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Analysis of the steady states of a mathematical
model for Chagas disease

Mary Clauson, Albert Harrison, Laura Shuman,
Meir Shillor and Anna Maria Spagnuolo

(Communicated by Suzanne Lenhart)

The steady states of a mathematical model for the dynamics of Chagas disease,
developed by Spagnuolo et al., are studied and numerically simulated. The model
consists of a system of four nonlinear ordinary differential equations for the total
number of domestic carrier insects, and the infected insects, infected humans, and
infected domestic animals. The equation for the vector dynamics has a growth
rate of the blowfly type with a delay. In the parameter range of interest, the model
has two unstable disease-free equilibria and a globally asymptotically stable
(GAS) endemic equilibrium. Numerical simulations, based on the fourth-order
Adams–Bashforth predictor corrector scheme for ODEs, depict the various cases.

1. Introduction

Chagas disease is wide spread in rural parts of South and Central America, where an
estimated 10 million people are infected [Bilate and Cunha-Neto 2008; Cohen and
Gürtler 2001; Schofield et al. 2006], and a search on the World Health Organization
(WHO) web site yielded 1460 results. A summary of the state of the disease can be
found at [WHO 2010]. Cases of the disease were also reported in Mexico and even
a few in Southern California. The disease is transmitted by the insect Triatoma
infestans, known as the “kissing bug”, which bites the victim and then defecates
around the bite wound. The parasites that cause the disease, Trypanosoma cruzi,
which are in the bug’s feces, enter the wound and spread throughout the body. The
disease causes significant morbidity and eventually death, and there is no cure for
the disease, after its initial stage. Currently the main way to control the spread of
the disease is by insecticide spraying.

A mathematical model for the dynamics of the disease was developed in [Spag-
nuolo et al. 2011], where the main interest was to understand the disease spread

MSC2000: primary 92D30; secondary 34K28, 34K99, 37N25.
Keywords: Chagas disease, population dynamics, blowflies rate with delay, steady states.
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and how to control it by using insecticide spraying. The model consists of four
nonlinear ordinary differential equations (ODEs), describing the evolution of the
total numbers of the insects or vectors and of the infected vectors, infected humans,
and infected household mammals, which for the sake of simplicity we call dogs. It
is of the MSEIR type, but with only S (susceptibles) and I (infectives) components
for the insects, humans, and dogs. The model describes a typical rural village with
humans, dogs, chickens, and the vectors. Although chickens cannot be infected
nor are they carriers of Chagas disease, they are a blood source for the vectors, so
they contribute essentially to the disease dynamics. We refer to [Spagnuolo et al.
2011] for a detailed description of the disease and the assumptions that underlie the
model. An extensive literature can be found there, in [Coffield et al. 2010], and the
references therein.

This work concentrates on the steady states of the model of Spagnuolo et al. and
studies their stability. The time-dependent model coefficients, with their yearly
oscillations are replaced by their yearly averages. Thus, the seasonal changes in the
relevant system parameters are not included here. However, they were taken into
account in [Coffield et al. 2010; Spagnuolo et al. 2011].

The interest in this work lies in understanding the mathematical structure of the
model without spraying, and with time-independent coefficients.

We note that a somewhat different model was studied in [Spagnuolo et al. 2012;
Coffield et al. 2010], where the analysis of the steady states can be found, too.
There, the growth rate in the equation for the vectors was a logistic term with delay,
while in [Spagnuolo et al. 2011] and here, the so-called “blowflies” term with a
delay is used ([Nicholson 1954]; see also [Wei and Li 2005] and references therein).

In addition to the stability analysis of the steady states, Section 3, we present a
scheme for the numerical solutions of the model and depict two sets of simulations,
Section 4. The results depict the monotone ways the system approaches the endemic
steady state.

2. The model

We briefly describe the mathematical model for Chagas disease developed in [Spag-
nuolo et al. 2011]. It describes the population dynamics of the total numbers of:
vectors (bugs), infected vectors, infected humans, and infected domestic animals
(dogs) in a representative village in South America. The model was used to study
the effects of periodic insecticide spraying for the control of the disease. In this
work we are interested in the stability of its disease-free and endemic equilibria, so
we omit the terms related to insecticide spraying.

The populations are assumed to be large enough to be governed by differential
equations. The total populations of humans (N ), dogs (D), and chickens (C)
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are assumed to remain constant over time. We denote by V = V (t) the number
of carrier insects living in the houses at time t ; the number of infective insects
by Vi = Vi (t), the number of infective humans by Ni = Ni (t), and the number
of infective dogs by Di = Di (t). Each non-infected population, excluding C,
is assumed to be susceptible. The rate coefficients dh = dh(t), dm = dm(t) and
bi = bi (t) are assumed to be periodic, with period of one year.

The mathematical model for Chagas disease of Spagnuolo et al., without insecti-
cide spraying, is this:

V ′ = dh V (t − τ)e−aV (t−τ)
− dm V, (2-1)

V ′i = bi (V − Vi )
(
PN V Ni + PDV d f Di

)
− dm Vi , (2-2)

N ′i = bi PV N (N − Ni ) Vi − γN Ni , (2-3)

D′i = bi d f PV D(D− Di )Vi − γD Di , (2-4)

Vi (0)= Vi0, Ni (0)= Ni0, Di (0)= Di0,

V (t)= V0(t), −τ ≤ t ≤ 0. (2-5)

Equation (2-1) describes the rate of change of the total vector population. The
first term on the right-hand side is similar in form to Nicholson’s blowflies model
where the growth rate at time t (days) depends on the population size at time t − τ
(days) [Gurney et al. 1980; Győri and Ladas 1991; Nicholson 1954]. However,
in the Nicholson model dhτ is a constant, since blowflies have only two stages of
development: pupae and adult. In contrast, triatomines have six distinct stages of
life: five instar stages and an adult stage. The egg hatching rate dhτ = dhτ (t) at time
t depends on the fraction of adult females at time t − τ , as well as other factors
including seasonal temperatures and blood supply. In particular, the growth term
attains a maximum when the number of vectors in the village houses at time t − τ
reaches the value of 1/a. The natural death rate coefficient of the vectors is dm . We
note that (2-1) is decoupled from the other equations and can be solved separately.

Equation (2-2) models the rate of change of the number of infected vectors. The
first term represents the rate of growth of the infectives. The factor bi (t)= b/bsup

is the biting rate of the vectors b divided by the total available blood supply
bsup = N + d f D+ c f C , where d f and c f are the blood supply weights of the dogs
and the chickens, respectively. The susceptible vector population is V − Vi , and
PN V and PDV are the respective probabilities of a vector becoming infected from
biting a human or a dog.

The rate of change in the number of infected humans, (2-3), is determined by
the biting rate of infected vectors bi (t)Vi and the probability PV N (N − Ni ) of a
susceptible human catching the disease in one bite. The death rate of infective
humans is γN Ni , where γN is the death rate constant, and is known to be higher
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than that of the susceptibles, [Rassi et al. 2009]. Equation (2-4) for infected dogs
is similar, but with the addition of the factor d f to take into account the vectors’
preference to feed on dogs.

The model has time-dependent coefficients that incorporate seasonal variations
in the life cycles of the vectors. The oscillatory behavior of the solutions can be
found in the simulations in [Spagnuolo et al. 2011]. However, to study the steady
states, which we do in the next section, we replace them with their yearly averages.

3. The steady states

We now study the steady states of the problem. To this end, we first rewrite the
system using time-independent averaged coefficients. We set

a1 = dh, a3 = bi PN V , a5 = bi PV N ,

a2 = dm, a4 = bi d f PDV , a6 = bi d f PV D,

where we take each ai , i = 1, . . . , 6 to be the average value, over 365 days, of
its corresponding function in the baseline simulation case studied in [Spagnuolo
et al. 2011]. These system parameters are positive constants. The definitions of
the various coefficients and their values used in the baseline simulation case of the
model can be found in Table 1.

To simplify the presentation, we rename the dependent variables as follows:
v = V, x = Vi , y = Ni , z = Di .

