257·1409·2448769. Therefore \(V_{n+16} \equiv -V_n \pmod{257} \). The sequence \(V_n \pmod{257} \) has a period of 32. We check that \(n \not\equiv 5, 9, 13, 21, 25, 29 \pmod{32} \). So we are left with \(n \equiv 1 \pmod{16} \).

(e) We have \(V_{n+10} \equiv -V_n \pmod{A_5} \equiv -V_n \pmod{22619537} \). We see that 22619537 = 17·241·5521. Therefore \(V_{n+10} \equiv -V_n \pmod{241} \). The sequence \(V_n \pmod{241} \) has period 20. We check that \(n \not\equiv 5, 17 \pmod{20} \). Also \(V_{n+10} \equiv -V_n \pmod{5521} \) and the sequence \(V_n \pmod{5521} \) has period 20. It is seen that \(n \not\equiv 9 \pmod{20} \).

(f) We get \(V_{n+20} \equiv -V_n \pmod{A_{10}} \equiv -V_n \pmod{1023286908188737} \). We see that 1023286908188737 = 577·188801·9393281. Therefore \(V_{n+10} \equiv -V_n \pmod{577} \).
9393281). The sequence V_n (mod 9393281) has a period of 40. We verify that $n \not\equiv 13, 33$ (mod 40).

The last three steps leave only the possibility $n \equiv 1$ (mod 20).

(g) We obtain $V_{n+14} \equiv -V_n$ (mod A_7) $\equiv -V_n$ (mod 26102926067). We see that 26102926067 = 17·1535466241. Therefore $V_{n+14} \equiv -V_n$ (mod 1535466241). The sequence V_n (mod 1535466241) has period 28. We check that $n \not\equiv 5, 13, 17, 21$ (mod 28).

(h) We have $V_{n+28} \equiv -V_n$ (mod A_{14}) $\equiv -V_n$ (mod 136272550150887306817). We see that 136272550150887306817 = 17·1535466241·11276410240481. Therefore $V_{n+28} \equiv -V_n$ (mod 1535466241). The sequence V_n (mod 1535466241) has period 56. We obtain $n \not\equiv 9, 25$ (mod 56).

Steps (d), (g) and (h) leave only the possibility $n \equiv 1$ (mod 28).

(i) We get $V_{n+22} \equiv -V_n$ (mod A_{11}) $\equiv -V_n$ (mod 34761632124320657). We see that 34761632124320657 = 17·2113·967724510017. So $V_{n+22} \equiv -V_n$ (mod 2113). The sequence V_n (mod 2113) has period 44. We have $n \not\equiv 9, 17, 25, 29$ (mod 44). Also $V_{n+22} \equiv -V_n$ (mod 967724510017). The sequence V_n (mod 967724510017) has period 44. We have $n \not\equiv 9, 25$ (mod 44).

(j) We have $V_{n+44} \equiv -V_n$ (mod A_{22}) $\equiv -V_n$ (mod 74915060494433). We see that 74915060494433 = 17·129835460129·11276410240481. Therefore $V_{n+44} \equiv -V_n$ (mod 129835460129). The sequence V_n (mod 129835460129) has period 88. When $n \equiv 5, 49$ (mod 88), we have respectively

$$29V_n^2 - 196 \equiv 51293333469, 51271172096$$ (mod 129835460129).

Therefore $29V_n^2 - 196$ cannot be a square. This implies that $n \not\equiv 5, 49$ (mod 88). Similarly, we see that $n \not\equiv 21, 33$ (mod 88).

(k) We obtain $V_{n+88} \equiv -V_n$ (mod A_{44}) $\equiv -V_n$ (mod 2331170689). The sequence V_n (mod 2331170689) has a period of 176. We check that $n \not\equiv 65$ (mod 176).

Steps (d), (i), (j) and (k) leave only the possibility $n \equiv 1$ (mod 44). Consequently a solution requires $n \equiv 1$ (mod 4), $n \equiv 1$ (mod 3), $n \equiv 1$ (mod 5), $n \equiv 1$ (mod 7) and $n \equiv 1$ (mod 11). By the Chinese remainder theorem, then, $n \equiv 1$ (mod $2^2·3·5·7·11$).

