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The rook polynomial of a board counts the number of ways of placing nonat-
tacking rooks on the board. In this paper, we describe how the properties of the
two-dimensional rook polynomials generalize to the rook polynomials of “boards”
in three and higher dimensions. We also define families of three-dimensional
boards which generalize the two-dimensional triangle boards and the boards
representing the problème des rencontres. The rook coefficients of these three-
dimensional boards are shown to be related to famous number sequences such as
the central factorial numbers, the number of Latin rectangles and the Genocchi
numbers.

Introduction

The theory of rook polynomials provides a way of counting permutations with
restricted positions. This theory was developed in [Kaplansky and Riordan 1946]
and has been researched and studied quite extensively since then. Two rather com-
prehensive resources on it are [Riordan 1958] and [Stanley 1997]. In this paper, we
generalize these properties and theorems of the two-dimensional rook polynomials
to higher dimensions, which was partially done for the three-dimensional case in
[Zindle 2007]. A Maple program to calculate the rook numbers of a given three-
dimensional board using this generalization is included in the Appendix. In Section 1
we review the two-dimensional rook polynomials and their properties, including a
discussion of famous families of boards, namely, the boards corresponding to the
problème des rencontres, and the triangle boards. The results provided in this review
most of the time form the basis of the proofs for the three- and higher-dimensional
cases. In Section 2 we discuss the generalization of the rook polynomials to
three and higher dimensions, starting with a discussion of the three-dimensional
boards and how rooks attack in three dimensions. We provide the generalizations
of the properties and theorems of two-dimensional rook polynomials to three
and higher dimensions as well as the three-dimensional counterparts of the boards
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corresponding to the problème des rencontres and the triangle boards. In Section 2.3
we introduce another family of three-dimensional boards related to the triangle
boards. This family is named Genocchi boards due to its connection to the Genocchi
numbers.

1. Overview of the rook theory in two dimensions

Given a natural number m, let [m] denote the set {1, 2, . . . , m}. In two dimensions,
we define a board B with m rows and n columns to be a subset of [m]×[n]. We call
such a board an m×n board if m and n are the smallest such natural numbers. Each
of the elements in the board is referred to as a cell of the board. The set [m]× [n]
is called the full m× n board. An example of how we visualize a board is this:

Numbering the rows from top to bottom and columns from left to right, the above
picture corresponds to the 2×3 board B = {(1, 1), (1, 3), (2, 1), (2, 2), (2, 3)}. We
sometimes highlight the cells missing from the board by shading them in gray.

The rook polynomial RB(x)= r0(B)+r1(B)x+· · ·+rk(B)xk
+· · · of a board B

represents the number of ways that one can place various numbers of nonattacking
rooks on B; i.e., no two rooks can lie in the same column or row. More specifically,
rk(B) is equal to the number of ways of placing k nonattacking rooks on B. For
any board, r0(B)= 1 and r1(B) is equal to the number of cells in B. For the above
example, r2(B)= 4 as there are four different ways to place 2 nonattacking rooks
on the board. It is not possible to place 3 or more rooks on this board. Hence the
rook polynomial of this board is RB(x)= 1+ 5x + 4x2. In general, the number of
nonattacking rooks placed on an m× n board cannot exceed n or m, and hence the
rook polynomial, as indicated by its name, is a polynomial of degree less than or
equal to min{m, n}. Note that the rook polynomial of a board is invariant under
permuting the rows and columns of the board.

Theorem. The number of ways of placing k nonattacking rooks, with 0 ≤ k ≤
min{m, n}, on the full m× n board is equal to

(m
k

)(n
k

)
k!.

Proof. First choose k of the m rows and k of the n columns on which the rooks will
be placed. This can be done in

(m
k

)(n
k

)
ways. Once we have selected the rows and

columns, we place a rook in each column and row. For the first row, there are k
columns to choose from. Once the first rook is placed, for the second row, there
are k − 1 choices left. Continuing in this way, we find that there are k! ways to
place the k rooks on the chosen rows and columns. Hence we have

(m
k

)(n
k

)
k! ways

to place k nonattacking rooks on a full m× n board. �
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We define two boards to be disjoint if the boards do not share any rows or
columns. If a board is composed of two disjoint subboards, the rook polynomial of
the board can be calculated in terms of the rook polynomials of the subboards.

Theorem (disjoint board decomposition). Let A and B be boards that share no
rows or columns. Then the rook polynomial of the board A∪ B consisting of the
union of the cells in A and B is RA∪B(x)= rA(x)× rB(x).