The problem in the new notation is: Find the functions {v, x, y, z}, defined on
the time interval [0, T ], such that,

v′ = a1v(t − τ)e−av(t−τ)
− a2v, (3-1)

x ′ = a3(v− x)y+ a4(v− x)z− a2x, (3-2)

y′ = a5 (N − y) x − γN y, (3-3)

z′ = a6(D− z)x − γDz, (3-4)

x(0)= Vi0, y(0)= Ni0, z(0)= Di0,

v(t)= V0(t), −τ ≤ t ≤ 0. (3-5)

To study the long time behavior of the system (3-1)–(3-4) [Hethcote 2000;
Thieme 2003], we note that the steady states or the fixed points are the solutions of
the system

0= a1v̄e−av̄
− a2v̄, (3-6)

0= a3(v̄− x̄)ȳ+ a4(v̄− x̄)z̄− a2 x̄, (3-7)

0= a5(N − ȳ)x̄ − γN ȳ, (3-8)

0= a6(D− z̄)x̄ − γD z̄. (3-9)
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Symbol Description Units

V total number of vectors bugs/village
N total number of humans humans/village
D total number of domestic dogs dogs/village
C total number of chickens chickens/village
Vi infected domestic triatomines bugs/village
Ni number of infected humans humans/village
Di number of infected dogs dogs/village
dhτ egg hatching rate 1/day
dm death rate of bugs 1/day
τ the delay factor days
b biting rate 1/day

PN V human to bug infection probability (per bite) NA
PDV dog to bug infection probability (per bite) NA
PV N bug to human infection probability (per bite) NA
PV D bug to dog infection probability (per bite) NA
d f human factor of one dog NA
c f human factor of one chicken NA
γN mortality rate of infected humans 1/day
γD mortality rate of infected dogs 1/day
a−1 value of V at which growth rate the largest bugs

Table 1. The model variables and coefficients.

The two solutions of the steady-state equation (3-6) for v are

v̄0 = 0 and v̄1 =
1
a

log
a1

a2
. (3-10)

We note that since v̄1 > 0, (because a1 > a2 in our setting), it follows from
the results in [Wei and Li 2005] that the solution v̄0 = 0 is unstable. Also, when
v̄ = v̄0 = 0, we have that x̄ = ȳ = z̄ = 0. So, (0, 0, 0, 0) is an unstable equilibrium
point of the system. This corresponds to the observation that Chagas disease is
endemic in Latin America.

We turn to the steady states with a positive number v̄1, (3-10), of total vectors. In
the baseline case we have v̄1 ≈ 31, 500. It follows from [Wei and Li 2005] that v̄1

is locally asymptotically stable. Moreover, it is found that the condition for intrinsic
oscillations in Equation (2) of [Wei and Li 2005],

a2τeτa
(

log
a1

a2
− 1

)
>

1
e
,
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is not satisfied, so the delay τ does not cause any oscillations of the solution.
In this case, there are two nonnegative equilibria for x̄, ȳ, and z̄. One is the
disease-free equilibrium (0, 0, 0), and the other, an endemic state, is approximately
(9239, 86, 51), as computed numerically, using the baseline parameters.

The Jacobian matrix evaluated at the disease-free equilibrium is

J (0, 0, 0)=

−a2 a3v̄1 a4v̄1

a5 N −γN 0
a6 D 0 −γD

 .
This matrix has three distinct real eigenvalues, one positive and the other two
negative. Therefore, (31500, 0, 0, 0) is an unstable equilibrium. In Section 4 we
simulate the model in cases when the initial conditions are near (31500, 0, 0, 0).

Finally, at the endemic equilibrium (v̄1 = 31500, 9239, 86, 51) the Jacobian
matrix at (x̄, ȳ, z̄) is:

J (x̄, ȳ, z̄)=

−a3 ȳ− a4 z̄− a2 a3(v̄1− x̄) a4(v̄1− x̄)
a5(N − ȳ) −a5 x̄ − γN 0
a6(D− z̄) 0 −a6 x̄ − γD

 .
A straightforward computation shows that J (9239, 86, 51) has three real negative

eigenvalues. Therefore, the endemic steady state (31500, 9239, 86, 51) is stable
and attracting, or globally asymptotically stable (GAS). It follows from the model
that under these conditions, without insecticide spraying or other interventions,
the disease will persist. We note that we do not make a general statement on the
conditions for the endemic steady state to be GAS, only that this is so in this case.

4. Simulations

We used the fourth-order Adams–Bashforth predictor corrector method to compute
the numerical approximations of the model, equations (3-1)–(3-5). Due to the delay,
a small step size of 1

100 of a day was chosen. We also solved the system using other
numerical schemes and they all matched our results for 1000 years of simulations.
Moreover, Theorem 6.2.1 in [Bellen and Zennaro 2003, p. 156], guarantees the
correctness of our numerical scheme.

The values of the parameters (with their references) used in the simulations
are provided in Table 2. These were taken from [Spagnuolo et al. 2011]. The
simulations were run using gfortran on a 3.0 GHz Intel Core 2 Duo CPU with Cent
OS 5. A typical simulation of 100 years with 100 time steps per day (3.65× 106

time steps) took approximately 300 seconds. It was found that very long runs,
over a few hundred years (tens of millions of time steps) were computationally
reproducible, which indicates that the solution algorithm was stable.



STEADY STATES OF A MATHEMATICAL MODEL FOR CHAGAS DISEASE 243

Symbol Baseline simulation value Reference

d f 2.45 [Gürtler et al. 2007]
c f 4.8 [Gürtler et al. 2007]
dm 0.00327 Estimate from [Castanera et al. 2003]
dhτ 0.00613 Estimate from [Castanera et al. 2003;

Gorla and Schofield 1985]
bi 0.0000215 Estimate from [Castanera et al. 2003;

Catalá 1991]
γN 0.7 2 ln 2

76.12·365 + 0.3 ln 2
25·365 Estimate from [CIA 2009;

Rassi et al. 2009]
γD

ln 2
4·365 Estimated 8 years

C 100 This study
N 400 This study
D 100 This study

PN V 0.03 [Cohen and Gürtler 2001]
PDV 0.49 [Cohen and Gürtler 2001]
PV N 0.00008 Estimate from [Cohen and Gürtler 2001]
PV D 0.001 Estimate from [Cohen and Gürtler 2001]
a−1 50,000 This study

Table 2. The parameters used in the baseline case.

We now present two numerical simulations of the model, with averaged co-
efficients, with different initial conditions, showing the convergence of the sys-
tem to the endemic steady state (v̄1, 9239, 86, 51). The first simulation has ini-
tial conditions that are considerably smaller than the steady state and chosen as
V (0)= 2, Vi (0)= 2, Ni (0)= 10, and Di (0)= 0. In the second example, the initial
conditions were chosen to be larger than the steady state values, and the values
were V (0)= 45, 000, Vi (0)= 10, 000, Ni (0)= 100, and Di (0)= 100.

The results of both simulations are depicted in Figure 1. In each figure the heavy
line represents the solution of the case with small initial conditions, i.e., starting
near zero, and the thin line is the solution starting above the steady state. The
convergence to the steady state of the total number of vectors can be seen at upper
left; that of the infected vectors at upper right; infected humans at lower left; and
infected dogs at lower right. It is seen clearly that each one of the populations, in
both cases, converges monotonically to the steady state.

However, we stress that this monotone approach is characteristic of the system
with averaged parameters. So it provides only qualitative insight at best. In the
field, the parameters are affected by seasonal changes and are time dependent. This
was taken into account in [Spagnuolo et al. 2011], since spraying is done once a
year.
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Figure 1. Convergence to the endemic state from above (thin line)
and below (thick line).

5. Conclusions

A model for the dynamics of the Chagas disease, with averaged coefficients, was
presented, following [Spagnuolo et al. 2012; 2011]. It consists of rate equations for
the total numbers of vectors, and infected vectors, humans, and dogs (mammals).
The model shows, within the conditions that seem to be observed in South America,
an unstable disease-free equilibrium and a stable endemic equilibrium.

Then, our computer code was used to obtain numerical approximations of the
model. In particular, we simulated the approach of the solutions to the endemic
steady state. Two examples were presented, in the first one the initial conditions are
below the values of the endemic equilibrium, and in the second they were above it.
It was found, numerically, that the convergence to the endemic state was found to
be monotone in both cases.