Now we establish that the relation $Z^2 = 29V_n^2 - 196$ is impossible for such values of n. For this purpose, we need two functions, which we now describe.

6.1. The functions $a(t)$ and $b(t)$

Throughout this subsection we keep the notation of page 259 for the solutions of the Pell equation $A^2 - DB^2 = 1$: the fundamental solution is written $a + b\sqrt{D}$ and its n-th power is $A_n + B_n\sqrt{D}$. We further consider the equation $U^2 - DV^2 = N$, singling out a class of solutions $U_n + V_n\sqrt{D} = (u + v\sqrt{D})(a + b\sqrt{D})^n$.

Definition [Mohanty and Ramasamy 1985, p. 205]. For \(t \) a natural number, define
\[
a(t) = A_{2^{t-1}} \quad \text{and} \quad b(t) = B_{2^{t-1}}.
\]
These functions will be used in defining a generalized characteristic number of our system of simultaneous Pell’s equations. We follow [Ramasamy 2006, pp. 714–715]. We have the equalities
\[
a(t + 1) = 2(a(t))^2 - 1, \quad (27)
\]
\[
b(t + 1) = 2a(t)b(t). \quad (28)
\]
Next, we have the recursion relations
\[
A_n = 2aA_{n-1} - A_{n-2} \quad (n \geq 2), \quad (29)
\]
\[
B_n = 2aB_{n-1} - B_{n-2} \quad (n \geq 2), \quad (30)
\]
which are particular cases of (15) and (16). Repeated application of these relations shows that \(A_n \) can be expressed as a polynomial in \(a \), while \(B_n \) can be expressed as a polynomial in \(a \) and \(b \):
\[
A_n = \alpha_{n,n}a^n - \alpha_{n,n-2}a^{n-2} + \alpha_{n,n-4}a^{n-4} - \cdots, \quad (31)
\]
\[
B_n = \beta_{n,n}a^n - \beta_{n,n-2}a^{n-2}b + \beta_{n,n-4}a^{n-4}b - \cdots. \quad (32)
\]
Now we state a key result with reference to a system of two simultaneous Pell’s equations
\[
U^2 - DV^2 = N, \quad Z^2 - gV^2 = h, \quad (33)
\]
where \(g \) and \(h \) are integers.

Definition and Lemma [Ramasamy 2006, Theorem 13]. Fix odd primes \(p_1 = p, p_2, \ldots, p_s \), not necessarily distinct. Let \(P = p_1p_2 \cdots p_s \). Take \(\tau \geq 1 \). Set either
\[
(i) \quad m = 2^\tau \cdot p \quad \text{and} \quad n = i + p \cdot 2^t(2\mu + 1), \quad t \geq 1, \quad \text{or}
\]
\[
(ii) \quad m = 2^\tau \cdot P \quad \text{and} \quad n = i + P \cdot 2^t(2\mu + 1), \quad t \geq 1,
\]
where \(i \) is a fixed residue \((\text{mod} \ m)\) and \(\mu \) is a nonnegative integer. In Case (ii), let \(F_1, F_2, \ldots \) be the polynomials contributed by the distinct primes among \(p_1, p_2, \ldots, p_s \) and let \(G_1, G_2, \ldots \) be the irreducible polynomials arising due to their various products, so that \(F_1, F_2, \ldots \) and \(G_1, G_2, \ldots \) are factors of the polynomial
\[
\beta_{p,p}D^{(P-1)/2}(b(t + 1))^{P-1} + \beta_{p,p-2}D^{(P-3)/2}(b(t + 1))^{P-3} + \cdots + \beta_{p,1}.
\]
(A prime \(p_i \) contributes a polynomial of degree \(p_i - 1 \). The product of two distinct primes \(p_i, p_j \) yields a factor of degree \((p_i - 1)(p_j - 1) \), and so on.) Let
\[
\phi := gU_i^2 - Dh \quad (34)
\]
be the characteristic number of the system (33) (for the given residue \(i \)).
Then, for each \(t \geq 1 \), if at least one of the Jacobi symbols

