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In this paper we modify the classical Lotka–Volterra differential equations to
analyze competition between two aquatic plant species, a submersed plant and
a free-floating plant. We formulate and analyze a system of three differential
equations that control the dynamics of the free-floating plant biomass and both
aboveground and belowground biomass for the submersed plant. We investigate
our model to understand how plant competition is affected by grass carp herbivory
on the submersed plant’s aboveground biomass. We analyze both a reduced model,
for which the submersed plant is assumed to have constant belowground biomass,
and the full model. In each case, we compute stability of equilibria and derive a
minimal grass carp stocking rate such that the free-floating plant may dominate
the submersed plant. For the reduced model we show that the rate at which grass
carp are stocked may exhibit a hysteresis effect.

1. Introduction

Hydrilla verticillata, commonly known as hydrilla, is one of the most invasive
aquatic plants in the United States. Hydrilla has a rapid growth rate (as much as
1 inch per day), is typically found in depths up of 15–20 feet, and can grow to be
25 feet long in springs, lakes, marshes, ditches, rivers and tidal zones [Gettys et al.
2009]. Hydrilla is easily spread to a new body of water by just one leaf fragment
attached to a boat. Millions of dollars a year are spent on efforts to control and
eliminate hydrilla, including herbivory by grass carp and insects (e.g., leaf-mining
flies), mechanical harvesters, herbicides, and competition with native aquatic plants
[Gettys et al. 2009; Hanlon et al. 2000]. Thus understanding the biology and control
of hydrilla is a problem of great significance.

Hydrilla is a submersed plant which is attached to the ground with an extensive
root system, but may grow large enough so that its branches form dense mats
of plant matter on the surface of the water [Gettys et al. 2009]. A free-floating
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plant floats on the surface of the water and has roots that collect nutrients from
the water and hang unanchored to the ground. An example of a free-floating
plant is Eichhornia crassipes, commonly known as water hyacinth. Although
water hyacinth is a nonnative, invasive species that must be carefully controlled,
it has some desirable qualities. For example, it can be used to purify wastewater
[Wolverton and McDonald 1979] and is often used as an ornamental plant for ponds
and aquariums [Kay and Hoyle 2001].

When submersed plants and floating plants such as hydrilla and water hyacinth
coexist they compete for light, space, and nutrients. The classic mathematical
model of two species that compete for a common resource is the Lotka–Volterra
differential equations [Edelstein-Keshet 2005; Zeeman 1995; Wangersky 1978]. In
this paper we use the Lotka–Volterra competition model to formulate and analyze
competition between a submersed plant and a free-floating plant.

Grass carp (or white amur) are fish that are native to rivers in Eastern Asia and
may live up to 25 years and grow as much as 10 pounds per year [Gettys et al. 2009].
Large grass carp consume up to 30% of their body weight each day. One of the
main biocontrol agents of hydrilla is the sterilized, triploid grass carp. In fact, the
triploid grass carp will eat many types of aquatic weeds, but prefer submersed plants
such as hydrilla when available [Cuda et al. 2008]. One study [Pine and Anderson
1991] found that given a choice of 12 different types of plants, the water hyacinth
was the triploid grass carp’s least preferred plant while the top three preferred plants
were American pondweed, hydrilla, and elodea, each of which is a submersed plant
species.

The rate at which grass carp should be stocked is an active area of research in
aquatic plant management [Hanlon et al. 2000]. This rate depends on the feeding
rate of the fish and the growth rate and quality of the plants, both of which are
influenced by many factors [Cuda et al. 2008; Sutton et al. 2012]. Too few grass
carp may be ineffective, whereas too many may completely eliminate all submersed
aquatic plants. One study found that 25 to 30 grass carp per hectare of vegetation
was necessary to control the undesirable vegetation while maintaining some amount
of desirable vegetation [Hanlon et al. 2000]. The stocking rate of grass carp is
often recommended based on the percentage of area that has been infested with the
submersed plant [Hanlon et al. 2000; Sutton et al. 2012]. In our model we account
for herbivory of the submersed plant by grass carp using a single parameter to
control the stocking rate of grass carp. We use our model to determine the minimal
stocking rate that may result in significant reduction or elimination of submersed
plant biomass. The minimal stocking rate is expressed in terms of the relevant
parameters that describe the ecosystem.

It is known that plant competition is influenced by herbivory [Van et al. 1998;
Center et al. 2005; Tipping et al. 2009]. Our model shows that herbivory of
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submersed plant aboveground biomass by grass carp may allow a free-floating
plant to out-compete a submersed plant and proliferate. This is an example of
the principle of competitive exclusion [Zeeman 1995; Wangersky 1978]. We show
that, at a critical grass carp stocking rate, a stable ecosystem with large amounts
of submersed plant biomass and no free-floating plant biomass may shift to a
stable ecosystem with large amounts of free-floating plant biomass and small or no
submersed plant biomass. This sudden shift in the stability of an ecosystem has been
observed in lakes, coral reefs, woodlands, deserts, and oceans [Scheffer et al. 2001].