It may be of interest to prove that the convergence is monotone, however, the
question is unresolved, yet.
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Bounds on the artificial phase transition for
perfect simulation of hard core Gibbs processes

Mark L. Huber, Elise Villella, Daniel Rozenfeld and Jason Xu

(Communicated by John C. Wierman)

Repulsive point processes arise in models where competition forces entities to
be more spread apart than if placed independently. Simulation of these types
of processes can be accomplished using dominated coupling from the past with
a running time that depends on the intensity of the number of points. These
algorithms usually exhibit what is called an artificial phase transition, where
below a critical intensity the algorithm runs in finite expected time, but above the
critical intensity the expected number of steps is infinite. Here the artificial phase
transition is examined. In particular, an earlier lower bound on this artificial phase
transition is improved by including a new type of term in the analysis. In addition,
the results of computer experiments to locate the transition are presented.

1. Introduction

A spatial point process is a random collection of points in a set S. In most applica-
tions, S is a continuous space and all of the points are distinct. For instance, the
locations of trees in a forest [Møller and Waagepetersen 2007] and the locations
of cities in a country [Glass and Tobler 1971] can be modeled using spatial point
processes.

One simple spatial point process is the Poisson point process. Suppose that
S is a bounded Borel set with positive and finite Lebesgue measure. The basic
Poisson point process is the outcome of the following algorithm. First choose a
random number of points N according to a Poisson distribution with parameter
λµ(S) (so P(N = i)= exp(−λµ(S))(λµ(S))i/ i ! for nonnegative integers i .) Here
µ is Lebesgue measure and λ > 0 is a parameter of the model. Next, choose
points X1, . . . , Xn independently and uniformly from the set S. The resulting set
{X1, . . . , X N } is a Poisson point process.

MSC2010: primary 62M30; secondary 60G55, 60K35.
Keywords: spatial point process, dominated coupling from the past, birth-death chain.
This work was conducted as part of a summer research for undergraduates program funded through
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Since the points are drawn independently, this model fails to capture situations
where the locations of points are not independent. In both the forest and cities ex-
amples mentioned earlier, the points tend to be farther apart than in the independent
situation since the entities involved are competing for space and resources. The
points appear to act as particles with the same charge, and so they exhibit repulsion.

There are several ways to account for this repulsion. The hard core Gibbs process
[Mase et al. 2001] is a Poisson point process conditioned on the event that none
of the points lie within distance R of each other. In other words, each point is
surrounded by a hard core of radius R/2. The cores are “hard” in the sense that the
cores are not allowed to overlap. Here R is a parameter of the model.

In frequentist approaches, this model can be used to construct maximum likeli-
hood estimators for R and λ. The values of these estimators can be approximated
by methods which use random draws of the point process from the model. See, for
example, [Geyer and Møller 1994; Geyer 1999; Møller and Waagepetersen 2004]
for details.

In Bayesian approaches, this model (together with a prior on λ and R) can be
used to build a posterior for the parameters. This posterior is quite complex, and
depends on a normalizing constant (also known as partition function) that is difficult
to compute exactly. The auxiliary variable method of Møller et al. [2006] can be
used to create a Markov chain for these problems: this Markov chain also requires
the ability to draw random variates from the model in question.

Spatial birth and death chains. Preston [1975] created a coupled pair of jump
processes (X t , Yt) where the stationary distribution of Yt is a Poisson point process,
and the stationary distribution of X t is the target process. In a jump process, the
state stays the same until abruptly jumping to a new state (these jumps are called
events). The time until the next jump is an exponential random variable whose
rate depends only on the current state. Conditioned on this rate, the exponential is
independent of all prior history of the process. For Yt , a birth is an addition of a
point to the process, and occurs at rate equal to λµ(S). If a birth event occurs, the
point added is chosen uniformly from S (again this choice is independent of the
prior history of the process.) Each point when born is given a time of death that is
the current time plus an exponential random variable with mean 1. This exponential
is once more independent of the prior history of the process. At time of death, the
point is removed from the process.

For a jump process At , let

At− =
⋂
ε>0

⋂
t−ε<t ′<t

At ′

be the state of the process immediately before time t . To use Preston’s method for
the hard core Gibbs process, suppose that the point v is born at time t in the Y
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process. Then v is added to the X t state if and only if it is not within distance R of
a point in X t− . So births are always added to the Y process, but only sometimes to
the X process in order to maintain the hard core property.

If a point w ∈ Yt− dies, at time t it is removed from the Y process. If w is also
in X t− it is also removed from the X process at time t . With this coupling,

X t ′ ⊆ Yt ′ =⇒ X t ⊆ Yt

for all t ′ < t , so the Y process is referred to as the dominating process.
Preston’s approach yields a jump process whose limiting distribution of X t is

the hard core Gibbs process, but X t will never exactly be in the correct distribution.
Ferrari, Fernández, and Garcia [2002] developed a method for drawing samples
exactly from the desired distribution using a clan of ancestors approach. In turn,
Kendall and Møller [2000] developed a much faster algorithm, dominated coupling
from the past (DCFTP), which can be used to sample from a variety of distributions
that include the hard core Gibbs process.

Previous analysis showed that when using the standard Euclidean distance, the
DCFTP method was provably fast when λ < 1/(πR2) [Huber 2012]. In this work
we build upon this analysis, providing a wider set of conditions on λ and R for the
DCFTP method to run quickly. The original argument used a term depending on
the number of points in the configuration, while the new method uses the number
of points as well as the area spanned by these points. This extra area term is what
leads to the stronger proof. For ease of exposition we use the Euclidean metric to
measure the distance between points and only operate in R2 throughout this work;
we simply note that the same argument can easily be applied to any metric and to
problems in higher dimensions.

The remainder of the work is organized as follows. Section 2 gives our new
result: improved sufficient conditions on the parameters of the model for dominated
coupling from the past to operate quickly. Section 3 gives computer results to
complement the theoretical results of the previous section, and we close with our
conclusions.

2. Bounding the running time of DCFTP

The time necessary to run DCFTP is related to the clan of descendants (cod) of
a point v, defined as follows. For any point v ∈ Y0, couple another point process
Ct(v) to Yt as follows. Let C0(v)= {v}. If a point w is born to Yt− at time t , add
w to Ct if and only if w is within distance R of a point in Ct− . If a point w′ dies in
the Y process at time t , and is also in the C process, remove it from Ct as well.

Then the cod of v is
C(v)=

⋃
t≥0

Ct(v).
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The clan of ancestors in [Ferrari et al. 2002] is the time reversal of the cod, so they
have the same size. In addition, the expected running time of DCFTP is bounded
by a constant times the expected size of the cod. If there is a chance that the cod
grows indefinitely, DCFTP has the same chance of taking forever to generate a
sample, so the algorithm is only useful when the cod is finite with probability 1.

To bound the size of the cod, we wish to show that #Ct converges to 0 (so that
Ct =∅) with probability 1 after a finite number of births and deaths that affect the
cod. In particular,

Theorem. For λ < [8/(3
√

3+ 4π)]/R2, the expected number of births and deaths
that affect the cod is bounded above by(

8/(3
√

3+ 4π)
R2 − λ

)−1

.

As noted in Section 1, a similar previous result in [Huber 2012] had a constant of
1/π ≈ 0.3183 in front of the R−2 factor, while the new result has 8/(3

√
3+ 4π)≈

0.4503. Hence this result proves the efficacy of the DCFTP method (and mixing
time of the chain) over values of λ that are 41% larger than previously known.

Avoiding boundary effects. In order to avoid having to worry about boundary
effects arising from finite S, we first build another point process that dominates
Ct(v). As with the regular process, start with C+0 (v) = {v}. Let S(C+t (v), R) be
all points within distance R of a point in C+t (v). Then births in S(C+t (v), R) will
occur at rate λ ·µ(S(C+t (v), R)). Points in C+t die at rate 1. Births and deaths in S
can be coupled to the births and deaths in Yt , but there might be extra points in C+t
that were born outside of S. Therefore, Ct(v)⊆ C+t (v), and to show that #Ct(v)

converges to zero, it suffices to show #C+t (v) converges to zero.

Useful facts. Before proving the Theorem, we show some facts that will be useful.
We are only interested in how C+t changes with births and deaths. Hence let ti
denote the time of the i-th event that is either a death of a point in the cod, or
the proposed birth of a point within distance R of the cod. Let Di = C+ti , so Di

represents a superset of the cod after i such events have occurred. Let #Di denote
the number of points in this set.