\[
\frac{\phi}{(a(t))^2 + D(b(t))^2} \quad \text{and} \quad \frac{\phi}{\beta_{p,p} D((p-1)/2)(b(t+1))^2 + \ldots + \beta_{p,1}}
\]
equals \(-1\) in Case (i), and if at least one of

\[
\frac{\phi}{(a(t))^2 + D(b(t))^2}, \quad \left(\frac{\phi}{F_1}\right), \quad \left(\frac{\phi}{F_2}\right), \quad \ldots, \quad \left(\frac{\phi}{G_1}\right), \quad \left(\frac{\phi}{G_2}\right), \quad \ldots
\]
equals \(-1\) in Case (ii), the system has no solution with \(V = V_n \) for \(n \equiv i \pmod{m} \), except possibly \(V = V_i \).

6.2. Application of the characteristic number. The modulus in the present case consists of four distinct odd primes: 3, 5, 7 and 11. The characteristic number \(gU_i - Dh \) of the system (4), (5) for \(i = 1 \) is 52277; see (34). The sequence \(a(t) \pmod{52277} \) is periodic with period 265 and \(b(t) \pmod{52277} \) is periodic with period 530. Thus when we deal with the characteristic number of the system, we encounter computational complexities posed by the large periods of the two sequences. To overcome this difficulty, instead of working with the characteristic number directly, we consider the prime factors of the characteristic number, which are 61 and 857. The sequences \(a(t) \pmod{61} \) and \(b(t) \pmod{61} \) are periodic with period 5 — see Table 1 — whereas \(a(t) \pmod{857} \) is periodic with period 53 and \(b(t) \pmod{857} \) is periodic with period 106; moreover,

\[
b(t + 53) \equiv -b(t) \pmod{857}.
\]

Thus Table 2 lists only the values of \(a \) and \(b \pmod{857} \) with argument up to 52. For residue calculations with respect to the factors 61 and 857, we require the values of \(a(t+1) \) and powers of \(D(b(t+1))^2 \) modulo 61 and 857.

We take \(P = 3 \cdot 5 \cdot 7 \cdot 11 \) and \(m = 2^\tau \cdot P \) with \(\tau \geq 1 \). In the notation of Case (ii) of the Definition and Lemma, we have

\[
Z^2 \equiv 1185 \pmod{a(t+1) \cdot F_1 \cdots F_4 \cdot G_1 \cdots G_{11}}
\]

where the polynomials \(F_1, \ldots, G_{11} \) are illustrated in Table 3.

<table>
<thead>
<tr>
<th>(t-1)</th>
<th>(a(t))</th>
<th>(b(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>58</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 1. Values of \(a(t) \) and \(b(t) \pmod{61} \).
\[t - 1 \ a(t) \ b(t) \]
\[
\begin{array}{ccc}
0 & 17 & 4 \\
1 & 577 & 136 \\
2 & 825 & 113 \\
3 & 333 & 481 \\
4 & 671 & 685 \\
5 & 631 & 566 \\
6 & 168 & 411 \\
7 & 742 & 119 \\
8 & 739 & 54 \\
9 & 423 & 111 \\
10 & 488 & 493 \\
\end{array}
\]

\[t - 1 \ a(t) \ b(t) \]
\[
\begin{array}{ccc}
11 & 652 & 391 \\
12 & 63 & 806 \\
13 & 224 & 430 \\
14 & 82 & 672 \\
15 & 592 & 512 \\
16 & 758 & 309 \\
17 & 747 & 522 \\
18 & 203 & 855 \\
19 & 145 & 45 \\
20 & 56 & 195 \\
21 & 272 & 415 \\
\end{array}
\]

\[a(t+1) \equiv 1 \pmod{4} \quad \text{for all } t \geq 1, \quad (37) \]
\[b(t+1) \equiv 0 \pmod{4} \quad \text{for all } t \geq 1. \quad (38) \]

We see that, for all \(t \geq 1 \) and \(i = 1, 2, 3, 4, \)
\[F_i, G_i \equiv 1 \pmod{4}. \quad (39) \]
Considering the values of F_i and G_i modulo 857, it follows from relation (35) that F_i at $t + 53$ is the same as at t, and G_i at $t + 53$ is the same as at t, for all positive integers t.