Mathematical models of competing aquatic plants and herbivore-plant ecosystems
can be found throughout the literature. A model of free-floating and submersed plant
dynamics is presented in [Scheffer et al. 2003], but aboveground and belowground
biomass for the submersed plant is not distinguished. Competing aquatic plants are
modeled in [Shukla 1998] when an undesirable plant is subjected to removal in
order to promote the growth of the desirable plant. Experimental data is used in both
of these papers to support the models, but neither use Lotka–Volterra dynamics and
neither consider herbivory as a plant management strategy. Mathematical models of
herbivore-plant dynamics are presented elsewhere, though. For example, in [Wilson
et al. 2001] a model for the biocontrol of water hyacinth by insect (weevil) herbivory
is considered. In [Gurney and Nisbet 1998], a two-variable Lotka–Volterra predator-
prey food chain model is considered for which the herbivore is a predator and the
plant is prey. Neither of these two publications model plant competition.

In this paper, we use existing models to formulate differential equations that
control the dynamics of aboveground and belowground submersed plant biomass and
free-floating plant biomass. We include Lotka–Volterra type competition between
the free-floating plant and the aboveground submersed plant and a parameter that
controls the mortality of the submersed plant aboveground biomass due to grass
carp herbivory. Our paper is outlined as follows. In Section 2 we present the model
and nondimensionalize the equations. In Section 2.1 we assume the submersed
plant has a constant belowground biomass and analyze a reduced (two-equation)
model. In Section 2.2, we consider the full model that incorporates the dynamics
for both belowground and aboveground biomass of the submersed plant. In each
section we present theoretical results that show how the equilibria and stability of
equilibria depend on grass carp stocking rate. In the conclusion, the results are
summarized and weaknesses of the model are discussed.

2. The model equations

The model equations are

d B
dt
= s A− cB

(
1−

A
m A

)
− dB B, (2-1)
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d A
dt
= (cB+ rA A)

(
1−

A
m A

)
−α1 AL − dA A, (2-2)

d L
dt
= rL L

(
1−

L
mL

)
−α2 AL . (2-3)

All of the parameters s, c, dB , rA, m A, α1, dA, rL , mL , α2 are nonnegative.
Here A and B are (respectively) the aboveground and belowground biomass of
the submersed plant species and L is the free-floating species biomass. In order
to ensure biologically feasible solutions, initial data must be nonnegative. The
growth dynamics of the submersed plant in the absence of L are given by the
coupled equations (2-1) and (2-2), and for dA = 0, the model is the same as the
one in [Turchin 2003; Turchin and Batzli 2001]. The aboveground biomass growth
equation (2-2) incorporates logistic growth in the absence of B and exponential
growth (regrowth) from energy supplied by the belowground biomass in the absence
of A. The parameter dA in (2-2) controls the mortality of aboveground biomass of
the submersed plant. The growth dynamics of the floating plant, given by (2-3), are
logistic in the absence of A. Logistic growth has been experimentally verified as a
good growth model for water hyacinth [Wilson et al. 2001; 2005]. Competition is
modeled as the standard Lotka–Volterra type described in [Edelstein-Keshet 2005]
with interaction terms proportional to AL . The competition coefficients α1 and α2

control the ability of each plant species to compete with the other and measure how
efficient one species is compared to the other at capturing the shared resources.

The parameter dA has dimensions (time)−1 and represents the number of grass
carp that are stocked per unit time. As discussed in the introduction, grass carp
prefer submersed plants when available and triploid grass carp are sterilized before
stocking [Hanlon et al. 2000; Cuda et al. 2008; Pine and Anderson 1991]. Fish-
eating predators such as otters and other fish may reduce the number of grass carp,
but large grass carp are not affected by predation [Gettys et al. 2009] and grass carp
may live 20 or more years [Cuda et al. 2008]. Thus our model assumes that grass
carp do not feed on the free-floating plant, there is a limited timespan for biocontrol
with large grass carp, and the natality and mortality of grass carp may be ignored.