For a configuration x , let A(x) denote the Lebesgue measure of the region within
distance R of at least one point in x . In particular, A(Di ) is the measure of the area
of the region within distance R of points in the cod. So A(Di ) is proportional to
the rate at which births occur that increase #Di by 1. Our first lemma limits the
average area that is added when such a birth occurs.

Lemma 1. E[A(Di+1)− A(Di ) | a birth occurs at time ti+1] ≤ R23
√

3/4.
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A1

A2

A3

Figure 1. For circles of radius R, 3πR2
= A1+ 2A2+ 3A3.

Proof. Let w be a proposed birth point. Then in order to add to the clan of
descendants, w must be within distance R of a point v of Di . The area of the new
setup does not increase by πR2, however, since only the region within R of w
and not within R of v can be added area. Because w is conditioned to lie within
distance R of v, the distance between centers is a random variable with density
fr (a)= (2a/R2) ·1(0≤ a ≤ R).1 Hence, the expected area added can be written as

E[A(Di+1)− A(Di ) | birth] ≤
∫ R

0

2a
R2

[
πR2
− 4

∫ R

a/2

√
R2− x2 dx

]
da

= R23
√

3/4.

This is an upper bound on the expected value of A(Di+1)− A(Di ) because w might
be within distance R of other points in Di as well, which would reduce the added
area. �

The last lemma gives an upper bound on the area added when a birth occurs.
The next lemma gives a lower bound on the area removed when a death occurs.

Lemma 2.

E[A(Di+1)− A(Di ) | a death occurs at time ti+1] ≥ [2A(Di )/#Di ] −πR2.

Proof. Let Ak denote the area of the region that is within distance R of exactly k
points of Di . Then (see Figure 1)

πR2#Di = A1+ 2A2+ 3A3+ · · ·+ (#Di )A#Di ,

and A(Di )= A1+ A2+ A3+ · · ·+ A#Di . Therefore

2A(Di )−πR2#Di = A1− A3− 2A4− · · ·− (#Di − 2)A#Di ≤ A1.

If the points in Di are labeled 1, 2, . . . , #Di , then A1 = a1 + a2 + · · · + a#D1 ,
where ak is the area of the region within distance R of point i and no other points.

1We use 1(P(a)) for the indicator function of P(a), defined as 1 if P(a) is true and as 0 otherwise.
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When a death occurs, every point in #Di is equally likely to be chosen to be removed,
so the average area removed is

1
#Di

a1+ · · ·+
1

#Di
a#Di =

1
#Di

A1 ≥
2A(Di )

#Di
−πR2. �

Proof of the Theorem. For a configuration x , let φ(x)= A(x)+ c · #x , where c > 0
is a constant to be chosen later. Note that φ(x) is positive unless x is the empty
configuration, in which case it equals 0. Let τ = inf{i : Di = ∅}. Using a ∧ b
to denote the minimum of a and b, we shall show that φ(Di∧τ )+ (i ∧ τ)δ is a
supermartingale with

δ =
2− λR2(3

√
3/4)

1+ λ
.

The rest of the result then follows as a consequence of the optional sampling theorem
(OST). See Chapter 5 of [Durrett 2010] for a description of supermartingales and
the OST.

When i ≥ τ , φ(Di∧τ )+(i∧τ)δ is a constant, and so trivially is a supermartingale.
When i<τ , φ(Di+1) either grows when a birth occurs in the cod, or shrinks when

a death occurs. First consider how #Di changes. Births occur at rate λA(Di ), and
deaths at rate #Di . Hence the probability that an event that changes #Di is a birth
is A(Di )/(A(Di )+ #Di ), with the rest of the probability going towards deaths. So

E[#Di+1− #Di |φ(Di )] = E
[
E[#Di+1− #Di | Di ]

∣∣ φ(Di )
]

≤ E

[
1(i < τ)

(
λA(Di )

A(Di )+ #Di
−

#Di

A(Di )+ #Di

) ∣∣∣∣ φ(Di )

]
.

(The analysis in [Huber 2012] only considered this term in φ, which is why the
result is weaker than what is given here.)

From our first lemma, a birth increases (on average) the area covered by the cod
by at most R23

√
3/4. Our second lemma provides a lower bound on the average

area removed when a death occurs. Combining these results yields

E[A(Di+1)− A(Di ) |φ(Di )] = E
[
E[A(Di+1)− A(Di ) | Di ]

∣∣ φ(Di )
]

≤E

[
1(i<τ)

(
λA(Di )

A(Di )+ #Di
R2 3
√

3
4
−

#Di

A(Di )+ #Di

(2A(Di )

#Di
−πR2

))∣∣∣∣φ(Di )

]
.

Note that 1(i < τ) is measurable with respect to φ(Di ), so bringing that out front
and adding the inequalities gives

E[φ(Di+1)−φ(Di ) |φ(Di )]

≤ 1(i < τ) E

[
A(Di )(λ((R23

√
3/4)+ c)− 2)+ #Di (πR2

− c)
A(Di )+ #Di

∣∣∣∣ φ(Di )

]
.
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Now c can be set to

c =
πR2
+ 2− λR2(3

√
3/4)

1+ λ
,

so that

E [φ(Di+1)−φ(Di ) | φ(Di )] ≤ 1(i < τ)E
[

A(Di )(−δ)+ #Di (−δ)

A(Di )+ #Di

∣∣∣∣ φ(Di )

]
=−δ1(i < τ).

Hence φ(Di∧τ )+ (i ∧ τ)δ is a supermartingale. �

3. Experimental results

This theoretical result increases the known lower bound for the value of λ where
the clan of descendants is finite, but this is still just a lower bound. Computer
experiments can estimate this critical value of λ more precisely.

For the estimates in this section, the following protocol was used. We began a
clan of descendants superset C+(v) from a single point, and recorded whether the
clan died out or reached a size of 750. This was repeated 200 times, and used to
estimate the probability that the clan dies out for a given value of λ. The results
indicate that somewhere in [0.625, 0.626], the probability begins to drop from 1
down towards 0 (see Figure 2 for how the extinction probability changes with λ).
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Figure 2. Estimate of extinction probability using 200 trials. The
maximum cod size is 750 points.
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This indicates that while the new 0.4503 theoretical result is an improvement
over the old result of 0.3183, there is still work to be done to reach the true
value. Increasing the ceiling size from 750 to 1500 did not alter the results within
experimental error.

In short, by including a term for the area covered by the points in the potential
function, a stronger theoretical lower bound on the artificial phase transition for
dominated coupling from the past applied to the hard core gas model has been
found. This method appears to be very general and should apply to a wide variety
of repulsive processes.
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A nonextendable Diophantine quadruple arising
from a triple of Lucas numbers

A. M. S. Ramasamy and D. Saraswathy

(Communicated by Filip Saidak)

We establish that the only positive integral solutions common to the two Pell’s
equations U 2

− 18V 2
=−119 and Z2

− 29V 2
=−196 are U = 41, V = 10 and

Z = 52.

1. Introduction

Let n be a nonzero integer. We say that two integers α and β have the Diophantine
property D(n) if αβ + n is a prefect square. A set of numbers has the property
D(n) if every pair of distinct elements of the set has this property. A Diophantine
set S with property D(n) is said to be extendable if, for some integer d , with d not
belonging to S, the set S ∪ {d} is also a Diophantine set with property D(n).

Sets consisting of Fibonacci numbers {Fm} and Lucas numbers {Lm} with the
Diophantine property D(n) have attracted the attention of many number theorists
recently. A. Baker and H. Davenport [1969] dealt with the quadruple {1, 3, 8, 120}
with property D(1) in which the first three terms are F2, F4 and F6. They proved
that the set cannot be extended further. V. E. Hoggatt and G. E. Bergum [1977]
proved that the four numbers F2k , F2k+2, F2k+4 and d = 4F2k+1 F2k+2 F2k+3, for
k ≥ 1, have the Diophantine property D(1) and conjectured that no other integer
can replace d here. The result of Baker and Davenport [1969] was an assertion of
the conjecture for k = 1. A. Dujella [1999] proved the Hoggatt-Bergum conjecture
for all positive integral values of k.