Proof. Let RA(x)=
∑
∞

k=0 rk(A)xk and RB(x)=
∑
∞

k=0 rk(B)xk be the rook poly-
nomials of A and B. Consider the number of ways to place k rooks on A ∪ B.
We can place k rooks on A and 0 rooks on B, in rk(A)r0(B) ways, or place k− 1
rooks on A and 1 rook on B, in rk−1(A)r1(B) ways, and so on. Hence, the number
of ways to place k rooks on A∪ B is

∑k
i=0 rk−i (A)ri (B), which is the coefficient

of xk in rA(x)× rB(x). Therefore RA∪B(x)= RA(x)× RB(x). �

The rook polynomial of a board which can be decomposed into two disjoint
subboards, possibly after permuting rows and/or columns, can thus be calculated
efficiently via this theorem.

Similarly, cell decomposition is another method of expressing the rook poly-
nomial of a board in terms of smaller boards. Consider the board B shown below.

This board cannot be decomposed into two disjoint boards even if we permute the
rows and columns. The cell decomposition method breaks the rook placements
down into cases: when there is a rook in a specific position, say cell (2, 3), and
when there is no rook in that position. If there is a rook on cell (2, 3), we cannot
have another rook in row two or column three. By deleting row two and column
three we create a new board B ′ on which the rest of the rooks can be placed. For
the case that no rook is placed on (2, 3), we create a board B ′′ by deleting the
cell (2, 3).

B ′ B ′′

In order to find rk(B), the number of ways of placing k rooks on B, we
add rk−1(B ′) and rk(B ′′) using the two cases. In terms of the rook polynomial, this
implies that RB(x) = x RB ′(x)+ RB ′′(x). For this specific example, the disjoint
board decomposition can be used to compute the rook polynomials of B ′ and B ′′,
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making them much easier to compute than that of the board B.
The same idea of considering cases in regards to a specific cell as described

above proves the more general cell decomposition.

Theorem (cell decomposition). Let B be a board, B ′ be the board obtained by
removing the row and column corresponding to a cell from B, and B ′′ be the board
obtained by deleting the same cell from B. Then RB(x)= x RB ′(x)+ RB ′′(x).

Another property of rook polynomials relates the rook polynomial of a board to
that of the board consisting of the missing cells. Given an m×n board B, we define
the complement of B, denoted by B, to consist of all cells missing from B so that the
disjoint union of B and B is the full m×n board. In other words B = [m]× [n]\B.
Sometimes we clearly indicate with respect to which board the complement is taken
by saying that the complement is calculated inside [m]× [n].

Theorem (complementary board theorem). Let B be the complement of B inside
[m]× [n] and RB(x)=

∑
ri (B)x i the rook polynomial of B. Then the number of

ways to place k nonattacking rooks on B is

rk(B)=

k∑
i=0

(−1)i
(

m− i
k− i

)(
n− i
k− i

)
(k− i)! ri (B), (1)

taking ri to be 0 for i greater than the degree of RB(x).

Proof. In order to find the number of ways to place k nonattacking rooks on B,
we consider all the placements of k nonattacking rooks on the full m × n board
and remove those where one or more rooks are placed on B using the inclusion-
exclusion principle. We temporarily number the k rooks in our counting process,
which means we will be counting k! rk(B). The total number of ways to place k
numbered rooks on a full m× n board is

(m
k

)(n
k

)
k!2, the additional k! factor coming

from the numbering of the rooks. Let Ai denote the set of placements of the rooks
where the i-th rook is on the board B. We have to remove these placements from
the set of all placements. There are r1(B) ways to place the i-th rook on B and(m−1

k−1

)(n−1
k−1

)
(k−1)!2 ways to place the rest in the other rows and columns. Hence

there are r1(B)
(m−1

k−1

)(n−1
k−1

)
(k−1)!2 elements in Ai and there are k Ai ’s. Similarly,

there are r2(B)2!
(m−2

k−2

)(n−2
k−2

)
(k−2)!2 elements in Ai∩A j for any i 6= j and there are(k

2

)
of these double intersections. There are r3(B)3!

(m−3
k−3

)(n−3
k−3

)
(k−3)!2 elements in(k

3

)
triple intersections Ai∩A j∩A`, and so on. Hence, using the inclusion-exclusion

principle, the number of ways to place k numbered rooks on B is

k∑
i=0

(−1)i
(

k
i

)
i !
(

m− i
k− i

)(
n− i
k− i

)
(k−i)!2ri (B).