In order to reduce the number of parameters and understand the important
relationships between parameters, we nondimensionalize the model equations by
introducing the dimensionless variables and parameters

x1 = dB B(sm A)
−1, y1 = Am−1

A , x2 = Lm−1
L , τ = rL t, (2-4)

ρ= cs(rLdB)
−1, δ2= dBr−1

L , φ= cr−1
L , ψ = rAr−1

L , δ1= dAr−1
L , (2-5)

θ1 = α1mLr−1
L , θ2 = α2m Ar−1

L . (2-6)

After substituting (2-4)–(2-6) into (2-1)–(2-3) we get the system
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dx1/dτ = δ2(y1− x1)−φx1(1− y1), (2-7)

dy1/dτ = (ρx1+ψy1)(1− y1)− θ1 y1x2− δ1 y1, (2-8)

dx2/dτ = x2(1− x2)− θ2 y1x2. (2-9)

Here the variable x1 controls the (nondimensionalized) submerged plant below-
ground biomass dynamics, y1 controls the (nondimensionalized) submerged plant
aboveground biomass dynamics, and x2 controls the (nondimensionalized) floating
plant biomass dynamics.

2.1. Constant belowground biomass. In this section we assume that B is constant
and analyze the regrowth model for the submersed plant in the absence of logistic
growth as in [Gurney and Nisbet 1998]. Here we replace ρx1 with a constant β to
get

dy1/dτ = β(1+ψβ−1 y1)(1− y1)− θ1 y1x2− δ1 y1,

for (2-8). We will make the additional assumption that there is a significant amount
of belowground biomass and ψ � β. Then these simplifications with (2-8), (2-9)
give the system

y′1 = β(1− y1)− θ1 y1x2− δy1, x ′2 = x2(1− x2)− θ2 y1x2, (2-10)

where we have replaced δ1 with δ, and the prime denotes differentiation with respect
to the dimensionless time variable τ . The equilibria are constant solutions and are
found by solving the algebraic system that results by setting the right sides of each
equation in (2-10) to zero. The long-term behavior of a dynamical system may be
determined by equilibria and initial conditions. In general, initial conditions that
are close enough to a stable equilibrium will yield solutions that evolve in time to
these equilibria. In the remainder of this paper, we perform standard equilibrium
and local stability analysis of nonlinear differential equations [Edelstein-Keshet
2005; Strogatz 2001].

For the equilibrium computations, it will be convenient to define the quantities

γ = 1+ δβ−1, α = θ1β
−1. (2-11)

We first consider a graphical analysis of the equilibria in the y1-x2 phase plane. The
nullclines are curves along which either y′1 = 0 or x ′2 = 0. These curves are

x2 = (1− γ y1)/(αy1), x2 = 0, x2 = 1− θ2 y1, (2-12)

where the first equation is the y1-nullcline (when y′1 = 0) and the second two
equations are the x2-nullclines (when x ′2 = 0). When the y1-nullcline intersects
either of the x2-nullclines for y1 ≥ 0 and x2 ≥ 0, the point of intersection is an
equilibrium. Substituting nonnegative values of y1 and x2 into the right side of
(2-10) results in a vector field that describes the flow of (2-10) in the phase plane
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(that is, the direction of increase or decrease of either y1 or x2). The flow along the
y1-nullcline is vertical and the flow along the x2-nullcline is horizontal.

Figure 1 depicts example phase-plane plots. Each phase plane depends on
parameter values. As can be seen from these plots, either one, two, or three
equilibria exist. The free-floating plant extinction equilibrium along the x2 = 0-
nullcline when y1 = γ

−1 exists for all parameter values. There may also be one or
two equilibria where x2 > 0 and y1 > 0. These are the coexistence equilibria. Note
that there are no submersed plant extinction equilibria when y1 = 0. This is clear
as we assumed that the belowground biomass is constant and positive.

Motivated by the phase-plane plots we will analyze the equilibria algebraically.
We denote the equilibria as (ŷ1, x̂2). Substituting x̂2 = 0 from (2-12) into the first
equation from (2-12) yields the free-floating plant extinction equilibrium

(ŷ1, 0)= (γ−1, 0). (2-13)

Substituting x̂2 = 1− θ2 ŷ1 from (2-12) into the first equation from (2-12) gives a
quadratic equation in x̂2 that yields

x̂±2 = (2θ1)
−1(δ̂− δ±√(δ̂− δ)2+ 4θ1(δ− δ0)

)
, ŷ±1 = θ

−1
2 (1− x̂2), (2-14)

where
δ̂ = θ1−β and δ0 = β(θ2− 1). (2-15)

After substituting (2-15) into the radicand in (2-14), simple algebra yields

(δ̂− δ)2+ 4θ1(δ− δ0)= (δ+ θ1+β)
2
− 4θ1θ2β,

which is zero for two values of δ, one of which is negative as θ1, θ2, and β are
positive. The radicand in (2-14) may have a positive zero for δ = δc, in which case
we get that x̂c

2 = x̂+2 = x̂−2 , where

δc = 2
√
θ1θ2β − θ1−β, x̂c

2 = (2θ1)
−1(δ̂− δc). (2-16)

The constants δ̂, δ0, and δc will be used to characterize the stability and existence
of equilibria for (2-10). We consider all parameters except δ fixed and positive and
δ ≥ 0. First, the floating plant equilibria x̂±2 may be nonnegative and real-valued if
and only if δ ≥ δc and x̂+2 = x̂−2 when δ = δc and the radicand is zero. If δ > δc,
x̂+2 increases with δ while x̂−2 decreases with δ. It is easy to show that δc ≤ δ0. If
δ = δ0, then either x̂+2 or x̂−2 equals zero depending on the sign of δ̂− δc.