Dujella [1995] also considered Diophantine quadruples for squares of Fibonacci
and Lucas numbers. In this paper we consider the Lucas numbers Ln , which are
defined by L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln . The three Lucas numbers L1, L6

and L7 have the property D(7). The aim of this paper is to determine whether this
set {1, 18, 29} is extendable.

MSC2010: primary 11B39; secondary 11D09, 11B37.
Keywords: Lucas numbers, Diophantine property, recurrence relation, simultaneous Pell’s equations,

characteristic number, factorization, Jacobi symbol.
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2. Formulation of the problem

Suppose the natural number x extends the set S = {1, 18, 29}. Then we have

x + 7= V 2, (1)

18x + 7=U 2, (2)

29x + 7= Z2, (3)

for some integers U, V, Z . Solving (1), (2) and (3) is equivalent to solving simulta-
neously the two Pell’s equations

U 2
− 18V 2

=−119, (4)

Z2
− 29V 2

=−196. (5)

We prove that there is essentially a unique solution, so the set S can be extended
by exactly one element:

Theorem. The only positive integral solutions common to the two Pell’s equations
U 2
− 18V 2

=−119 and Z2
− 29V 2

=−196 are U = 41, V = 10 and Z = 52.

Using these values in (1) yields x = 93. Therefore:

Corollary. The triple {1, 18, 29} of Lucas numbers is extendable; the quadruple
{1, 18, 29, 93} has the Diophantine property D(7) and cannot be extended further.

3. Methodology

For the determination of the common solutions of the system of Pell’s equations
3x2
− 2= y2 and 8x2

− 7= z2, Baker and Davenport [1969] gave a method based
on the linear forms of logarithms of algebraic numbers. P. Kanagasabapathy and T.
Ponnudurai [1975] applied quadratic reciprocity to the same system. S. P. Mohanty
and A. M. S. Ramasamy [1985] introduced the concept of the characteristic number
of two simultaneous Pell’s equations and solved the system U 2

− 5V 2
=−4 and

Z2
− 12V 2

= −11. N. Tzanakis [2002] gave a method in for solving a system
of Pell’s equations using elliptic logarithms, and earlier [1993] described various
methods available in the literature for finding out the common solutions of a system
of Pell’s equations. (For a history of numbers with the Diophantine property, one
may refer to [Ramasamy 2007].)

When applying congruence methods to solve a given system of Pell’s equations,
the traditional approach is to work with a modulus of the form 2τ · 3 · 5 (τ ≥ 1) in
the final stage of computation; see, e.g., [Kangasabapathy and Ponnudurai 1975]
and [Mohanty and Ramasamy 1985]. This modulus involves only two specific odd
primes, namely 3 and 5. Because of the inadequacy of such a restricted modulus for
handling several problems, a method involving a general modulus was established
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in [Ramasamy 2006]. The present problem involves computational complexities
and a new method is devised to overcome the computational difficulty by employing
a result in this same reference. Taking D as a fixed natural number, one may refer
to [Nagell 1951, pp. 204–212] for a theory of the general Pell’s equation

U 2
− DV 2

= N . (6)

We follow the conventional notations in the literature. An interesting property of
Equation (6) is that its solutions may be partitioned into a certain number of disjoint
classes. If m and n are two distinct integers, Un+Vn

√
D and Um +Vm

√
D belong

to the same class of solutions of (6) if

Un + Vn
√

D = (u+ v
√

D)(a+ b
√

D)n, (7)

Um + Vm
√

D = (u+ v
√

D)(a+ b
√

D)m, (8)

where a+ b
√

D is the fundamental solution of Pell’s equation

A2
− DB2

= 1 (9)

and u+ v
√

D is the fundamental solution of (6) in the particular class. Otherwise,
Un + Vn

√
D and Um + Vm

√
D belong to different classes of solutions, which are

referred to as nonassociated classes (see [Nagell 1951, pp. 204–205], for example).
Let Un + Vn

√
D (n = 0, 1, 2, . . . ) constitute a class of solutions of (6), so that we

have
Un + Vn

√
D = (u+ v

√
D)(a+ b

√
D)n.

All the solutions of (9) with positive A and B are obtained from the formula

An + Bn
√

D = (a+ b
√

D)n, (10)

where n = 1, 2, 3, . . . . We have the following relations from [Mohanty and Rama-
samy 1985, pp. 204–205]:

Un = u An + DvBn, (11)

Vn = vAn + u Bn, (12)

Un+s = AsUn + DBs Vn, (13)

Vn+s = BsUn + As Vn. (14)

The sequences Un and Vn satisfy the following recurrence relations:

Un+2 = 2aUn+1−Un, (15)

Vn+2 = 2aVn+1− Vn, (16)

Un+2s ≡−Un (mod As), (17)

Un+2s ≡Un (mod Bs), (18)
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Vn+2s ≡−Vn (mod As), (19)

Vn+2s ≡ Vn (mod Bs). (20)

Equations (7) and (10) imply that Un and Vn depend on the values of An and Bn . In
our present problem, we have D = 18 from (4) and therefore we have to consider
the Pell equation

A2
− 18B2

= 1. (21)

Equation (21) has the fundamental solution A1 = 17, B1 = 4. We check that
−67+ 16

√
18, −13+ 4

√
18, −23+ 6

√
18 and −41+ 10

√
18 are the fundamental

solutions of (4). Employing the condition stated for (7), we see that (4) has four
nonassociated classes of solutions. Hence the general solution of (4) is given by

Un +
√

18 Vn = (−67+ 16
√

18)(17+ 4
√

18)n, (22)

Un +
√

18 Vn = (−13+ 4
√

18)(17+ 4
√

18)n, (23)

Un +
√

18 Vn = (−23+ 6
√

18)(17+ 4
√

18)n, (24)

Un +
√

18 Vn = (−41+ 10
√

18)(17+ 4
√

18)n. (25)

The solutions of (21) are provided by

A0 = 1, A1 = 17, An+2 = 34An+1− An,

B0 = 0, B1 = 4, Bn+2 = 34Bn+1− Bn.

4. Solutions of the form (22)

Now, we consider the solutions of (4) given by (22), namely

U0 =−67, U1 = 13, Un+2 = 34Un+1−Un,

V0 = 16, V1 = 4, Vn+2 = 34Vn+1− Vn.

We repeatedly use the relation (19) and reason by cases.

(a) From (19) we have Vn+2s ≡ −Vn (mod As). From this we obtain Vn+2 ≡ −Vn

(mod A1)≡−Vn (mod 17). The sequence Vn (mod 17) is periodic with period 4.
By quadratic reciprocity, we see that n 6≡ 0, 2 (mod 4). So, we are left with
odd values of n only.

(b) We have Vn+4 ≡ −Vn (mod A2) ≡ −Vn (mod 577). The sequence Vn (mod
577) is periodic with period 8. We obtain n 6≡ 1, 3, 5, 7 (mod 8). Hence no
solution of (4) having the form (22) satisfies (5).
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5. Solutions of the form (23)

Next we consider the solutions of (4) of the form (23), namely

U0 =−13, U1 = 67, Un+2 = 34Un+1−Un,

V0 = 4, V1 = 16, Vn+2 = 34Vn+1− Vn.

As in the previous case, one can check that no such solution can satisfy (5).

6. Solutions of the form (24)

Next we consider the solutions of (4) of the form (24), namely

U0 =−23, U1 = 41, Un+2 = 34Un+1−Un,

V0 = 6, V1 = 10, Vn+2 = 34Vn+1− Vn.

(a) We see that Vn+4 ≡−Vn (mod A2) ≡ −Vn (mod 577). The sequence Vn (mod
577) has period 8. By evaluating the Jacobi symbol(

Vn

577

)
,

we check that n 6≡ 2, 3, 6, 7 (mod 8).

(b) We have Vn+6 ≡−Vn (mod A3) ≡ −Vn (mod 1153). The sequence Vn (mod
1153) has period 12. It is ascertained that n 6≡ 8, 9 (mod 12).

(c) We get Vn+12≡ −Vn (mod A6) ≡ −Vn (mod 768398401). On factoring, we get
768398401 = 97·577·13729. Therefore Vn+12 ≡ −Vn (mod 97). The sequence
Vn (mod 97) has period 24. We see that n 6≡ 4, 5,16, 17 (mod 24). Also, we
have Vn+12 ≡ −Vn (mod 13729). The sequence Vn (mod 13729) has period 24.
It is seen that n 6≡ 0, 12 (mod 24).

