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We prove that a permutation in the Bruhat order on twisted involutions is Boolean
if and only if it avoids the following patterns: 4321, 3421, 4312, 4231, 32541,
52143, 351624, 456123, 426153, 321654, 561234, 345612, 3416275, 3561274,
1532746, 4517236, 34127856, 35172846, and 36712845. This result answers a
question proposed by Hultman and Vorwerk. Our technique provides an applica-
tion of the pictorial representation of the Bruhat order given by Incitti.

1. Introduction

In this paper, we answer the following question proposed by Hultman and Vorwerk
[2009, Problem 5.1].

Problem. A permutation w ∈ Sn is said to be a twisted involution if ww0 is an
involution, where w0 = n, n− 1, . . . , 1. Let Tw(Sn) denote the Bruhat order on
twisted involutions. With pattern avoidance, classify all twisted involutions whose
principal order ideal in Tw(Sn) is Boolean.

We first define some requisite terms in the problem statement (see [Björner and
Brenti 2005] for background reading).

Definition. Let

l(w)= |{ {i, j} : i < j and w(i) > w( j)}|

denote the number of inversions of w. The Bruhat order of the symmetric group,
denoted by Br(Sn), is a partial order on Sn defined as follows: w covers w′ if and
only if l(w)= l(w′)+ 1 and w is obtained from w′ by a transposition of w′(i) and
w′( j) for some 1≤ i, j ≤ n.
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Definition. The Bruhat order on twist involutions, denoted by Tw(Sn), is the poset
on twisted involutions defined by u ≤ v in Tw(Sn) if and only if u ≤ v in Br(Sn).

Let Q be a poset. The principal order ideal of w ∈ Q, denoted by PQ(w)

(or P(w) when the context is clear), is the subposet of Q induced by the set of
elements less than or equal to w. The Boolean poset Bk is the poset on the subsets
of {1, 2, . . . , k} partially ordered by inclusion. A twisted involution w is said to be
Boolean if its principal order ideal in Tw(Sn) is isomorphic to a Boolean poset.

Example. The Boolean elements of Tw(S4) are 2341, 3412, 4123, 1324, 2143,
and 1234.

4321

{{ �� ##
3421

�� ##

4231

{{ ##

4312

{{ ��
2341

�� ))

3412

{{ ##

4123

uu ��
1324

##

2143

{{
1234

We now present a brief history of this problem. Tenner [2007] brought pattern
avoidance to the study of the Bruhat order. She classified Boolean elements of
Br(Sn) as 321- and 3412-avoiding permutations. Hultman and Vorwerk [2009]
studied an analogue of Tenner’s result for involutions: 4321-, 45312-, and 456123-
avoiding permutations. At the end of [Hultman and Vorwerk 2009], the authors
asked whether a similar result exists for twisted involutions. We settle this question
with the following theorem.

Theorem 1.1. A twisted involution is Boolean if and only if it avoids all forbidden
patterns. The forbidden patterns are 4321, 3421, 4312, 4231, 32541, 52143, 351624,
456123, 426153, 321654, 561234, 345612, 3416275, 3561274, 1532746, 4517236,
34127856, 35172846, and 36712845.

As a side note, the poset Tw(Sn) is isomorphic to the dual of I (Sn), the Bruhat
order on involutions. Consequently, our result also characterizes Boolean principal
order filters of I (Sn).

Previous work [Hultman and Vorwerk 2009; Tenner 2007] relied heavily on the
algebraic properties of Coxeter groups. We prove Theorem 1.1 using permutation
diagrams that represent the cover relations in the Bruhat order. Such diagrams
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were introduced by Incitti [2003; 2004; 2005].
Let w ∈Sn . The permutation diagram of w is the set of lattice points (i, w(i)),

where 1≤ i ≤ n. Permutation diagrams of twisted involutions of Sn are symmetric
about x + y = n+ 1.

Incitti [2005] shows that w covers w′ in Br(Sn) if and only if their permutation
diagrams differ by the following rectangle.

White dots belong to w and black to w′, and no points lie inside the rectangle.
Call the above rectangle a cover block.

Example. Left is the permutation diagram of 24153. The picture to the right shows
that 4321 covers 4231 in Br(S4).

24153 4321>4231
>

Incitti [2004] classifies the cover relations of I (Sn) with six types of cover
blocks. Reflecting them about the line x = (n+ 1)/2 gives us the cover blocks of
Tw(Sn) (see Section 3).

The key idea of our proof of Theorem 1.1 is to examine pairs of cover blocks
on the same permutation diagram. To illustrate our technique, we start with
an alternative and arguably simpler proof of Tenner [2007, Theorem 5.3] (see
Section 2). In particular, we remove the need for Tenner’s characterization of
vexillary permutations [Tenner 2006, Theorem 3.8].