The dependence of x̂±2 on δ may be plotted in the δ-x̂2 plane with all other
parameters fixed. The resulting curve has the general shape of a parabola which
opens to the right. Figure 2 depicts such curves for δ0 > 0 and two cases where
δc < 0, x̂c

2 < 0 and δc > 0, x̂c
2 > 0.
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Figure 1. Plots of the y1-x2 phase plane for (2-10). The y1-
nullcline (curve) and x2-nullclines (lines) are from (2-12). The
arrows indicate the direction of flow of (2-10) along each null-
cline. Equilibria are depicted at the dots where the y1-nullcline
intersects either of the x2-nullclines. Each phase plane shows the
free-floating plant extinction equilibrium at (γ−1, 0). There are no
other equilibria in the top-left. The phase plane in the top-right
shows a coexistence equilibrium for which the nonzero x2-nullcline
is tangential to the y1-nullcline. The phase planes in the bottom
show two (left) and one (right) coexistence equilibria where the
x2-nullcline intersects the y1-nullcline.

The phase planes plotted in Figure 1 can be explained (qualitatively) by observing
the equilibrium curve depicted in the right panel of Figure 2. First, recall that
γ = 1+ β−1δ defines the free-floating plant extinction equilibrium. Define the
functions f1(y1)= (1− γ y1)/(αy1) and f2(y1)= 1− θ2 y1 so that the y1-nullcline
is x2 = f1(y1) and the (nonzero) x2-nullcline is x2 = f2(y1) from (2-12). If
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Figure 2. Plots of x̂±2 as a function of δ from (2-14). The knee
of the curve is (δc, x̂c

2) from (2-16). For the curve on the left,
δ̂ < δc < 0, and for the curve on the right, 0< δc < δ̂. The top half
of each curve (x̂2 > x̂c

2) is x̂2 = x̂+2 while the bottom half of each
curve (x̂2 < x̂c

2) is x̂2 = x̂−2 .

0 ≤ δ < δc < δ̂, then f1(y1) does not intersect f2(y1) and the free-floating plant
extinction equilibrium is unique. In this case, 0< δ < δc so that δ is below the knee
of the curve in the right panel of Figure 2.

If δ is then increased until δ = δc, then f2(y1) is tangent to f1(y1) and f1(y1)=

f2(y1) for exactly one value of y1. This is displayed in the phase plane in the
top-right in Figure 1 and corresponds to the knee of the curve in the right panel
of Figure 2 where δ = δc and x̂−2 = x̂+2 = x̂c

2 . As δ is increased further, both x̂+2
and x̂−2 are real and positive with x̂−2 < x̂+2 . This corresponds to the phase plane in
the bottom-left in Figure 1 and the interval δc <δ < δ0 in the right panel of Figure 2.
As δ continues to increase until δ > δ0 and x̂−2 < 0, there is a single feasible positive
equilibrium given by x̂+2 . This corresponds to the phase plane in the bottom-right
in Figure 1 and the interval δ > δ0 in the right panel of Figure 2.

In order to analyze local stability of the equilibria we compute the linearized
stability (Jacobian) matrix for (2-10) which is given by

J (ŷ1, x̂2)=

(
−β − θ1 x̂2− δ −θ1 ŷ1

−θ2 x̂2 1− θ2 ŷ1− 2x̂2

)
. (2-17)

The eigenvalues λ of this matrix satisfy the characteristic equation

λ2
− tr(J (ŷ1, x̂2))λ+ det(J (ŷ1, x̂2))= 0.

Standard theory [Edelstein-Keshet 2005; Strogatz 2001] is that a necessary and
sufficient condition for stability of (ŷ1, x̂2) is that the eigenvalues of the Jacobian
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have negative real parts or

tr(J (ŷ1, x̂2)) < 0 and det(J (ŷ1, x̂2)) > 0. (2-18)

Substituting the free-floating plant extinction equilibrium ŷ1 = γ
−1 and x̂2 = 0 into

(2-17) gives

tr(J (γ−1, 0))= 1−β − δ− θ2γ
−1, (2-19)

det(J (γ−1, 0))=−(1− θ2γ
−1)(β + δ). (2-20)

Comparing (2-18) and (2-19), (2-20) shows that (γ−1, 0) is stable if and only if
θ2 > γ which is equivalent to δ < δ0 from (2-15).