Dividing this by k! we arrive at (1). �
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1.1. Problème des rencontres. We now consider the family of boards which cor-
respond to the famous problème des rencontres, or equivalently to derangements.
An example of such a problem is as follows. Suppose that five people enter a
restaurant, each with his or her own hat. As they leave, they each take a hat, but not
necessarily their own. We want to find the number of ways that everyone can leave
the restaurant without their own hats, ignoring the order in which they leave. The
boards which correspond to the problème des rencontres are m×m boards with the
cells along the main diagonal removed. For the hat problem, m = 5 and we obtain
the following board B, where we have highlighted the missing cells with gray.

The number of ways to place 5 rooks on B corresponds with the number of
permutations of five elements where no element is in its original position. Such a
permutation is equivalent to matching each owner with someone else’s hat.

Instead of B, consider its complement. The complement B consists of 5 disjoint
boards, each of which is a single cell. The rook polynomial of each cell is 1+ x .
Hence, using the disjoint board decomposition, we find that the rook polynomial
of B is

(1+ x)5
= 1+ 5x + 10x2

+ 10x3
+ 5x4

+ x5.

Now, using the theorem on rook polynomials of complementary boards, we find
that the number of ways to place 5 rooks on B is equal to(

5
5

)(
5
5

)
5! · 1−

(
4
4

)(
4
4

)
4! · 5+

(
3
3

)(
3
3

)
3! · 10−

(
2
2

)(
2
2

)
2! · 10

+

(
1
1

)(
1
1

)
1! · 5−

(
0
0

)(
0
0

)
0! · 1= 44.

In general, rk of the rook polynomial of an m×m problème des rencontres board is

k∑
i=0

(−1)i
(

m− i
k− i

)2

(k− i)!
(

m
i

)
.

1.2. Triangle boards. We next consider the family of two-dimensional boards
called the triangle boards. A triangle board of size m consists of the cells of the
form (i, j) where j ≤ i and 1≤ i ≤m. The triangle board of size 5 is shown at the
top of the next page.
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The rook numbers of this family correspond with the Stirling numbers of the
second kind. Recall that the Stirling numbers of the second kind, S(n, k), count
the number of ways to partition a set of size n into k nonempty sets, and can be
defined recursively by

S(n, k)= S(n− 1, k− 1)+ kS(n− 1, k)

with S(n, 1)= 1 and S(n, n)= 1.

Theorem. The number of ways to place k nonattacking rooks on a triangle board
of size m is equal to S(m+ 1, m+ 1− k), where 0≤ k ≤ m.

Proof. We will prove this by induction on m and using the recursive definition of
the Stirling numbers.

The rook polynomial of the triangle board of size 1 is equal to 1+ x , which
corresponds to S(2, 1)= 1 and S(2, 2)= 1.

Assume now the theorem is true for some m, i.e., that the number of ways
of placing k rooks on a size m triangle board is equal to S(m + 1, m + 1− k)

for 0 ≤ k ≤ m. We will show that the number of ways of placing k rooks on an
(m+1)×(m+1) board is equal to S((m+1)+1, (m+1)+1−k)= S(m+2, m+2−k)

for 0≤ k ≤ m+ 1.
For k = m + 1, there is only one way to place k nonattacking rooks on a size

m + 1 triangle board: by placing all rooks on the diagonal. This corresponds to
S(m+ 2, m+ 2− k)= S(m+ 2, 1)= 1. For k = 0, placing k rooks on the board
can be done in only one way, which corresponds to S(m+2, m+2)= 1. Therefore
the rook numbers and the Stirling numbers agree for k = 0 and k = m+ 1.

We now show that these numbers agree for 0 < k < m + 1. When finding the
number of ways to place k rooks on the size m + 1 triangle board, we consider
two cases. The first is when all k rooks are placed on the top m rows, forming
a size m triangle board. There are S(m + 1, m + 1 − k) ways to do so by our
inductive hypothesis. The second case is when one rook lies in the bottom row.
In this case, k− 1 rooks must be placed on the top m rows, which can be done in
S(m+1, m+1− (k−1)) ways. We then have m+1− (k−1) cells available in the
last row to place our last rook, resulting in (m+ 2− k)S(m+ 1, m+ 2− k) ways
to place k rooks on the board with one rook in the last row. So there are a total of

S(m+ 1, m+ 1− k)+ (m+ 2− k)S(m+ 1, m+ 2− k)
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ways to place k rooks on a size m+ 1 triangle board. Using the recursive definition
of the Stirling numbers, this sum corresponds to S(m+ 2, m+ 2− k).