Section 3 contains the proof of Theorem 1.1. We discuss further directions in
Section 4.

The Bruhat order on Coxeter groups is an extensively studied subject in combi-
natorics (see [Björner and Brenti 2005]). Following the work of Richardson and
Springer [1990], there has been a surge of interest in the Bruhat order on twisted
involutions because of its application to algebraic geometry and its resemblance
to the Bruhat order on the symmetric group. For example, Hultman [2005; 2007]
showed that Tw(Sn) satisfies the deletion property and the subword property known
for Br(Sn). The similarity between Tw(Sn) and Br(Sn) inspired Hultman and
Vorwerk [2009] to propose this problem.
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2. Boolean elements of the symmetric group

In this section, we give an alternative proof of Tenner [2007, Theorem 5.3] to
illustrate our approach to Theorem 1.1.

Definition. Elements of a poset are called vertices and cover relations edges. An
edge uv is called an upward move from u if v covers u. Define a downward move
similarly. Two edges are said to commute uniquely if they lie on a unique 4-cycle.

Theorem [Tenner 2007, Theorem 5.3]. A permutation w ∈ Br(Sn) is Boolean if
and only if w is 321- and 3412-avoiding.

Proof of necessity. Suppose w contains a 321- or 3412-pattern. Let u denote the
minimal element of P(w) that contains a 321- or 3412-pattern. Then the permutation
diagram of u contains the following figure, where no other points lie inside the
rectangle.

The two downward edges from u that act on this rectangle do not commute
uniquely, as shown below.

Therefore, w is not Boolean. �

Proof of sufficiency. We start with the following lemma.

Lemma 2.1. Let P be a graded and connected poset. If every pair of edges that
share a vertex in P commute uniquely, then P is a Boolean poset.

Proof. Let M denote the maximal element of P (the maximum exists because
upward moves commute uniquely). Suppose M covers m1, m2, . . . , mk . Define
f (u)= {i :mi ≥ u}. We prove that f bijectively maps the i-th row of P to the i-th
row of Bk using strong induction on i . Base case is trivial.

Suppose f bijectively maps the first i rows of P to the first i rows of Bk . Let u
be an element in the (i + 1)st row. We claim that an element v covers u if and only
if f (v)= f (u)\x for some x ∈ f (u).
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If u is covered with v1, v2, . . . , v j , then f (u) =
⋃

1≤a≤ j f (va). Since for all
1 ≤ a, b ≤ j , the upward moves uva and uvb commute uniquely, we have f (va)

and f (vb) differ by exactly one element. Therefore, for all 1 ≤ a ≤ j , we have
f (va)= f (u)\x for some x ∈ f (u). Conversely, suppose f (v)= f (u)\x for some
x ∈ f (u). Let

v′ := f −1( f (v j )∩ f (v)).

Since v jv
′ and v j u commute uniquely, there exists a v′′ in the i-th row such that

v′v′′uv j is a four cycle. Then f (v′′)= f (u)\x . Since the i-th row of P is isomorphic
to the i-th row of Bk , we have v = v′′.

Therefore, f maps the (i + 1)st row of P to the (i + 1)st row of Bk , and P is
isomorphic to the Boolean post Bk . �

Suppose w is 321- and 3412-avoiding. It is easy to check that all u ≤w are 321-
and 3412-avoiding. If u is 321- and 3412-avoiding, then all pairs of downward
moves from u commute uniquely. An upward move from u commute uniquely
with a downward move from u. Suppose two upward moves uv1 and uv2 do not
commute uniquely, then these two moves must be applied to one of the following
figures.

2v 2v
1v 1v

u u

In the right diagram, the element greater than both v1 and v2 must contain a
321-pattern, so only one of v1 or v2 belongs to P(w).

In the left diagram, there exist v′1 and v′2 that cover both v1 and v2. Let v be the
element that covers v′1 and v′2. Then vv′1 and vv′2 are two downward edges that do
not commute uniquely, as shown below.

v

�� ��
v′1

�� ''

v′2

ww ��
v1

  

v2

~~
u
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Thus, one of v′1 and v′2 does not belong to P(w), and uv1 and uv2 do commute
uniquely in P(w).

Therefore, all pairs of edges commute uniquely in P(w), and w is Boolean by
Lemma 2.1. �

Remark. The key idea of the proof of necessity is to identify a pair of downward
moves that do not commute uniquely. The proof of sufficiency follows from
Lemma 2.1.