6.3. Computations involved in the proof of the Theorem.

With the background just provided, we are now in a position to employ the characteristic number of the present system consisting of (4) and (5). For the remaining part of our work, stagewise computation becomes necessary. The details of calculations in 9 stages required for our problem are presented in the sequel.

The characteristic number of the generalized version discussed in Section 6.1 offers several polynomials for consideration to solve a given problem, as seen from (36). First, we employ the factor $(a(t))^2 + D(b(t))^2$ provided by the Definition and Lemma to rule out as many possible values of t as we can.

1. Working with $a(t + 1)$. We consider the Jacobi symbol

$$\left(\frac{52277}{a(t + 1)} \right).$$

Using the quadratic reciprocity law and the relation (37), we evaluate this to

$$\left(\frac{61}{a(t + 1)} \right) \cdot \left(\frac{857}{a(t + 1)} \right) = \left(\frac{a(t + 1)}{61} \right) \cdot \left(\frac{a(t + 1)}{857} \right).$$

From Table 1, when $t \equiv 2, 4 \pmod{5}$, we have $a(t + 1) \equiv 42, 58 \pmod{61}$, respectively; these are quadratic residues of 61. When $t \equiv 0, 1, 3 \pmod{5}$, we have, respectively, $a(t + 1) \equiv 17, 28, 50 \pmod{61}$; all are quadratic nonresidues of 61.

Note. We have indicated with an asterisk in Table 2 the values of $a(t)$ that are quadratic nonresidues of 857.

Using the fact that the product of a quadratic residue of 52277 and a nonresidue of 52277 is a nonresidue, we determine the values of t for which $a(t + 1)$ is a quadratic nonresidue of 52277. They are $1, 4, 6, 7, 9, 10, 12, 19, 22, 25, 26, 28, 30, 32, 33, 34, 38, 39, 42, 43, 45, 49, 51, 52, 55, 57, 62, 63, 64, 69, 70, 72, 74, 78, 80, 81, 83, 84, 86, 87, 89, 90, 91, 92, 94, 96, 98, 99, 100, 102, 108, 109, 114, 116, 117, 119, 120, 122, 123, 124, 127, 129, 130, 131, 133, 135, 136, 137, 142, 143, 147, 150, 151, 152, 153, 154, 159, 160, 161, 162, 164, 165, 167, 172, 173, 174, 176, 177, 179, 182, 183, 185, 186, 188, 194, 196, 199, 203, 206, 207, 209, 210, 212, 213, 217, 218, 219, 224, 226, 227, 232, 234, 236, 238, 240, 241, 244, 245, 247, 250, 252, 254, 255, 256, 262, 263, 264 \pmod{265}$. It follows that the relation $Z^2 = 29V_n^2 - 196$ is impossible for these values of t. Therefore these values of t have to be excluded. In the sequel we consider the remaining values of $t \pmod{265}$.
2. Working with F_1. Now we consider
\[
\left(\frac{52277}{F_1} \right) = \left(\frac{61}{F_1} \right) \cdot \left(\frac{857}{F_1} \right) = \left(\frac{F_1}{61} \right) \cdot \left(\frac{F_1}{857} \right),
\]
in view of (39). When $t \equiv 1 \pmod{5}$, we have $F_1 \equiv 22 \pmod{61}$ which is a quadratic residue of 61. When $t \equiv 0, 2, 3, 4 \pmod{5}$, we have $F_1 \equiv 55, 38, 54, 33 \pmod{61}$; all are quadratic nonresidues of 61. As for the modulus 857, Table 4 shows the values of F_1, with the quadratic nonresidues in bold.

Consequently, we see that the relation $Z^2 = 29V_n^2 - 196$ is not true when $t \equiv 8, 44, 47, 53, 56, 71, 73, 95, 97, 101, 103, 104, 111, 113, 115, 118, 121, 139, 146, 149, 157, 170, 180, 181, 192, 193, 200, 202, 205, 211, 225, 228, 231, 259 \pmod{265}$.