We next consider stability of the equilibria (ŷ+1 , x̂+2 ) and (ŷ−1 , x̂−2 ) where we
assume x̂−2 > 0. Substitute x̂2 = 1− θ2 ŷ1 and (2-17) reduces to

J (ŷ1, x̂2)=

(
−β − θ1 x̂2− δ −θ1 ŷ1

−θ2 x̂2 −x̂2

)
, (2-21)

so that

tr(J (ŷ1, x̂2))=−β − δ− x̂2(1+ θ1), (2-22)

det(J (ŷ1, x̂2))= x̂2[β + δ− θ1θ2 ŷ1+ θ1 x̂2]. (2-23)

It is clear in this case that tr(J (ŷ1, x̂2)) < 0 as x̂2, δ, β, and θ1 are all positive.
Substitute θ2 ŷ1=1−x̂2 and, after some algebra, we get that a necessary and sufficient
condition for x̂2> 0 and det(J (ŷ1, x̂2))> 0 is x̂2>(1−γβθ−1

1 )/2= (2θ1)
−1(δ̂−δ).

Thus, if δ > δc from (2-16), then x̂+2 is stable and x̂−2 is unstable.
Table 1 summarizes the conditions on δ > 0 for the existence of equilibria for

(2-10) and their (linearized) stability properties. The pair (δc, x̂c
2) describes the

point in the δ-x̂2 plane at the knee of the equilibrium curve when x̂±2 is plotted as a
function of δ, as in Figure 2. The first three rows correspond to δc > δ̂ so that the
knee of the equilibrium curve is below the δ-axis in the δ-x̂2 plane as depicted in
the left panel in Figure 2. The middle three rows correspond to 0< δc < δ̂ and the
knee of the equilibrium curve is in the top-right quadrant of the δ-x̂2 plane as in the
right panel in Figure 2. For the last three rows δc < δ̂ and δc < 0 so that the knee of
the equilibrium curve is in the top-left quadrant of the δ-x̂2 plane.

Inspection of the middle three rows of Table 1 shows that when δc and x̂c
2 are

both positive, as in Figure 2, right, equilibria (x̂±2 , ŷ±2 ) are created as δ increases
through δc. This indicates a saddle-node bifurcation [Strogatz 2001] at δ = δc.
In this case, there is a simple zero eigenvalue for the Jacobian matrix (2-17) for
which tr(J (ŷ1, x̂2)) < 0 and det(J (ŷ1, x̂2))= 0. The bifurcation diagram, plotted in
Figure 3, shows ŷ1 vs. δ and x̂2 vs. δ and the stability properties of these equilibria.



440 JOHN ALFORD, CURTIS BALUSEK, KRISTEN M. BOWERS AND CASEY HARTNETT

(δc, x̂c
2) δ0 δ (γ−1, 0) (ŷ+1 , x̂+2 ) (ŷ−1 , x̂−2 )

(−,−) δ0 < 0 δ > 0 unstable stable not feasible
(−,−) or (+,−) δ0 > 0 0< δ < δ0 stable not feasible not feasible
(−,−) or (+,−) δ0 > 0 δ > δ0 unstable stable not feasible

(+,+) δ0 > 0 0< δ < δc stable does not exist does not exist
(+,+) δ0 > 0 δc < δ < δ0 stable stable unstable
(+,+) δ0 > 0 δ > δ0 unstable stable not feasible
(−,+) δ0 < 0 δ > 0 unstable stable not feasible
(−,+) δ0 > 0 0< δ < δ0 stable stable unstable
(−,+) δ0 > 0 δ > δ0 unstable stable not feasible

Table 1. A summary of existence and stability properties of the
equilibria from (2-13) and (2-14) as they depend on δ > 0. Stable
and unstable indicate existence of a positive equilibrium whereas
not feasible indicates the equilibrium exists, but is negative. The
constants δc, x̂c

2 , and δ0 are given by (2-15) and (2-16).

Figure 3 displays a hysteresis effect. If the free-floating plant is extinct so
that (ŷ1, x̂2) = (γ

−1, 0) and δ is increased through δ = δ0, the free-floating plant
extinction equilibrium loses stability. Any small perturbation from the extinction
equilibrium (for example, a small remnant of free-floating plant attached to a boat is
introduced into the lake) will cause a jump in the ecosystem to the stable coexistence
equilibrium (ŷ+1 , x̂+2 ). If (ŷ1, x̂2) = (ŷ+1 , x̂+2 ) and δ is then decreased, the system
does not restabilize to the free-floating plant extinction equilibrium until δ = δc at
the saddle-node bifurcation.