Therefore, by induction, the k-th rook number for any size m triangle board is
S(m+ 1, m+ 1− k). �

2. Rook polynomials in three and higher dimensions

The theory of rook polynomials in two dimensions as described above can be
generalized to three and higher dimensions. The theory for three dimensions is
introduced in [Zindle 2007] and the theory we describe in this paper is a more
generalized version of Zindle’s theory.

In three dimensions, our boards will be subsets of [m]× [n]× [p]. We refer to
such a board as an m× n× p board. More generally, a board in d dimensions is a
subset of [m1]× [m2]× · · · × [md ]. A full board is again a board that is the whole
set [m1] × [m2] × · · · × [md ]. In three and higher dimensions, a cell again refers
to an element of the board. In particular, in three dimensions, a cell is a 3-tuple
(i, j, k) with 1≤ i ≤ m, 1≤ j ≤ n, 1≤ k ≤ p.

In two dimensions, rows correspond to cells with the same first coordinate, and
columns correspond to cells with the same second coordinate. We extend this idea
to three dimensions to introduce new groupings of cells. All cells with the same
third coordinate are said to lie in the same layer and we number the layers from
top to bottom. All cells with the same first coordinate are said to be in the same
slab and all cells with the same second coordinate in the same wall. We still have
rows and columns within a layer. We also have towers which correspond to the
cells with the same first and second coordinate. In four and higher dimensions, we
use layer to represent cells along any hyperplane formed by fixing a coordinate.

We generalize the rook theory to three dimensions so that a rook in three di-
mensions will attack along walls, slabs and layers. In higher dimensions, rooks
attack along hyperplanes corresponding to cells with one fixed coordinate. In three
dimensions, when we place a rook in a cell, we can no longer place another rook in
the same wall, slab, or layer. In higher dimensions, a rook placed in a cell means we
cannot place another rook in the fixed coordinate hyperplanes that this cell belongs
to. In other words, if a rook is placed in cell (i1, i2, . . . , id), then a rook may not be
placed in any other cell sharing a coordinate with this cell. With this generalization,
the rook polynomial of a board is invariant under permuting the layers of the board.

In another generalization of rook polynomials to three and higher dimensions, the
rooks attack along lines instead of attacking over hyperplanes. For example, in three
dimensions, a rook placed in cell (i, j, k) prohibits another rook from being placed
in cells (i, j, · ), (i, · , k) and ( · , j, k). This approach has possible applications as
well; however, we will not pursue this generalization in this paper.
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Our first theorem on the generalized rook theory deals with a three-dimensional
board obtained from a two-dimensional board extended in the z-direction. In other
words, if A is a two-dimensional board, the three-dimensional extension of A with p
layers consists of elements of the form (i, j, k) where (i, j) ∈ A and 1≤ k ≤ p. It
is natural that there is a relation between the rook polynomials of the two boards.

Theorem. Let A be an m× n board and B be a three-dimensional extension of A
with p layers. Then, for 0≤ k ≤min{m, n, p},

rk(B)=
p!

(p− k)!
rk(A).

Proof. Given a three-dimensional rook placement on the board B, consider the
projection onto the board A. Since each rook can attack along either coordinate,
when projected onto A no two rooks occupy the same cell in A and we get a
placement of k rooks on A. There are rk(A) such placements. Given such a
placement, we must distribute the k rooks among p layers. This is equivalent to k
permutations of p numbers, which corresponds with p!/(p − k)!. So we have
rk(A)p!/(p− k)! ways to place k rooks on B. Also note that for k > min{m, n, p},
rk(B)= 0 since k rooks cannot fit into the board. �

As a corollary of this theorem, we can obtain the rook numbers of the full
three-dimensional boards, which are extensions of the full two-dimensional boards.
However, we provide a proof similar to the two-dimensional case below which
gives the idea of the proof of the general higher-dimensional theorem.

Theorem. There are
(m

k

)(n
k

)(p
k

)
(k!)2 ways to place k nonattacking rooks on the full

m× n× p board for 0≤ k ≤min{m, n, p}.