3. Working with F_2. Next we have
\[
\left(\frac{52277}{F_2} \right) = \left(\frac{61}{F_2} \right) \cdot \left(\frac{857}{F_2} \right) = \left(\frac{F_2}{61} \right) \cdot \left(\frac{F_2}{857} \right).
\]
When $t \equiv 3 \pmod{61}$, we have $F_2 \equiv 41 \pmod{61}$, which is a quadratic residue of 61. When $t \equiv 0, 1, 2, 4 \pmod{5}$, we have, respectively, $F_2 \equiv 29, 17, 17, 23 \pmod{61}$, all of which are quadratic nonresidues of 61. Further, Table 4 shows the values of F_2 modulo 857, with the quadratic nonresidues in bold.

Consequently, we see that the relation $Z^2 = 29V_n^2 - 196$ does not hold when $t \equiv 8, 44, 47, 53, 56, 71, 73, 95, 97, 101, 103, 104, 111, 113, 115, 118, 121, 139, 146, 149, 157, 170, 180, 181, 192, 193, 200, 202, 205, 211, 225, 228, 231, 259 \pmod{265}$.

Table 4. Values of F_1, F_2 and F_3 (mod 857) as functions of t (mod 53). Quadratic nonresidues of 857 are in bold.
4. Working with F_3. Next we have

\[
\left(\frac{52277}{F_3} \right) = \left(\frac{61}{F_3} \right) \cdot \left(\frac{857}{F_3} \right) = \left(\frac{F_3}{61} \right) \cdot \left(\frac{F_3}{857} \right).
\]

When $t \equiv 1, 2, 3 \pmod{5}$, we have respectively $F_3 \equiv 3, 15, 5 \pmod{61}$, all of which are quadratic residues of 61. When $t \equiv 0, 4 \pmod{5}$, we have respectively $F_3 \equiv 44, 17 \pmod{61}$ both of which are quadratic nonresidues of 61. Further, Table 4 shows the values of F_3 modulo 857, with the quadratic nonresidues in bold.

As a result, the relation $Z^2 = 29V_n^2 - 196$ does not hold when $t \equiv 17, 24, 36, 50, 54, 60, 67, 82, 112, 141, 214, 216, 223, 237, 251, 257 \pmod{265}$.

5. Working with F_4. Next we have

\[
\left(\frac{52277}{F_4} \right) = \left(\frac{61}{F_4} \right) \cdot \left(\frac{857}{F_4} \right) = \left(\frac{F_4}{61} \right) \cdot \left(\frac{F_4}{857} \right).
\]

When $t \equiv 0, 1, 4 \pmod{5}$, we have respectively $F_4 \equiv 42, 34, 4 \pmod{61}$, all of which are quadratic residues of 61. When $t \equiv 2, 3 \pmod{5}$, we have respectively $F_4 \equiv 55, 55 \pmod{61}$. It is checked that 55 is a quadratic nonresidue of 61. The relevant values modulo 857 are as follows (bold indicates quadratic nonresidues):

<table>
<thead>
<tr>
<th>t (mod 53)</th>
<th>2</th>
<th>9</th>
<th>13</th>
<th>14</th>
<th>42</th>
<th>16</th>
<th>23</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_4 (mod 857)</td>
<td>407</td>
<td>827</td>
<td>762</td>
<td>792</td>
<td>619</td>
<td>415</td>
<td>437</td>
<td>557</td>
</tr>
</tbody>
</table>

Consequently, the relation $Z^2 = 29V_n^2 - 196$ does not hold when $t \equiv 2, 13, 14, 76, 148, 168, 175, 191 \pmod{265}$.