Figure 4 shows simulations of the system (2-10). The parameters obey the middle
three rows of Table 1 corresponding to the bifurcation diagram that is plotted in
Figure 3. In this case, solutions for δ < δc quickly (approximately 30 time units)
achieve equilibrium at (γ−1, 0), while solutions for δ > δ0 achieve equilibrium at
to (ŷ+1 , x̂+2 ) after approximately 100 time units.

In order to draw meaningful biological conclusions from the analysis, the
dimensional forms of the equations and parameters must be considered. The
nondimensionalizations are specified in (2-4), (2-5), and (2-6). Table 1 shows that
for δ > δ0 the free-floating plant extinction equilibrium is unstable. Using (2-5),
(2-6), and (2-15), this inequality becomes

dA > cBr−1
L (α2m Ar−1

L − 1), (2-24)

where δ replaced δ1 in (2-5). That is, the mortality of the aboveground biomass (dA)
should be larger than the production of belowground biomass (cB) scaled by a
factor which increases with the competition efficiency of the submersed plant (α2)



A MATHEMATICAL MODEL OF BIOCONTROL OF INVASIVE AQUATIC WEEDS 441

0 0.2 0.4 0.6 0.8 1 1.2

0.4

0.5

0.6

0.7

0.8

0.9

δ

su
bm

er
se

d
pl

an
t

eq
ui

lib
ri
a

(ŷ
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Figure 3. Bifurcation curves in the δ-ŷ1 plane (left) and δ-x̂2 plane
(right) for δ ≥ 0, ŷ1 ≥ 0, and x̂2 ≥ 0 where β = 1, θ1 = 2, and
θ2= 1.24. Stable equilibria are plotted solid whereas unstable equi-
libria are plotted dashed. The submersed plant carrying capacity
equilibria ŷ1 = (1+β−1δ)−1 is the top curve in the left panel and
the free-floating plant extinction equilibria x̂2 = 0 is the horizontal
line in the right panel. The coexistence equilibria ŷ1 = ŷ±1 make
up the bottom curve (solid ŷ+1 and dashed ŷ−1 ) in the left panel and
x̂2 = x̂±2 make up the top curve (solid x̂+2 and dashed x̂−2 ) in the
right panel. The coexistence equilibria coalesce when ŷ+1 = ŷ−1
and x̂+2 = x̂−2 at a saddle-node bifurcation for δ = δc = 0.15 from
(2-16). Here δ0 = 0.24 and there is a region of bistability for
δc < δ < δ0.

and the carrying capacity of aboveground biomass (m A) and decreases with the
growth rate of the free-floating plant (rL ). The minimal stocking rate is quantified
by (2-24). Any plant management strategy that can reduce the right side of (2-24)
results in a smaller number of grass carp necessary to destabilize the ecosystem
towards free-floating plant dominance. If the quantity in parentheses can be made
negative, for example by increasing the growth rate of rL , grass carp will not be
needed at all as the free-floating plant extinction equilibrium is stable for δA = 0
(corresponding to row 1 and row 7 in Table 1 where δ0 < 0).

2.2. Nonconstant belowground biomass. In the previous section, the belowground
biomass was assumed positive. This precludes the existence of a submersed plant
extinction equilibrium. In this section we investigate the full model (2-7), (2-8),
(2-9) and show that there is a stable submersed plant extinction equilibrium. As in
the case for constant belowground biomass, there are multiple equilibria which will
be denoted by (x̂1, ŷ1, x̂2) and which depend on the various parameters. Setting the
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Figure 4. Simulations of the system (2-10) where the parameters
are as in Figure 3 with β = 1, θ1 = 2, and θ2 = 1.24. For both
plots the initial conditions are (y1(0), x2(0))= (0, 0.01). In the left
panel, δ = 0.0748< δc, and in the right panel, δ = 0.264> δ0. The
dashed horizontal lines are the stable equilibria at y1= (1+β−1δ)−1

and x2 = 0 in the left panel and y1 = ŷ+1 and x2 = x̂+2 in the right
panel.

right side of (2-7) to zero yields

x̂1 = δ̂2 ŷ1(1+ δ̂2− ŷ1)
−1, δ̂2 = φ

−1δ2. (2-25)

If we next substitute (2-25) into the right side of (2-8) and use (2-9), then we get
that the equilibria ŷ1 and x̂2 obey

ŷ1
(
[ψ(1− ŷ1)− δ1− θ1 x̂2](φ+ δ2−φ ŷ1)+ ρδ2(1− ŷ1)

)
= 0, (2-26)

x̂2(1− x̂2− θ2 ŷ1)= 0. (2-27)

We first consider the case ŷ1 = 0 and the submersed plant is extinct. This yields
two possibilities. The case (0, 0, 0) is extinction of both species and the case
(0, 0, 1) is extinction of the submersed plant with the free-floating plant at carrying
capacity.