Proof. Since we are placing k rooks on m slabs, n walls, and p layers, we have(m
k

)(n
k

)(p
k

)
ways to choose the k slabs, walls, layers to place the rooks on. Since we

have k rooks and k layers, there will be exactly one rook on each layer. For the first
layer, we have k walls and k slabs from which we can choose to place the rook.
After placing the first rook, on the second layer we will have k− 1 slabs and k− 1
walls as options. Continuing this way, we find that we have

k · k · (k− 1) · (k− 1) · (k− 2) · (k− 2) · · · · · 2 · 2 · 1 · 1= (k!)2

ways to place the rooks on the chosen walls, slabs and layers. So there are(m
k

)(n
k

)(p
k

)
(k!)2 ways to place k nonattacking rooks on the full m× n× p board. �

The theorem for the most general case is:

Theorem. There are
(m1

k

)(m2
k

)
· · ·
(md

k

)
(k!)d−1 ways to place k nonattacking rooks,

with 0≤ k ≤mini mi , on a full m1×m2× · · ·×md board in d dimensions.
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The decomposition theorems of the two-dimensional case also generalize natu-
rally to three and higher dimensions. We define two boards in three dimensions to
be disjoint if the boards do not share any walls, slabs or layers. In four and higher
dimensions, the boards are disjoint if they do not share any layers. We then have
the following disjoint board decomposition in the general case.

Theorem (disjoint board decomposition). Let A and B be two boards in three or
higher dimensions that share no layers. Then the rook polynomial of the board
A∪ B consisting of the union of the cells in A and B is RA∪B(x)= RA(x)× RB(x).

The disjoint board theorem allows easy calculation of rook polynomials of a
board which can be decomposed into disjoint subboards, possibly after permuting
layers.

The cell decomposition method from the two-dimensional case generalizes to
three and higher dimensions as follows with the proof being a slight modification
of the proof in Section 1.

Theorem (cell decomposition). Let B be a board, B ′ be the board obtained by
removing the layers that correspond to a cell from B, and B ′′ be the board obtained
by removing the same cell from B. Then RB(x)= x RB ′(x)+ RB ′′(x).

The theorem on complementary boards generalizes to three and higher dimen-
sions, with slight modification:

Theorem (complementary board theorem). Let B be the complement of B inside
[m1]× [m2]× · · · × [md ] and

RB(x)=
∑

i

ri (B)x i

the rook polynomial of B. Then the number of ways to place 0 ≤ k ≤ mini mi

nonattacking rooks on B is

rk(B)=

k∑
i=0

(−1)i
(

m1− i
k− i

)(
m2− i
k− i

)
· · ·

(
md − i
k− i

)
(k− i)!d−1ri (B). (2)

Proof. The proof proceeds as in the two-dimensional case. We number the rooks
and let Ai be the set of placements of the rooks where the i-th rook is on B. There
are (

m1

k

)(
m2

k

)
· · ·

(
md

k

)
k!d

ways to place k numbered rooks on the full board. There are

r1(B)

(
m1− 1
k− 1

)(
m2− 1
k− 1

)
· · ·

(
m3− 1
k− 1

)
(k− 1)!d
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elements in Ai and there are k Ai ’s. Similarly, there are

r2(B)2!
(

m1− 2
k− 2

)(
m2− 2
k− 2

)
· · ·

(
md − 2
k− 2

)
(k− 2)!d

elements in Ai ∩ A j for any i 6= j and there are
(k

2

)
of these double intersections,

and so on. Hence, using the inclusion-exclusion principle, the number of ways to
place k numbered rooks on B is

k∑
i=0

(−1)i
(

k
i

)
i !
(

m1− i
k− i

)(
m2− i
k− i

)
· · ·

(
md − i
k− i

)
(k− i)!dri (B).

Dividing this by k! we arrive at (2). �

2.1. Problème des rencontres in three dimensions. Recall the problème des ren-
contres from earlier. The problème des rencontres dealt with a board with restrictions
along the main diagonal. When creating a three-dimensional version of the problème
des rencontres board, we will again place restrictions along the diagonal. In two
dimensions we explained the problème des rencontres by considering five people
leaving a restaurant without their hats. For this type of problem to make sense in
three dimensions we will have to alter the scenario. We will once again consider
five people entering a restaurant and introduce another
dimension to the story. Let these people each have a hat
and coat. We are now interested in the number of ways
that the five people can leave the restaurant without both
of their items. Let B be an 5×5×5 board with elements
(i, i, i) for i = 1, . . . , 5 removed; we will consider plac-
ing 5 rooks on B. A visual representation of B is shown
on the right.