6. Working with G_1. Next we have

\[
\left(\frac{52277}{G_1} \right) = \left(\frac{61}{G_1} \right) \cdot \left(\frac{857}{G_1} \right) = \left(\frac{G_1}{61} \right) \cdot \left(\frac{G_1}{857} \right),
\]

because of (39). When $t \equiv 3 \pmod{5}$, we have $G_1 \equiv 46 \pmod{61}$, which is a quadratic residue of 61. When $t \equiv 0, 1, 2, 4 \pmod{5}$, we have respectively $G_1 \equiv 55, 51, 26, 28 \pmod{61}$, all of which are quadratic nonresidues of 61. The relevant values modulo 857 are as follows (again, bold indicates quadratic nonresidues):

<table>
<thead>
<tr>
<th>t (mod 53)</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>17</th>
<th>20</th>
<th>21</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1 (mod 857)</td>
<td>774</td>
<td>737</td>
<td>57</td>
<td>487</td>
<td>785</td>
<td>367</td>
<td>210</td>
</tr>
</tbody>
</table>

As a result, it is seen that the relation $Z^2 = 29V_n^2 - 196$ does not hold when $t \equiv 0, 20, 59, 65, 229, 233, 258 \pmod{265}$.
7. Working with G_2. Next we have

$$\left(\frac{52277}{G_2}\right) = \left(\frac{61}{G_2}\right) \cdot \left(\frac{857}{G_2}\right) = \left(\frac{G_2}{61}\right) \cdot \left(\frac{G_2}{857}\right).$$

When $t \equiv 1, 2, 4 \pmod{5}$, we have respectively $G_2 \equiv 60, 34, 49 \pmod{61}$, all of which are quadratic residues of 61. When $t \equiv 0, 3 \pmod{5}$, we have respectively $G_2 \equiv 23, 6 \pmod{61}$ both of which are quadratic nonresidues of 61.

When $t \equiv 8, 34, 41 \pmod{53}$, we have respectively $G_2 \equiv 72, 177, 439 \pmod{857}$, all of which are quadratic residues of 857. When $t \equiv 25, 29, 31, 45 \pmod{53}$, we have respectively $G_2 \equiv 840, 718, 507, 781 \pmod{857}$, all of which are quadratic nonresidues of 857. As a consequence, the relation $Z^2 = 29V_n^2 - 196$ does not hold when $t \equiv 29, 31, 140, 184, 204, 220, 253 \pmod{265}$.

8. Working with G_3. Next we have

$$\left(\frac{52277}{G_3}\right) = \left(\frac{61}{G_3}\right) \cdot \left(\frac{857}{G_3}\right) = \left(\frac{G_3}{61}\right) \cdot \left(\frac{G_3}{857}\right).$$

When $t \equiv 4 \pmod{5}$, we have $G_3 \equiv 34 \pmod{61}$, which is a quadratic residue of 61. When $t \equiv 0, 1, 2, 3 \pmod{5}$, we have respectively $G_3 \equiv 59, 2, 50, 21 \pmod{61}$, all of which are quadratic nonresidues of 61. When $t \equiv 49 \pmod{53}$, we have $G_3 \equiv 453 \pmod{857}$ which is a quadratic residue of 857. Hence the relation $Z^2 = 29V_n^2 - 196$ does not hold when $t \equiv 261 \pmod{265}$.

9. Working with G_4. Next we have

$$\left(\frac{52277}{G_4}\right) = \left(\frac{61}{G_4}\right) \cdot \left(\frac{857}{G_4}\right) = \left(\frac{G_4}{61}\right) \cdot \left(\frac{G_4}{857}\right).$$

When $t \equiv 0, 2 \pmod{5}$, we have respectively $G_4 \equiv 14, 16 \pmod{61}$, both of which are quadratic residues of 61. Modulo 61, G_4 attains the same value of 31 at $t \equiv 1 \pmod{5}$ and 3 (mod 5). When $t \equiv 4 \pmod{5}$, we have $G_4 \equiv 38 \pmod{61}$. It is seen that 31 and 38 are quadratic nonresidues of 61. When $t \equiv 1, 24 \pmod{53}$, we have, respectively, $G_4 \equiv 612, 851 \pmod{857}$ both of which are quadratic nonresidues of 857. Therefore it is seen that the relation $Z^2 = 29V_n^2 - 196$ does not hold when $t \equiv 77, 107 \pmod{265}$.