We now consider the equilibria such that x̂1 > 0, ŷ1 > 0 and the submersed plant
is not extinct. First, note that (2-25) implies that φ+ δ2−φ ŷ1 > 0 and from (2-26)
we see that the feasible equilibria must obey 0< ŷ1 < 1 as all of the parameters are
nonnegative. For the coexistence equilibria x̂1 > 0, ŷ1 > 0, x̂2 > 0 and neither the
submersed plant nor the free-floating plant is extinct. In this case, (2-27) gives that
x̂2 = 1− θ2 ŷ1 and substituting this into (2-27) yields the equation

ν ŷ2
1 + (ξ − 1− ν(1+ δ̂2))ŷ1+ 1+ δ̂2− ξκ = 0, (2-28)
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where

ν = 1− θ1θ2ψ
−1, ξ = ψ−1(δ1+ θ1− ρδ̂2), κ = 1+

(δ1+ θ1)δ̂2

δ1+ θ1− ρδ̂2
. (2-29)

We will use (2-28) in Theorem 1 to examine coexistence equilibria under a con-
strained parameter set.

In order to analyze stability of equilibria, we consider the Jacobian matrix
J (x̂1, ŷ1, x̂2) which is given by−δ2−φ(1− ŷ1) δ2+φ x̂1 0

ρ(1− ŷ1) −ρ x̂1− θ1 x̂2− δ1+ψ − 2ψ ŷ1 −θ1 ŷ1

0 −θ2 x̂2 1− 2x̂2− θ2 ŷ1

 . (2-30)

We will use (2-30) and the results of the equilibria computations to show the
following theorem.

Theorem 1. If δ1 > ψ + ρδ̂2 and θ2 < min{1, θ−1
1 ψ}, then (0, 0, 1) is the only

feasible stable equilibrium of (2-7), (2-8), (2-9).

Proof. First consider the free-floating plant extinction equilibrium (x̂1, ŷ1, 0) where
x̂1 ≥ 0 and ŷ1 ≥ 0. The Jacobian from (2-30) is J (x̂1, ŷ1, 0) whose last row is the
vector (0, 0, 1− θ2 ŷ1). Thus J (x̂1, ŷ1, 0) has one eigenvalue equal to 1− θ2 ŷ1. In
this case, inspection of (2-25) and (2-26) yields that 0≤ ŷ1 < 1 as all parameters
are positive and all equilibria must be nonnegative. The assumption θ2 < 1 shows
that 1− θ2 ŷ1 > 0 so that (x̂1, ŷ1, 0) is unstable.

We next consider (0, 0, 1), the submersed plant extinction equilibrium when the
free-floating plant is at carrying capacity. Substituting this into the Jacobian (2-30)
results in the matrix

J (0, 0, 1)=

−δ2−φ δ2 0
ρ ψ − θ1− δ1 0
0 −θ2 −1

 , (2-31)

and the eigenvalues obey

(1+λ)
(
λ2
+(θ1+δ1−ψ+δ2+φ)λ+(δ2+φ)(θ1+δ1−ψ)−ρδ0

)
= 0. (2-32)

Thus λ=−1 or

λ=
(
−γ ±

√
γ 2
− 4[(δ2+φ)(θ1+ δ1−ψ)− ρδ0]

)
/2, (2-33)

where γ = θ1+ δ1−ψ + δ2+φ which is positive as it was assumed that δ1 > ψ .
Therefore, nonreal eigenvalues have negative real parts. If the eigenvalues are real,
they will both be negative if (δ2+φ)(θ1+ δ1−ψ)− ρδ0 > 0 which is equivalent
to δ1 > ρδ̂2(1+ δ̂2)

−1
+ψ − θ1 where δ̂2 = δ2φ

−1. The assumption δ1 >ψ + ρδ̂2

shows that both eigenvalues are negative in this case and (0, 0, 1) is stable.



