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A bifurcus semigroup is a semigroup in which every nonunit nonatom can be
written as the product of exactly two atoms. We generalize this notion to k-furcus
semigroups: every element that can be factored as the product of at least k
nonunits can be factored as the product of exactly k atoms. We compute some fac-
torization-theoretic invariants of k-furcus semigroups that generalize the bifurcus
results. We then define two variations on the k-furcus property, one stronger
(presumabaly strictly) and the other strictly weaker than the k-furcus property.

1. Introduction

Vadim Ponomarenko and coworkers [Adams et al. 2009] introduced and studied
the notion of bifurcus semigroups, a class of semigroups with “bad” factorization
properties: a semigroup S is bifurcus if every nonunit nonatom can be bifurcated,
that is, expressed as the product of exactly two atoms in S. They gave examples,
showed that certain important families of semigroups cannot be bifurcus, and
calculated several factorization-theoretic invariants of bifurcus semigroups. Further
examples of bifurcus semigroups can be found in [Baeth et al. 2011]. Our goal is to
generalize the concept of bifurcus and to provide analogous results for what we call
k-furcus semigroups. We also give in Section 3 two modified definitions, one which
appears to strengthen and one which weakens the original definition. Finally, in
Section 4, we consider irreducible divisor graphs — a graphical interpretation of the
factorization of an element in a semigroup — of elements in k-furcus semigroups.

First, some basic background. The reader is referred to [Geroldinger and Halter-
Koch 2006] for a thorough treatment of factorization theory.

A semigroup is a set together with an associative operation. A nonunit a of a
semigroup S is an atom if it is impossible to write a = b · c with b and c nonunits.
The set A(S) denotes the set of all atoms of S. We will restrict our attention to
atomic semigroups, those in which every element can be expressed as a (finite)
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product of atoms. We now define several important invariants which describe how
unique or nonunique factorization is in a given semigroup.

An element a ∈ S is a strong atom if whenever am
= bc for some b, c ∈ S

with b 6= 1, then b = εan for some unit ε and some integer n ≤ m. If x ∈ S,
then L(x) = {n : x = a1a2 · · · an with each ai an atom of S} is called the set of
factorization lengths of x . The elasticity of an element x , defined by

ρ(x)=
sup L(x)
inf L(x)

,

gives a coarse measure of how far away x is from having unique factorization.
The elasticity of the semigroup S is then ρ(S)= sup{ρ(x) : x is a nonunit of S}. If
L(x)= {t1, t2, . . .} is the set of factorization lengths of x with ti < ti+1 for each i ,
the delta set of x is defined to be 1(x) = {ti+1− ti : ti , ti+1 ∈ L(x)} and 1(S) =⋃
1(x). If 3 = {min L(x) : x is a nonunit of S}, then the critical length of S

is cr(S) = max3+ 1. The catenary degree of S, denoted C(S), is the smallest
integer N such that for all a ∈ S, and for any two factorizations z and z′ of a,
there exists factorizations z0, . . . , zk of a such that for all i ∈ [1, k], zi arises from
zi−1 by replacing at most N atoms from zi−1 by at most N new atoms; that is,
d(zi , zi−1) ≤ N . Finally, we define the tame degree t (S) of the semigroup S to
be the smallest natural number N such that whenever a ∈ S and x is an atom of
S occurring in some factorization of a, given a factorization z of a, there exists a
factorization z′ of a containing x such that d(z, z′)≤ N .

2. k-furcus semigroups

Let S be an atomic semigroup and let k ≥ 2 be an integer. We say S is k-furcus if
whenever an element can be factored as a product of at least k nonunits, then it
can be factored as the product of exactly k atoms of S. Note that when k = 2, a
semigroup is k-furcus if and only if it is bifurcus.

The following result generalizes (2)–(9) of [Adams et al. 2009, Theorem 1.1] for
k-furcus semigroups, and can be proved by straightforward modifications of the
arguments in that paper.

Theorem 2.1. Let S be a nontrivial k-furcus semigroup, and let 0 6= x ∈ S be a
nonunit nonatom. Then:

(1) S contains no strong atoms.