We can also use this idea to prove Hultman and Vorwerk [2009, Theorem 1.1],
with the caveat that there are six types of cover blocks in the Bruhat order on
involutions.

3. Proof of the main theorem

We wish to apply the same technique as the previous section, so we need to identify
pairs of edges that do not commute uniquely.

We first classify the cover blocks of the Bruhat order on twisted involutions.
Incitti [2004] characterizes the six types of cover blocks of the Bruhat order on
involutions. Since permutation diagrams of twisted involutions are equivalent
to those of involutions reflected about x = (n + 1)/2, we obtain the following
characterization of cover relations of Tw(Sn).

Definition. Let w and w′ denote two twisted involutions. We have w covers w′ if
and only if their permutation diagrams differ by one of the following cover blocks.
The white dots belong to w and black to w′, and no points lie inside these shapes.

1 2 3

4 5 6

The six types of cover blocks induce fifteen types of intersecting pairs. The
pairs of downward moves that do not commute uniquely define the forbidden pairs
shown below, where no points lie inside the area enclosed by the lines.
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1 & 1

2 & 3c

4 & 4a

3 & 1, 3 & 4, 3 & 5 are rotations of 2 & 1, 2 & 4, 2 & 5 by 180 degrees

5 & 5a 5 & 5b 5 & 5c

4 & 4b 4 & 5a 4 & 5b

2 & 4a 2 & 4b 2 & 5a 2 & 5b

1 & 2 1 & 4 1 & 5 2 & 3a 2 & 3b

These forbidden pairs will give us the forbid-
den patterns in Theorem 1.1. Note that cover
relation 6 never appears in the forbidden pairs
because any forbidden pair with relation 6 in-
duces a forbidden pattern already contained in
the earlier ones.

Example. Two downward moves applied to the
forbidden pair 1&2 do not commute uniquely.
(See figure on the right.)

We now prove Theorem 1.1.
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Proof of necessity. Suppose w contains one of the forbidden patterns. If this
forbidden pattern in the permutation diagram of w is not symmetric about x + y =
n+ 1, then we can treat the corresponding points as the full Bruhat order. Since all
forbidden patterns contain either 321 or 3412, the permutation cannot be Boolean.

We now assume that the forbidden pattern is symmetric about x+ y = n+1. Let
u denote the minimal element of P(w) that contains a forbidden pattern. Then the
permutation diagram of u contains a forbidden pair. (The forbidden pattern of u
with the smallest area in the permutation diagram cannot contain other points. For
example, if there are other points inside cover block 2, then we obtain a forbidden
pattern with smaller area, as shown below.)

1 & 2 2 & 4a 2 & 5a

The two downward moves applied to this forbidden pair of u do not commute
uniquely. Thus, w is not Boolean. �

Proof of sufficiency. To apply Lemma 2.1, we check two things:

1. If w avoids all forbidden patterns, then any u ≤ w also avoids all forbidden
patterns.

2. If u avoids all forbidden patterns, then all pairs of edges emanating from u
commute uniquely.

Any u ≤ w avoids all forbidden patterns because, after every downward move,
the number of cover blocks and the rank of u decrease by exactly one, which means
no new cover block can be created.

If u avoids all forbidden patterns, then two downward moves from u commute
uniquely. We can check that an upward move and a downward move always
commute (this also follows from the lexicographical shellability of Tw(Sn)). The
pairs of upward moves that do not commute uniquely induce patterns 1234, 21354,
and 321654.

1234 21354

We have 321654 is a forbidden pattern. For the other two patterns, the element
that covers both end points of an upward move contains a element with a forbidden
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pattern. Therefore, only one of the endpoints is contained in P(w), and all pairs of
upward moves do commute uniquely in P(w). Lemma 2.1 shows that w is indeed
Boolean. �

4. Further remarks

Our result provides an application of Incitti’s pictorial representation of the Bruhat
order [Incitti 2004]. Incitti [2003; 2004; 2005] also classify representations of
cover relations for the Bruhat order on Coxeter groups of types B and D as well as
involutions in these groups.

Question. What is the analogue of our result for Coxeter groups of types B and D?

Green and Losonczy [2002] classify Boolean elements of the poset on commuta-
tion classes of reduced decompositions: 4321-, 4231-, 4312-, and 3421-avoiding
permutations. The author’s recent work [Meng ≥ 2012] generalizes Green and
Losonczy’s work to the higher Bruhat order. Using Incitti’s pictures, we can show
that Br(Sn) is generated by 4-cycles. Compare this with the fact that the higher
Bruhat order B(n, 2) is generated by 4-cycles and 8-cycles, we believe that studying
the similarity between the strong Bruhat order and the higher Bruhat order is
worthwhile.
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