Conclusion of the argument for solutions of the form (24). As mentioned, the characteristic number (in the generalized version given in [Ramasamy 2006] and explained earlier in this section) places several polynomials at our disposal for solving the problem. Each polynomial can potentially exclude several values of t. Once all values of t are excluded, we need not examine the remaining polynomials. In the present case we used the polynomials $a(t + 1), F_1$ through F_4 and G_1 through G_4 appearing in (36), and we exhausted, in the 9 steps above, all possible values of
that is, we showed that the relation \(Z^2 = 29V_n^2 - 196 \) does not hold for any value of \(t \) (mod 265). Thus we need not consider the values attained by the polynomials \(G_5 \) through \(G_{11} \) modulo 52277. This exemplifies the usefulness of the generalized characteristic number.

The conclusion is that the system of Pell’s equations \(U^2 - 18V^2 = -119 \), \(Z^2 - 29V^2 = -196 \) has no solution \(V_n \) of the form (24) except possibly for \(n = 1 \). When \(n = 1 \) we obtain a common solution with \(U = \pm 41, V = \pm 10 \) and \(Z = \pm 52 \).

7. Solutions of the form (25)

We finally turn to the possible solutions of the form (25):

\[
U_0 = -41, \quad U_1 = 23, \quad U_{n+2} = 34U_{n+1} - U_n, \\
V_0 = 10, \quad V_1 = 6, \quad V_{n+2} = 34V_{n+1} - V_n.
\]

A case-by-case calculation as in the previous section shows that the possibilities are \(n \equiv 0 \) (mod 4), \(n \equiv 0 \) (mod 3), \(n \equiv 0 \) (mod 5), \(n \equiv 0 \) (mod 7) and \(n \equiv 0 \) (mod 11). We establish that the relation \(Z^2 = 29V_n^2 - 196 \) is impossible in these cases as before. The characteristic number \(gU_i^2 - Dh \) of the system (4) and (5) for \(i = 0 \) is again 52277. Since this is the same as for the previous case, the results for the solutions in Section 6 are applicable here also.

We have now taken care of all four cases (22)–(25). Putting together the conclusions of the last four sections, we see that the proof of the Theorem is complete.

Acknowledgement

The authors are thankful to the referee for suggestions towards the improvement of the paper.

References

Received: 2010-10-30 Revised: 2011-10-06 Accepted: 2011-12-18

ramasamy.mat@pondiuni.edu.in Department of Mathematics, Pondicherry University, R.V.Nagar, Kalapet, Pondicherry 605014, India

www.pondiuni.edu.in

d Saraswathy nathan@gmail.com Department of Mathematics, Pondicherry University, R.V.Nagar, Kalapet, Pondicherry 605014, India

[mathematical sciences publishers]
Analysis of the steady states of a mathematical model for Chagas disease
Mary Clauson, Albert Harrison, Laura Shuman, Meir Shillor and Anna Maria Spagnuolo

Bounds on the artificial phase transition for perfect simulation of hard core Gibbs processes
Mark L. Huber, Elise Villella, Daniel Rozenfeld and Jason Xu

A nonextendable Diophantine quadruple arising from a triple of Lucas numbers
A. M. S. Ramasamy and D. Saraswathy

Alhazen’s hyperbolic billiard problem
Nathan Poirier and Michael McDaniel

Bochner (p, Y)-operator frames
Mohammad Hasan Faroughi, Reza Ahmadi and Morteza Rahmani

k-furcus semigroups
Nicholas R. Baeth and Kaitlyn Cassity

Studying the impacts of changing climate on the Finger Lakes wine industry
Brian McGauvan and Thomas J. Pfaff

A graph-theoretical approach to solving Scramble Squares puzzles
Sarah Mason and Mali Zhang

The n-diameter of planar sets of constant width
Zair Ibragimov and Tuan Le

Boolean elements in the Bruhat order on twisted involutions
Delong Meng

Statistical analysis of diagnostic accuracy with applications to cricket
Lauren Mondin, Courtney Weber, Scott Clark, Jessica Winborn, Melinda M. Holt and Ananda B. W. Manage

Vertex polygons
Candice Nielsen

Optimal trees for functions of internal distance
Alex Collins, Fedelis Mutiso and Hua Wang