(2) If k ≥ sup L(x), then [k, sup L(x)] ⊆ L(x)⊆ [2, sup L(x)].

(3) kρ(x) ∈ N∪ {∞}.

(4) ρ(S)=∞.
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(5) (a) If k ∈ {2, 3}, then 1(S)= {1}.
(b) If k > 3, then {1} ⊆1(S)⊆ {1, 2, . . . , k− 2}.

(6) 3≤ C(S)≤ k+ 1.

(7) t (S)=∞.

(8) 3≤ cr(S)≤ k+ 1.

We note that the statements (2), (5), and (8) of Theorem 2.1 are strictly weaker
than their analogs (3), (6), and (9) from [Adams et al. 2009, Theorem 1.1]. Any
improvements on these statements would require knowledge of how elements with
no factorizations of length k or greater can be written as products of atoms.

Suppose that S is a k-furcus semigroup and that m is an integer larger than k.
Further suppose that x ∈ S can be written as the product of at least m nonunits of S.
Then k ≤ m ≤ sup L(x) and thus, by Theorem 2.1(2), m ∈ L(x) and so x can be
factored into exactly m atoms. Therefore:

Corollary 2.2. If a semigroup S is k-furcus then S is m-furcus for every m ≥ k.

Example 2.3. As shown in [Adams et al. 2009, Section 2], the following semigroups
are bifurcus, and hence (by Corollary 2.2) k-furcus for all k ≥ 2:

(1) nZ, where n is not a prime power;

(2) mZ× nZ for natural numbers m, n > 1;

(3) the multiplicative subsemigroup of n× n matrices with all entries identical
integers, for n not a prime power.

To be more concrete, consider the semigroup nZ, where n = pqr with p and q
distinct primes, and suppose that x ∈ nZ can be written as x = (nx1)(nx2) · · · (nxk)

for some k ≥ 2. Then we can factor x in Z as x = paqbr ks where a, b ≥ k and
p, q - s. Then we can factor x as x = (npa−ks)(nqb−k)(n)k−2 as a product of exactly
k atoms of nZ. Therefore, nZ is k-furcus for all k ≥ 2.

We now provide an example of a k-furcus semigroup that is not m-furcus for
any m < k, showing that the term k-furcus properly extends the term bifurcus. We
thank Vadim Ponomarenko (private communication) for providing this example.

Example 2.4. Consider k distinct primes p1, p2, . . . , pk and let N = p1 p2 · · · pk .
Define S to be the multiplicative semigroup with the infinitely many generators
N pa1

1 , N pa2
2 . . . , N pak

k , where each ai is a nonnegative integer. If x is an ele-
ment of S that can be written as the product of at least k elements of S, then
x = pa1

1 pa2
2 · · · p

ak
k for some a1, a2, . . . , ak . Note that ai ≥ k for each i be-

cause N = p1 p2 · · · pk divides (in Z) every element in S. Now we can write
x = (N p(a1−k)

1 )(N p(a2−k)
2 ) · · · (N p(ak−k)

k ) as a product of exactly k atoms and hence
S is k-furcus. However, we shall see that it is impossible to write x as the product
of less than k atoms.



298 NICHOLAS R. BAETH AND KAITLYN CASSITY

Suppose x = b1b2 · · · bk−1, where each bi is an atom of S. Since p1 occurs at
least k times in the factorization of x , it must occur at least twice in a factorization
of some bi and hence each factorization of x must contain, for each i , an atom of
the form N pci

i with ci ≥ 1. Thus every factorization of x must have length at least k.
Since S is k-furcus we know that N will occur at least k times in any factorization
of x . By factoring x into k− 1 elements we can see that N will still have to occur
k times, so x can not be written as a product of atoms of length less than k.

In [Adams et al. 2009], it is shown that several important families of semigroups
are not bifurcus. Straightforward modifictions show that these same families of
semigroups cannot be k-furcus for any k ≥ 2.

Proposition 2.5. These classes of semigroups are not k-furcus for any k ≥ 2:

(1) block monoids B(G0) for any subset G0 of an abelian group G;

(2) Krull monoids;

(3) diophantine monoids.