444 JOHN ALFORD, CURTIS BALUSEK, KRISTEN M. BOWERS AND CASEY HARTNETT

Coexistence equilibria obey x̂1 > 0, ŷ1 > 0, x̂2 > 0 and are found by solving
(2-28) for ŷ1. The solutions of (2-28) are

ŷ± =
ν(1+ δ̂2)+ 1− ξ ±

√
(ν(1+ δ̂2)+ 1− ξ)2− 4ν(1+ δ̂2− ξκ)

2ν
. (2-34)

The parameters ν, ξ , and κ are defined in (2-29). The assumption θ2 < θ−1
1 ψ

implies that ν is positive. The assumption δ1 > ψ + ρδ̂2 implies that ξ > 1 and
κ > 1+ δ̂2. Therefore the radicand in (2-34) is positive, ŷ± are real, y− < 0, and
y+ > 0. Thus y− is not feasible. Expanding the expression in the radicand of (2-34)
yields that

(ξ − 1)2+ ν2(1+ δ̂2)
2
− 2ν(1+ δ̂2)− 2νξ(1+ δ̂2)+ 4νξκ,

which is larger than (ξ − 1+ ν(1+ δ̂2))
2 using the fact that 4νξκ > 4νξ(1+ δ̂2). It

follows that y+ > 1+ δ̂2 so y+ is not feasible since 0< ŷ1 < 1 for coexistence. �

Figure 5 shows the time courses for simulations of (2-7), (2-8), (2-9) when the
hypotheses of Theorem 1 are obeyed. Substituting (2-4), (2-5), and (2-6) into the
assumptions in Theorem 1 yields that

dA > rA+ s, rL >max
{
α2m A,

α1α2m AmL

rA

}
. (2-35)
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Figure 5. Simulation of the system (2-7), (2-8), (2-9) where the
parameters are θ1 = 0.1, ψ = 1, ρ = 1, δ2 = 0.1, φ = 0.25,
δ1 = 1.1 · (ψ + ρδ̂2), and θ2 = 0.9 · min{1, θ−1

1 ψ}. The initial
conditions are (x1(0), y1(0), x2(0))= (1, 0, 0.01). For these values
of δ1 and θ2, the hypotheses of Theorem 1 are obeyed and (0, 0, 1)
is the only feasible stable equilibrium of (2-7)–(2-9).
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If the growth rate of the free-floating plant rL may be enhanced by nutrient loading
as described in [Scheffer et al. 2003], it may be possible that the second inequality
in (2-35) is satisfied.

3. Conclusion

We have presented a modified Lotka–Volterra competition model (2-1)–(2-3) for
two competing aquatic plants where one species is a submersed plant while the
other is a free-floating plant. We investigated how herbivory by grass carp affects
the competitive abilities of the submersed and free-floating plants. In Section 2.1 we
analyzed a reduced model (2-10) by phase-plane methods and computed equilibria
and stability of these equilibria. We derived conditions in (2-35) on the grass carp
stocking rate dA so that the free-floating plant extinction equilibrium is unstable and
free-floating plants may dominate the ecosystem. In addition, we showed that grass
carp stocking may exhibit a hysteresis effect whereby grass carp may be decreased
below the critical level at which the free-floating plant extinction equilibrium loses
stability and suppression of the submersed plant biomass may still be achieved.
This is depicted in the bifurcation diagram in Figure 3. In Section 2.2 we included
the belowground biomass dynamics of the submersed plant. We proved Theorem 1
which provides sufficient conditions (2-35) on the grass carp stocking rate dA and
free-floating plant growth rate rL that guarantee the free-floating plant carrying
capacity equilibrium is the only feasible equilibrium and is locally stable.

Although the model (2-1)–(2-3) is qualitative and not intended to give a de-
tailed quantitative description of the biology, it may be analyzed without extensive
numerical computations and the results are amenable to biological interpretation
and experimentation. For example, (2-35) shows that the minimal stocking rate
is the sum of the growth rate of the aboveground biomass for the submersed
plant (rA) and the rate at which the aboveground biomass supplies energy for
growth of the belowground biomass (s). Both of these quantities depend on the
particular species of submersed and floating plant being considered, but they may
be measured experimentally and an experimentally determined stocking rate may
then be compared with the minimal stocking rate predicted here. Similarly, the
predicted hysteresis effect may be experimentally verified just as in [Scheffer et al.
2003].

Finally, we discuss some model weaknesses and future work. Grass carp were
assumed to graze on aboveground biomass at a rate proportional to the amount of
aboveground biomass, with dA the proportionality constant, resulting in the term
dA A in (2-2). This is a linear functional response [Turchin 2003] in grass carp
herbivory. The hyperbolic or Holling’s type II functional response [Turchin 2003] is
k N A(D+A)−1. Here A is the aboveground biomass of the submersed plant, k is the
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maximum killing rate, N is the number of grass carp, and D is the prey (submersed
plant) density at which the killing rate is half of the maximum. This functional
response models a saturation of the grass carp feeding rate so that grass carp have a
maximum rate of consumption (k N ) of submersed plant biomass. Future work will
include analysis of a model with hyperbolic functional response for the grass carp.
We have also assumed spatial heterogeneity in our formulation of the model using
ordinary differential equations. Future investigations will be to include modeling
spatial heterogeneities in the ecosystem with partial differential equations.
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