So far we have excluded all possibilities other than n ≡ 1 (mod 12).

(d) We obtain Vn+16 ≡ −Vn (mod A8) ≡ −Vn (mod 886731088897). We see that
886731088897 = 257·1409·2448769. Therefore Vn+16 ≡ −Vn (mod 257). The
sequence Vn (mod 257) has a period of 32. We check that n 6≡ 5, 9, 13, 21, 25,
29 (mod 32). So we are left with n ≡ 1 (mod 16).

(e) We have Vn+10 ≡ −Vn (mod A5) ≡ −Vn (mod 22619537). We see that
22619537 = 17·241·5521. Therefore Vn+10 ≡ −Vn (mod 241). The sequence
Vn (mod 241) has period 20. We check that n 6≡ 5, 17 (mod 20). Also Vn+10 ≡

−Vn (mod 5521) and the sequence Vn (mod 5521) has period 20. It is seen that
n 6≡ 9 (mod 20).

(f) We get Vn+20 ≡ −Vn (mod A10) ≡ −Vn (mod 1023286908188737). We see
that 1023286908188737 = 577·188801·9393281. Therefore Vn+10 ≡−Vn (mod
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9393281). The sequence Vn (mod 9393281) has a period of 40. We verify that
n 6≡ 13, 33 (mod 40).

The last three steps leave only the possibility n ≡ 1 (mod 20).

(g) We obtain Vn+14 ≡−Vn (mod A7) ≡ −Vn (mod 26102926067). We see that
26102926067 = 17·1535466241. Therefore Vn+14 ≡ −Vn (mod 1535466241).
The sequence Vn (mod 1535466241) has period 28. We check that n 6≡ 5, 13,
17, 21 (mod 28).

(h) We have Vn+28 ≡−Vn(mod A14)≡−Vn (mod 136272550150887306817). We
see that 136272550150887306817 = 577·209441·11276410240481. Therefore
Vn+28 ≡ −Vn (mod 209441). The sequence Vn (mod 209441) has period 56.
We obtain n 6≡ 9, 25 (mod 56).

Steps (d), (g) and (h) leave only the possibility n ≡ 1 (mod 28).

(i) We get Vn+22 ≡−Vn (mod A11)≡−Vn (mod 34761632124320657). We see
that 34761632124320657 = 17·2113·967724510017. So Vn+22 ≡ −Vn (mod
2113). The sequence Vn (mod 2113) has period 44. We have n 6≡ 9, 17, 25, 29
(mod 44). Also Vn+22 ≡ −Vn (mod 967724510017). The sequence Vn (mod
967724510017) has period 44. We get n 6≡ 13, 37, 41 (mod 44).

(j) We have Vn+44 ≡ −Vn (mod A22) ≡ −Vn (mod 74915060494433). We see
that 74915060494433 = 577·129835460129. Therefore Vn+44 ≡ −Vn (mod
129835460129). The sequence Vn (mod 129835460129) has period 88. When
n ≡ 5, 49 (mod 88), we have respectively

29V 2
n − 196≡ 51293333469, 51271172096 (mod 129835460129).

Therefore 29V 2
n − 196 cannot be a square. This implies that n 6≡ 5, 49 (mod

88). Similarly, we see that n 6≡ 21, 33 (mod 88).

(k) We obtain Vn+88 ≡−Vn (mod A44)≡−Vn (mod 2331170689). The sequence
Vn (mod 2331170689) has a period of 176. We check that n 6≡ 65 (mod 176).

Steps (d), (i), (j) and (k) leave only the possibility n ≡ 1 (mod 44). Consequently
a solution requires n≡ 1 (mod 4), n≡ 1 (mod 3), n≡ 1 (mod 5), n≡ 1 (mod 7) and
n≡ 1 (mod 11). By the Chinese remainder theorem, then, n≡ 1 (mod 22

·3·5·7·11).
Now we establish that the relation Z2

= 29V 2
n −196 is impossible for such values

of n. For this purpose, we need two functions, which we now describe.

6.1. The functions a(t) and b(t). Throughout this subsection we keep the notation
of page 259 for the solutions of the Pell equation A2

− DB2
= 1: the fundamental

solution is written a+b
√

D and its n-th power is An+ Bn
√

D. We further consider
the equation U 2

− DV 2
= N , singling out a class of solutions Un + Vn

√
D =

(u+ v
√

D)(a+ b
√

D)n .
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Definition [Mohanty and Ramasamy 1985, p. 205]. For t a natural number, define

a(t)= A2t−1 and b(t)= B2t−1 . (26)

These functions will be used in defining a generalized characteristic number of our
system of simultaneous Pell’s equations. We follow [Ramasamy 2006, pp. 714–715].
We have the equalities

a(t + 1)= 2(a(t))2− 1, (27)

b(t + 1)= 2a(t)b(t). (28)

Next, we have the recursion relations

An = 2a An−1− An−2 (n ≥ 2), (29)

Bn = 2aBn−1− Bn−2 (n ≥ 2), (30)

which are particular cases of (15) and (16). Repeated application of these relations
shows that An can be expressed as a polynomial in a, while Bn can be expressed as
a polynomial in a and b:

An = αn,nan
−αn,n−2an−2

+αn,n−4an−4
− · · · , (31)

Bn = βn,nan−1b−βn,n−2an−3b+βn,n−4an−5b− · · · . (32)

Now we state a key result with reference to a system of two simultaneous Pell’s
equations

U 2
− DV 2

= N , Z2
− gV 2

= h, (33)

where g and h are integers.

Definition and Lemma [Ramasamy 2006, Theorem 13]. Fix odd primes p1 = p,
p2, . . . , ps , not necessarily distinct. Let P = p1 p2 · · · ps . Take τ ≥ 1. Set either

(i) m = 2τ · p and n = i + p · 2t(2µ+ 1), t ≥ 1, or

(ii) m = 2τ · P and n = i + P · 2t(2µ+ 1), t ≥ 1,

where i is a fixed residue (mod m) and µ is a nonnegative integer. In Case (ii), let
F1, F2, . . . be the polynomials contributed by the distinct primes among p1, p2, . . . ,
ps and let G1, G2, . . . be the irreducible polynomials arising due to their various
products, so that F1, F2, . . . and G1, G2, . . . are factors of the polynomial

βP,P D(P−1)/2(b(t + 1))P−1
+βP,P−2 D(P−3)/2(b(t + 1))P−3

+ · · ·+βP,1.

(A prime pi contributes a polynomial of degree pi − 1. The product of two distinct
primes pi , p j yields a factor of degree (pi − 1)(p j − 1), and so on.) Let

φ := gU 2
i − Dh (34)

be the characteristic number of the system (33) (for the given residue i).
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Then, for each t ≥ 1, if at least one of the Jacobi symbols(
φ

(a(t))2+ D(b(t))2

)
and

(
φ

βp,p D(p−1)/2(b(t + 1))p−1+ · · ·+βp,1

)
equals −1 in Case (i), and if at least one of(

φ

(a(t))2+ D(b(t))2

)
,

(
φ

F1

)
,

(
φ

F2

)
, . . . ,

(
φ

G1

)
,

(
φ

G2

)
, . . .

equals −1 in Case (ii), the system has no solution with V = Vn for n ≡ i (mod m),
except possibly V = Vi .

6.2. Application of the characteristic number. The modulus in the present case
consists of four distinct odd primes: 3, 5, 7 and 11. The characteristic number
gU 2

i − Dh of the system (4), (5) for i = 1 is 52277; see (34). The sequence a(t)
(mod 52277) is periodic with period 265 and b(t) (mod 52277) is periodic with
period 530. Thus when we deal with the characteristic number of the system,
we encounter computational complexities posed by the large periods of the two
sequences. To overcome this difficulty, instead of working with the characteristic
number directly, we consider the prime factors of the characteristic number, which
are 61 and 857. The sequences a(t) (mod 61) and b(t) (mod 61) are periodic with
period 5 — see Table 1 — whereas a(t) (mod 857) is periodic with period 53 and
b(t) (mod 857) is periodic with period 106; moreover,

b(t + 53)≡−b(t) (mod 857). (35)

Thus Table 2 lists only the values of a and b (mod 857) with argument up to 52.
For residue calculations with respect to the factors 61 and 857, we require the values
of a(t + 1) and powers of D(b(t + 1))2 modulo 61 and 857.