For this board we let each layer represent a person, and walls and slabs represent
coats and hats, respectively. The missing cells correspond with no person leaving
with both their hat and coat. We refer to this board as the problème des rencontres
board of the first kind. To find the rook numbers of this board, notice that the 5
missing cells form disjoint boards. The rook polynomial for each cell is 1+ x .
Hence, using the cell decomposition, we get

(1+ x)5
= 1+ 5x + 10x2

+ 10x3
+ 5x4

+ x5

as the rook polynomial for the missing cells. Using the complementary board
theorem, we then find that the number of ways to place 5 rooks on B is(5

5

)(5
5

)(5
5

)
(5!)2
−
(4

4

)(4
4

)(4
4

)
(4!)2
· 5+

(3
3

)(3
3

)(3
3

)
(3!)2
· 10

−
(2

2

)(2
2

)(2
2

)
(2!)2
· 10+

(1
1

)(1
1

)(1
1

)
(1!)2
· 5−

(0
0

)(0
0

)(0
0

)
(0!)2
· 1= 11844.
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More generally, the number of ways that we can place k rooks on an m×m×m
problème des rencontres board of this kind is

k∑
i=0

(−1)i
(

m− i
k− i

)3

(k− i)!2
(

k
j

)
.

Another generalization of the problème des rencontres is to remove the rows,
columns, and towers that pass through a diagonal cell, i.e., to remove cells of
the form (i, i, · ), (i, · , i) and ( · , i, i). This second generalization corresponds to
finding the number of ways that the five people can leave the restaurant without
their coats, hats, or any proper pairing of a coat and hat. This means that each
person must leave the restaurant with a hat that is not his or hers, and a coat that
belongs neither to that person nor to the owner of the hat. The rook board for this
problem is a bit more difficult to visualize so we will first discuss how to construct
it. We again let each layer of the board represent a person, and the walls and slabs
represent coats and hats, respectively. For layer 1, corresponding to the first person,
we remove (`, 1, 1) and (1, `, 1) for 1≤ `≤ 5. This removes the column and row
corresponding to the first person not leaving with their own coat or hat. We will
also remove all cells along the main diagonal, meaning cells of the form (`, `, 1)

for 1≤ `≤ 5. This corresponds with person one not leaving with another person’s
coat and hat. The first layer of the board will then appear as follows:

For the second layer we remove (`, 2, 2) and (2, `, 2) for 1≤ `≤ 5. This will
remove the row and column associated with the second person leaving with his or
her own coat or hat. We will also remove (`, `, 2) for 1≤ `≤ 5. This corresponds
with the second person not leaving with another person’s coat and hat. This layer
will appear as follows:

Continuing this method for the final three layers we get:
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The problème des rencontres board of the second kind of any size m is constructed
in a similar fashion.

We use a Maple program to compute the rook polynomials of this type board
of various sizes. The program is included in the Appendix. The rook numbers of
boards of size from 3 up to 7 are given in Table 1.

Notice from the table that the rook numbers for k =m correspond to the number
of 3×m Latin rectangles. In fact, the correspondence between these rook placements
and the Latin rectangles is very natural.

Theorem. The number of ways to place m rooks on the size m problème des
rencontres board of the second kind is equal to the number of 3×m Latin rectangles
in which the first row is in order.

Proof. A 3×m Latin rectangle consists of three rows, each of which is a permutation
of the numbers in [m] and where in each of the m columns no number is repeated.
Given such a rectangle, each column can be represented by an ordered triple
(r1, r2, r3) in which no two entries are the same. These are exactly the cells missing
from the problème des rencontres board of the second kind. We then take these m
ordered triples and place rooks in the corresponding cells of this board. Because
each number appears in each row of the Latin rectangle exactly once, we have
exactly one rook per slab, wall, and layer. Therefore, the rooks are nonattacking.
This shows that any 3×m Latin rectangle corresponds with a valid placement of m
rooks on the size m problème des rencontres board of the second kind.