3. Variations of k-furcus semigroups

In this section we consider variations of k-furcus semigroups, one weaker and one
stronger.

We call a semigroup S quasi k-furcus if every nonunit has a factorization of
length at most k. This definition is motivated by the following example, which
follows from [Banister et al. 2007, Theorem 2.3]:

Example 3.1. If M(a, b)= {a+ kb : k ∈ N0} ∪ {1} is an arithmetical congruence
monoid with gcd(a, b) not a prime power, then M(a, b) is quasi k-furcus for some k.

If S is k-furcus, then whenever an element can be factored into at least k elements,
it can be factored as the product of exactly k atoms of S; thus every nonunit has a
factorization of length at most k. This yields:

Proposition 3.2. A k-furcus semigroup S is also quasi k-furcus.

The converse to Proposition 3.2 is false, as the following example illustrates.

Example 3.3. Consider the arithmetical congruence monoid S = M(6, 30) (in the
notation of Example 3.1); its first few elements are 1, 6, 36, 66, 96, 126, 156, . . . .
From the proof of Theorem 2.3 in [Banister et al. 2007] we know that S is quasi
15-furcus. We will now consider all factorizations of the element 616 in S. In N, 616

factors as 616
= 216316. Since elements of S are multiples of 6 that are congruent

to 1 modulo 5, the only factorizations of 616 in S are

616, 96 · 486 · 610, 1536 · 39366 · 66, and 24576 · 3188646 · 62.

Therefore, L(616)= {4, 8, 12, 16} and S is quasi 15-furcus but not 15-furcus.
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In spite of the nonequivalence of k-furcus and quasi k-furcus semigroups, these
classes of semigroups share many properties. We illustrate this in Theorem 3.4,
which parallels Theorem 2.1 in both statement and proof.

Theorem 3.4. Let S be a nontrivial quasi k-furcus semigroup and let 0 6= x ∈ S be
a nonunit nonatom. Then:

(1) S contains no strong atoms.

(2) ρ(S)=∞.

(3) C(S)≤ k+ 1.

(4) 3≤ cr(S)≤ k+ 1.

We now give a definition that appears stronger than that of k-furcus, although
we have no examples to justify this claim. From Example 2.4, the semigroup with
generators N pa1

1 , N pa2
2 , . . . , N pak

k has the property that every factorization of an
element x with L(x)≥ k must have length at least k. This motivates the following
definition. We call a semigroup S strongly k-furcus if S is k-furcus and no element
that can be written as the product of k atoms can be written as the product of less
than k atoms. The following theorem gives improvements to Theorem 2.1 when S
is strongly k-furcus.

Theorem 3.5. Let S be a nontrivial strongly k-furcus semigroup, and let 0 6= x ∈ S
be a nonunit nonatom. Then:

(1) L(x)= [k, sup L(x)] or L(x)⊆ {2, 3, . . . , k− 1}.

(2) 1(x)= {1} or 1(x)⊆ {1, 2, . . . , k− 3}.

(3) {1} ⊆1(S)⊆ {1, 2, . . . , k− 3}.

We now give an analog to [Adams et al. 2009, Theorem 1.1(1)] when S is strongly
k-furcus. This analog was omitted from our Theorem 2.1 since the hypothesis of
S being k-furcus but not strongly k-furcus seems not to be enough information to
guarantee these results. Again, we point out that we have no example of a k-furcus
semigroup that is not also strongly k-furcus.

Proposition 3.6. If S is a nontrivial strongly k-furcus semigroup and is either left
or right cancellative, then S contains infinitely many atoms.

4. Irreducible divisor graphs

In this section we give a means of visually representing the factorization of an
element in a k-furcus semigroup. The concept of the irreducible divisor graph of an
element in a commutative integral domain was introduced in [Coykendall and Maney
2007] and further studied in [Axtell et al. 2011]. We now give a similar definition
for the irreducible divisor graph of an element in a multiplicative semigroup. Given
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a semigroup S and an element x ∈ S, the irreducible divisor graph of x , denoted
G(x), is defined as follows. The vertices of G(x) are the atoms a ∈ S such that a | x .
Two vertices a and b of G(x) are connected by an edge provided ab | x . Moreover,
we place n loops (for n > 1 this is denoted by a single loop labeled with an n) on
vertex a if an

| x but yet an+1 - x . We now provide two examples to illustrate this
definition.