We take P = 3 · 5 · 7 · 11 and m = 2τ · P with τ ≥ 1. In the notation of Case (ii)
of the Definition and Lemma, we have

Z2
≡ 1185 (mod a(t + 1) · F1 · · · F4 ·G1 · · ·G11) (36)

where the polynomials F1, . . . ,G11 are illustrated in Table 3.

t−1 a(t) b(t)

0 17 4
1 28 14
2 42 52
3 50 37
4 58 40

Table 1. Values of a(t) and b(t) (mod 61).
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t−1 a(t) b(t) t−1 a(t) b(t) t−1 a(t) b(t) t−1 a(t) b(t) t−1 a(t) b(t)

0 17 4 11 652 391 22 563 369 33 454 825 44 72 611
1 577 136 12 63 806 23 614 706 34 14 82 45 83 570
2 825 113 13 224 430 24 688 541 35 391 582 46 65 350
3 333 481 14 82 672 25 559 540 36 669 57 47 736 79
4 671 685 15 592 512 26 208 392 37 413 850 48 143 593
5 631 566 16 758 309 27 827 242 38 51 217 49 618 769
6 168 411 17 747 522 28 85 49 39 59 709 50 260 71
7 742 119 18 203 855 29 737 617 40 105 533 51 650 69
8 739 54 19 145 45 30 518 181 41 624 520 52 854 572
9 423 111 20 56 195 31 165 690 42 595 211

10 488 493 21 272 415 32 458 595 43 167 846

Table 2. Values of a(t) and b(t) (mod 857). For the boldface, see Note on p. 266.

F1 = 4 b2
+1

F2 = 16 b4
+12 b2

+1

F3 = 64 b6
+80 b4

+24 b2
+1

F4 = 1024 b10
+2304 b8

+1792 b6
+560 b4

+60 b2
+1

G1 = 256 b8
+576 b6

+416 b4
+96 b2

+1

G2 = 4096 b12
+13312 b10

+16384 b8
+9344 b6

+2368 b4
+192 b2

+1

G3 = 1048576 b20
+5505024 b18

+12320768 b16
+15302656 b14

+11493376 b12

+ 5326848 b10
+1487104 b8

+232256 b6
+17440 b4

+480 b2
+1

G4 = 16777216 b24
+104857600 b22

+287309824 b20
+453246976 b18

+454557696 b16

+ 301907968 b14
+134123520 b12

+39298048 b10
+7287808 b8

+785792 b6

+ 40896 b4
+576 b2

+1

Table 3. Expressions for some of the polynomials in (36). We
use the shorthand b =

√
D b(t+1). The polynomials G5, . . . ,G11

have degrees 40, 60, 48, 80, 120, 240, 480, respectively.

We still have to determine an appropriate value of t . For the application of the
quadratic reciprocity law, we require the values of the polynomials modulo 4. By
induction, we obtain the following results for the present problem:

a(t + 1)≡ 1 (mod 4) for all t ≥ 1, (37)

b(t + 1)≡ 0 (mod 4) for all t ≥ 1. (38)

We see that, for all t ≥ 1 and i = 1, 2, 3, 4,

Fi ,Gi ≡ 1 (mod 4). (39)
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Considering the values of Fi and Gi modulo 857, it follows from relation (35)
that Fi at t + 53 is the same as at t , and Gi at t + 53 is the same as at t , for all
positive integers t .

6.3. Computations involved in the proof of the Theorem. With the background
just provided, we are now in a position to employ the characteristic number of
the present system consisting of (4) and (5). For the remaining part of our work,
stagewise computation becomes necessary. The details of calculations in 9 stages
required for our problem are presented in the sequel.

The characteristic number of the generalized version discussed in Section 6.1
offers several polynomials for consideration to solve a given problem, as seen from
(36). First, we employ the factor (a(t))2+D(b(t))2 provided by the Definition and
Lemma to rule out as many possible values of t as we can.

1. Working with a(t + 1). We consider the Jacobi symbol(
52277

a(t + 1)

)
.

Using the quadratic reciprocity law and the relation (37), we evaluate this to(
61

a(t + 1)

)
·

(
857

a(t + 1)

)
=

(
a(t + 1)

61

)
·

(
a(t + 1)

857

)
.

From Table 1, when t ≡ 2, 4 (mod 5), we have a(t + 1) ≡ 42, 58 (mod 61),
respectively; these are quadratic residues of 61. When t ≡ 0, 1, 3 (mod 5), we have,
respectively, a(t + 1)≡ 17, 28, 50 (mod 61); all are quadratic nonresidues of 61.

Note. We have indicated with an asterisk in Table 2 the values of a(t) that are
quadratic nonresidues of 857.

Using the fact that the product of a quadratic residue of 52277 and a nonresidue
of 52277 is a nonresidue, we determine the values of t for which a(t + 1) is a
quadratic nonresidue of 52277. They are 1, 4, 6, 7, 9, 10, 12, 19, 22, 25, 26, 28, 30,
32, 33, 34, 38, 39, 42, 43, 45, 49, 51, 52, 55, 57, 62, 63, 64, 69, 70, 72, 74, 78, 80,
81, 83, 84, 86, 87, 89, 90, 91, 92, 94, 96, 98, 99, 100, 102, 108, 109, 114, 116, 117,
119, 120, 122, 123, 124, 127, 129, 130, 131, 133, 135, 136, 137, 142, 143, 147, 150,
151, 152, 153, 154, 159, 160, 161, 162, 164, 165, 167, 172, 173, 174, 176, 177, 179,
182, 183, 185, 186, 188, 194, 196, 199, 203, 206, 207, 209, 210, 212, 213, 217, 218,
219, 224, 226, 227, 232, 234, 236, 238, 240, 241, 244, 245, 247, 250, 252, 254,
255, 256, 262, 263, 264 (mod 265). It follows that the relation Z2

= 29V 2
n − 196

is impossible for these values of t . Therefore these values of t have to be excluded.
In the sequel we consider the remaining values of t (mod 265).
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t F1 F2 F3 t F1 F2 F3 t F1 F2 F3 t F1 F2 F3 t F1 F2 F3

0 296 497 766 11 125 323 294 22 370 149 61 33 27 755 545 44 165 822 24
1 792 731 416 12 447 574 462 23 518 600 648 34 781 557 294 45 129 486 490
2 665 677 292 13 163 164 166 24 260 156 177 35 480 346 545 46 614 529 775
3 484 778 623 14 326 333 583 25 415 382 809 36 825 134 163 47 285 94 32
4 404 789 337 15 658 836 72 26 796 231 770 37 101 17 776 48 378 142 306
5 335 292 79 16 636 627 258 27 169 448 575 38 117 93 573 49 519 781 240
6 626 852 524 17 405 742 40 28 616 420 567 39 209 182 303 50 442 409 775
7 620 226 35 18 289 680 658 29 178 152 463 40 390 800 462 51 850 41 618
8 845 131 285 19 111 433 393 30 329 587 556 41 332 2 334 52 33 264 373
9 118 329 468 20 543 583 376 31 58 850 386 42 333 668 816

10 446 537 490 21 268 103 15 32 50 835 542 43 143 23 598

Table 4. Values of F1, F2 and F3 (mod 857) as functions of t (mod
53). Quadratic nonresidues of 857 are in bold.

2. Working with F1. Now we consider(
52277

F1

)
=

(
61
F1

)
·

(
857
F1

)
=

(
F1

61

)
·

(
F1

857

)
,

in view of (39). When t≡ 1 (mod 5), we have F1≡22 (mod 61)which is a quadratic
residue of 61. When t ≡ 0, 2, 3, 4 (mod 5), we have F1≡ 55, 38, 54, 33 (mod 61);
all are quadratic nonresidues of 61. As for the modulus 857, Table 4 shows the
values of F1, with the quadratic nonresidues in bold.