Now consider an arbitrary placement of m rooks on the size m problème des
rencontres board of the second kind. Since there are m rooks, there is a rook in
each slab. We read the positions of the rooks starting with the rook in the first slab,
and record these into the columns of a 3×m array. In this way, the first row is

m\k 0 1 2 3 4 5 6 7

3 1 6 6 2
4 1 24 132 176 24
5 1 60 960 4580 5040 552
6 1 120 4260 52960 213000 206592 21280
7 1 210 14070 368830 3762360 13109712 11404960 1073160

Table 1. Rook numbers of boards of size 3–7.
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arranged from 1 to m in increasing order, and, as explained above, each row is a
permutation of [m], and no two entries in each column are the same. This also
shows that the correspondence is one-to-one. �

This second kind of the problème des rencontres board can be generalized to
dimensions higher than three as follows: a size m problème des rencontres board
in d dimensions is a subset of the set [m]d where the cells with at least two equal
coordinates are removed. With this generalization, using a method similar to the
proof of the above theorem, we obtain the following theorem:

Theorem. The number of ways to place m rooks on a size m problème des ren-
contres board in d dimensions is equal to the number of d ×m Latin rectangles in
which the first row is in order.

2.2. Triangle boards in three dimensions. In two dimensions the triangle board
of size m contains the cells of the form (i, j) with j ≤ i and 1≤ i ≤m. This board
has the property that there is only one way to place m rooks on a size m triangle
board. Another property of the triangle board is that removing both the row and
column corresponding to a diagonal cell of a size m triangle board results in a
size m − 1 triangle board. We want to replicate these aspects of a triangle board
in three dimensions, and this is how the three-dimensional triangle board evolved.
In three dimensions a size 1 triangle board is simply one cell. The size 2 triangle
board is obtained by placing a 2×2 layer below the size 1 triangle board as follows:

We build the larger triangle boards recursively in a similar way, by adding an
(m+1)×(m+1) layer at the bottom of a size m triangle board. The cells included in
the size m triangle are (i, j, k) with 1≤ i, j ≤ k and 1≤ k ≤m. With this definition,
there is only one way to place m rooks on a size m triangle board. Additionally,
removing the wall, slab and layer including a diagonal cell of a size m triangle
board results in a size m− 1 triangle board. The size 5 triangle board is depicted
below.



48 FERYAL ALAYONT AND NICHOLAS KRZYWONOS

The rook numbers of the triangle boards up to size 8 are calculated using Maple
and are shown in the table on the next page. The numbers turn out to be the central
factorial numbers defined recursively by

T (n, k)= T (n− 1, k− 1)+ k2T (n− 1, k),

with T (n, 1)= 1 and T (n, n)= 1; see Table 2.

Theorem. The number of ways to place k rooks on a size m triangle board in three
dimensions is equal to T (m+ 1, m+ 1− k), where 0≤ k ≤ m.

Proof. We will prove this theorem by induction on m.
For the base case, m = 1, the rook polynomial is 1+ x and the corresponding

central factorial numbers are T (2, 2) = T (2, 1) = 1. Hence the result is true for
m = 1.

Assume now the theorem is true for some m, i.e., that the number of ways
of placing k rooks on a size m triangle board is equal to T (m + 1, m + 1− k)

for 0 ≤ k ≤ m. We will show that the number of ways of placing k rooks on an
(m+1)×(m+1) board is equal to T ((m+1)+1, (m+1)+1−k)=T (m+2, m+2−k)

for 0≤ k ≤ m+ 1.
We know that there is only one way to place no rooks, which corresponds to

T (m+2, m+2)= 1. We also know that there is only one way to place the maximum
number of rooks, m+ 1 rooks, which corresponds to

T (m+ 2, m+ 2− (m+ 1))= T (m+ 2, 1)= 1.

Now let 0 < k < m+ 1. Similar to the two-dimensional case, we consider two
cases, when all rooks are on the top m layers and when one of the rooks is on
the bottom layer. The top m layers form a triangle board of size m and hence the
number of ways to place k rooks on the top m layers is T (m+1, m+1−k). If one

n\k 0 1 2 3 4 5 6 7 8

0 1
1 1 1
2 1 5 1
3 1 21 14 1
4 1 85 147 30 1
5 1 341 1408 627 55 1
6 1 1365 13013 11440 2002 91 1
7 1 5461 118482 196053 61490 5278 140 1
8 1 21845 1071799 3255330 1733303 251498 12138 204 1

Table 2. Sequence A008957 in [Sloane 2009], triangle of central
factorial numbers.
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rook is on the bottom layer, the rest of the rooks will be on the top m layers, which
can be done in T (m+1, m+1− (k−1)) ways. Once these k−1 rooks are placed,
the corresponding k− 1 rows and columns in the bottom layer are restricted for the
last rook, leaving (m+ 1− (k− 1))2 cells available for that rook. Hence, there are
a total of (m+2− k)2T (m+1, m+2− k) ways to have k rooks on the board with
one being on the bottom layer. Adding the results from the two cases, we obtain
T (m+1, m+1−k)+(m+2−k)2T (m+1, m+2−k) ways of placing the k rooks
on the size m+ 1 triangle board. By the recursive definition of the central factorial
numbers, this sum corresponds to T (m + 2, m + 2− k), proving the theorem by
induction. �

2.3. Genocchi board. Another possible three-dimensional generalization of the
triangle boards is obtained by generalizing the following property of the two-
dimensional triangle boards. The number of cells in each row of a two-dimensional
triangle board is equal to the row number. We generalize this property by letting the
number of cells in a tower over a fixed row and column be equal to the maximum
of the row and column numbers. In terms of the coordinates, the cells in the size m
three-dimensional triangle board are of the form (i, j, k) with 1 ≤ k ≤max{i, j}
and 1 ≤ i, j ≤ m. The rook numbers of these boards are related to the Genocchi
numbers; hence we call this family the Genocchi boards. Below is the depiction
of the size 5 Genocchi board turned upside down and rotated for clarity. From the
picture, we can see that the complement of the size m Genocchi board inside the
m×m×m cube is the size m− 1 triangle board.

Using Maple, we generated rook numbers for various Genocchi boards. We
found that the number of ways to place m rooks on a board of size m corresponds
with the unsigned (m+ 1)-th Genocchi number; see Table 3.

m 0 1 2 3 4 5 6 7

rm 1 1 3 17 155 2073 38227 929569
Gm+1 −1 1 −3 17 −155 2073 −38227 929569

Table 3. Sequence A001469 in [Sloane 2009], Genocchi numbers
(of first kind).
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Theorem. The number of ways to place m nonattacking rooks on a size m Genocchi
board is the unsigned (m+ 1)-th Genocchi number.

Proof. Recall that the complement of a size m Genocchi board in an m×m×m
cube is a size m− 1 triangle board. Hence, using the theorem of complementary
boards, we can calculate the number of ways to place m rooks on a size m Genocchi
board in terms of the rook numbers of the triangle board. Recall that rk for a size m
triangle board is T (m+1, m+1− k) and that the number of ways to place k rooks
on the complement of a three-dimensional board B in the m×m×m cube is

k∑
i=0

(
m− i
k− i

)3

(k− i)!2ri (B).

Using these two formulas, we find that the number of ways to place k = m rooks
on a size m Genocchi board is

m−1∑
i=0

(
m− i
m− i

)3

(m− i)!2T (m, m− i).

We omitted the term corresponding to i = m in the summation because rm(B)= 0
for the triangle board of size m − 1. This last summation can be rewritten via a
change of variables j = m− i as

(−1)m+1
m∑

j=1

(−1) j+1 j !2T (m, j),

which is shown to equal (−1)m+1Gm+1 in [Dumont 1974]; thus the number of ways
to place m rooks on a size m Genocchi board is the unsigned (m+ 1)-th Genocchi
number. �

Appendix

Rook:=proc(A,m,n,p,B,k,rem)
local C,i,j,h,g,l,count,v;
count:=0;
if k=1 then
for i from 1 to m do
for j from 1 to n do
for g from 1 to p do
if ’not’(’in’([i,j,g],B)) then
if add(add(A[i,a1,a2],a1=1..n),a2=1..p)=0 then
if add(add(A[b1,j,b2],b1=1..m),b2=1..p)=0 then
if add(add(A[c1,c2,g],c1=1..m),c2=1..n)=0 then
count:=count+1
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end if
end if

end if
end if

end do
end do

end do
else
C:=Array(1..m,1..n,1..p);
for i from 1 to m do
for j from 1 to n do
for g from 1 to p do
if ’not’(’in’([i,j,g],B)) then
if add(add(A[i,a1,a2],a1=1..n),a2=1..p)=0 then
if add(add(A[b1,j,b2],b1=1..m),b2=1..p)=0 then
if add(add(A[c1,c2,g],c1=1..m),c2=1..n)=0 then
for h from 1 to m do
for l from 1 to n do
for v from 1 to p do
C[h,l,v]:=A[h,l,v]

end do
end do

end do
C[i,j,g]:=1;
count:=count+Rook(C,m,n,p,B,k-1);
C[i,j,g]:=0

end if
end if

end if
end if

end do
end do

end do
end if
count:=count/k
end proc:
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