Example 4.1. Consider the element y = 1728 in the multiplicative bifurcus semi-
group S = 6Z. The only factorizations of y in S are

1728= 6 · 6 · 48

= 12 · 12 · 12

= 6 · 12 · 24

= 18 · 96.

Therefore, G(y), the irreducible divisor graph of y in S is

6 12
2

18

48 24 96

Example 4.2. Let S be the strongly 4-furcus multiplicative semigroup with genera-
tors 210 · 2a1, 210 · 3a2, 210 · 5a3, 210 · 7a4 , where each ai is a nonnegative integer
given in Example 2.4. Let x = 28

· 37
· 56
· 75
∈ S and note that x factors only as

x = (210 · 24)(210 · 33)(210 · 52)(210 · 7)

= (210 · 23)(210 · 32)(210 · 5)(210)(210)

= (210 · 23)(210 · 3)(210 · 5)(210 · 3)(210)

= (210 · 22)(210 · 32)(210 · 5)(210 · 2)(210)

= (210 · 22)(210 · 3)(210 · 5)(210 · 2)(210 · 3)

= (210 · 2)(210 · 32)(210 · 5)(210 · 2)(210 · 2)

Setting αb j := 210 · b j , the irreducible divisor graph G(x) is

α24 α33 α22 α1 α23

α7 α52 α3 α5 α32

α2
2
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The fundamental result in the theory of irreducible divisor graphs, proved in
[Coykendall and Maney 2007; Axtell et al. 2011] tells us that an atomic integral
domain R is a UFD if and only if G(x) is connected (equivalently, complete)
for all nonunits x ∈ R. In fact, the proof of this result goes through for any
commutative, cancellative semigroup. As should be no surprise, the examples
above give disconnected graphs. In fact, the following theorem illustrates that this
is nearly always the case for strongly k-furcus semigroups, thus giving another
demonstration of how “bad” factorization is in k-furcus semigroups.

Theorem 4.3. Let S be a commutative, cancellative strongly k-furcus semigroup.
Then G(x) is disconnected for every nonatom, nonunit x of S with sup L(x) > k.

Proof. Divide the set of vertices of G(x) into two subsets:

A = {a ∈A(S) : x = aa1a2 · · · ak−1; ai ∈A(S)},

containing the vertices involved in factorizations of length k, and

B = {b ∈A(S) : x = bb1b2 · · · bm; bi ∈A(S),m ≥ k},

containing those involved in factorizations of length greater than k. Assume b∈A(S)
with b ∈ A∩ B.

Since b ∈ A, x = bc1c2 · · · ct , where t = k−1. Since b ∈ B, x = bd1 · · · ds, s ≥ k.
Thus x

b = c1c2 · · · ct = d1d2 · · · ds has a factorization of length greater than or equal
to k and a factorization of length less than k, which is impossible since S is strongly
k-furcus. Therefore A∩ B =∅.

Now assume a ∈ A and b ∈ B with an edge connecting a and b in G(x). Then
x = abc1 · · · ct with ci atoms of S. If t = k− 2, then b ∈ A, a contradiction since
b ∈ B. If t > k− 2, then a ∈ B, a contradiction since a ∈ A. Therefore no edges
connect vertices in A with vertices in B, and hence G(x) is disconnected. �

The requirement that sup L(x) > k is necessary as the following example illus-
trates.

Example 4.4. Consider the element x = 24
· 34
· 54
· 73 in the strongly 4-furcus

semigroup from Example 4.2 which factors only as x= (210·2)(210·3)(210·5)with
αb j = 210 · b j . Since x has no factorization of length greater than 3, its irreducible
divisor graph, shown below is connected.

210 · 2 210 · 3

210 · 5
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