Consequently, we see that the relation Z2
= 29V 2

n − 196 is not true when t ≡ 3,
5, 11, 15, 16, 18, 21, 23, 27, 35, 37, 40, 41, 46, 48, 58, 61, 66, 68, 75, 79, 85, 88,
93, 105, 106, 110, 125, 126, 128, 132, 134, 138, 144, 145, 155, 156, 158, 163, 166,
169, 171, 178, 187, 189, 190, 195, 197, 198, 201, 208, 215, 221, 222, 226, 230,
235, 239, 242, 243, 246, 248, 249, 260 (mod 265).

3. Working with F2. Next we have(
52277

F2

)
=

(
61
F2

)
·

(
857
F2

)
=

(
F2

61

)
·

(
F2

857

)
.

When t≡ 3 (mod 61), we have F2≡ 41 (mod 61), which is a quadratic residue of 61.
When t ≡ 0, 1, 2, 4 (mod 5), we have, respectively, F2 ≡ 29, 17, 17, 23 (mod 61),
all of which are quadratic nonresidues of 61. Further, Table 4 shows the values of
F2 modulo 857, with the quadratic nonresidues in bold.

Consequently, we see that the relation Z2
= 29V 2

n − 196 does not hold when
t ≡ 8, 44, 47, 53, 56, 71, 73, 95, 97, 101, 103, 104, 111, 113, 115, 118, 121, 139,
146, 149, 157, 170, 180, 181, 192, 193, 200, 202, 205, 211, 225, 228, 231, 259
(mod 265).
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4. Working with F3. Next we have(
52277

F3

)
=

(
61
F3

)
·

(
857
F3

)
=

(
F3

61

)
·

(
F3

857

)
.

When t ≡ 1, 2, 3 (mod 5), we have respectively F3 ≡ 3, 15, 5 (mod 61), all of
which are quadratic residues of 61. When t ≡ 0, 4 (mod 5), we have respectively
F3 ≡ 44, 17 (mod 61) both of which are quadratic nonresidues of 61. Further,
Table 4 shows the values of F3 modulo 857, with the quadratic nonresidues in bold.

As a result, the relation Z2
= 29V 2

n − 196 does not hold when t ≡ 17, 24, 36,
50, 54, 60, 67, 82, 112, 141, 214, 216, 223, 237, 251, 257 (mod 265).

5. Working with F4. Next we have(
52277

F4

)
=

(
61
F4

)
·

(
857
F4

)
=

(
F4

61

)
·

(
F4

857

)
.

When t ≡ 0, 1, 4 (mod 5), we have respectively F4 ≡ 42, 34, 4 (mod 61), all of
which are quadratic residues of 61. When t ≡ 2, 3 (mod 5), we have respectively
F4 ≡ 55, 55 (mod 61). It is checked that 55 is a quadratic nonresidue of 61. The
relevant values modulo 857 are as follows (bold indicates quadratic nonresidues):

t (mod 53) 2 9 13 14 42 16 23 32
F4 (mod 857) 407 827 762 792 619 415 437 557

Consequently, the relation Z2
= 29V 2

n − 196 does not hold when t ≡ 2, 13, 14, 76,
148, 168, 175, 191 (mod 265).

6. Working with G1. Next we have(
52277

G1

)
=

(
61
G1

)
·

(
857
G1

)
=

(
G1

61

)
·

(
G1

857

)
,

because of (39). When t ≡ 3 (mod 5), we have G1 ≡ 46 (mod 61), which is
a quadratic residue of 61. When t ≡ 0, 1, 2, 4 (mod 5), we have respectively
G1 ≡ 55, 51, 26, 28 (mod 61), all of which are quadratic nonresidues of 61.
The relevant values modulo 857 are as follows (again, bold indicates quadratic
nonresidues):

t (mod 53) 0 6 12 17 20 21 46
G1 (mod 857) 774 737 57 487 785 367 210

As a result, it is seen that the relation Z2
= 29V 2

n − 196 does not hold when
t ≡ 0, 20, 59, 65, 229, 233, 258 (mod 265).
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7. Working with G2. Next we have(
52277

G2

)
=

(
61
G2

)
·

(
857
G2

)
=

(
G2

61

)
·

(
G2

857

)
.

When t ≡ 1, 2, 4 (mod 5), we have respectively G2 ≡ 60, 34, 49 (mod 61), all of
which are quadratic residues of 61. When t ≡ 0, 3 (mod 5), we have respectively
G2 ≡ 23, 6 (mod 61) both of which are quadratic nonresidues of 61.

When t≡ 8, 34, 41 (mod 53), we have respectively G2≡ 72, 177, 439 (mod 857),
all of which are quadratic residues of 857. When t ≡ 25, 29, 31, 45 (mod 53), we
have respectively G2 ≡ 840, 718, 507, 781 (mod 857), all of which are quadratic
nonresidues of 857. As a consequence, the relation Z2

= 29V 2
n −196 does not hold

when t ≡ 29, 31, 140, 184, 204, 220, 253 (mod 265).

8. Working with G3. Next we have(
52277

G3

)
=

(
61
G3

)
·

(
857
G3

)
=

(
G3

61

)
·

(
G3

857

)
.

When t ≡ 4 (mod 5), we have G3≡ 34 (mod 61), which is a quadratic residue of 61.
When t ≡ 0, 1, 2, 3 (mod 5), we have respectively G3 ≡ 59, 2, 50, 21 (mod 61),
all of which are quadratic nonresidues of 61. When t ≡ 49 (mod 53), we have
G3 ≡ 453 (mod 857) which is a quadratic residue of 857. Hence the relation
Z2
= 29V 2

n − 196 does not hold when t ≡ 261 (mod 265).

9. Working with G4. Next we have(
52277

G4

)
=

(
61
G4

)
·

(
857
G4

)
=

(
G4

61

)
·

(
G4

857

)
.

When t ≡ 0, 2 (mod 5), we have respectively G4 ≡ 14, 16 (mod 61), both of which
are quadratic residues of 61. Modulo 61, G4 attains the same value of 31 at t ≡ 1
(mod 5) and 3 (mod 5). When t ≡ 4 (mod 5), we have G4 ≡ 38 (mod 61). It is
seen that 31 and 38 are quadratic nonresidues of 61. When t ≡ 1, 24 (mod 53),
we have, respectively, G4 ≡ 612, 851 (mod 857) both of which are quadratic
nonresidues of 857. Therefore it is seen that the relation Z2

= 29V 2
n − 196 does

not hold when t ≡ 77, 107 (mod 265).

Conclusion of the argument for solutions of the form (24). As mentioned, the
characteristic number (in the generalized version given in [Ramasamy 2006] and
explained earlier in this section) places several polynomials at our disposal for
solving the problem. Each polynomial can potentially exclude several values of t .
Once all values of t are excluded, we need not examine the remaining polynomials.
In the present case we used the polynomials a(t+1), F1 through F4 and G1 through
G4 appearing in (36), and we exhausted, in the 9 steps above, all possible values of
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t ; that is, we showed that the relation Z2
= 29V 2

n −196 does not hold for any value
of t (mod 265). Thus we need not consider the values attained by the polynomials
G5 through G11 modulo 52277. This exemplifies the usefulness of the generalized
characteristic number.

The conclusion is that the system of Pell’s equations U 2
− 18V 2

= −119,
Z2
− 29V 2

=−196 has no solution Vn of the form (24) except possibly for n = 1.
When n = 1 we obtain a common solution with U =±41, V =±10 and Z =±52.

7. Solutions of the form (25)

We finally turn to the possible solutions of the form (25):

U0 =−41, U1 = 23, Un+2 = 34Un+1−Un,

V0 = 10, V1 = 6, Vn+2 = 34Vn+1− Vn.

A case-by-case calculation as in the previous section shows that the possibilities
are n ≡ 0 (mod 4), n ≡ 0 (mod 3), n ≡ 0 (mod 5), n ≡ 0 (mod 7) and n ≡ 0 (mod
11). We establish that the relation Z2

= 29V 2
n − 196 is impossible in these cases as

before. The characteristic number gU 2
i − Dh of the system (4) and (5) for i = 0

is again 52277. Since this is the same as for the previous case, the results for the
solutions in Section 6 are applicable here also.

We have now taken care of all four cases (22)–(25). Putting together the conclu-
sions of the last four sections, we see that the proof of the Theorem is complete.
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