The influence of education in reducing the HIV epidemic

Renee Margevicius and Hem Raj Joshi
The influence of education in reducing the HIV epidemic

Renee Margevicius and Hem Raj Joshi
(Communicated by Suzanne Lenhart)

We use an SIRE (susceptible, infected, removed, and education) model to study and evaluate the effectiveness of Uganda’s education campaigns from the last 25 years in reducing the prevalence of AIDS and HIV infection. We divide the susceptible class into four subgroups with different infection rates due to their differing beliefs on sexual conduct. We use data from Uganda about the epidemic and educational influences to help estimate the infection rates, and then we simulate the model and compare our results to real data from 1996–2007.

1. Introduction

HIV is a slow working virus that often causes AIDS, in which the immune system begins to fail. The disease is transmitted by mother to child at birth, or by sharing needles, or through unsafe sex. At the time of this writing, an estimated 34 million people were living with HIV throughout the world [WHO 2010], about two-thirds of them in sub-Saharan Africa.

Uganda, a country located in that region, has had a major influence in HIV prevention. In 1987, the Ugandan government created a campaign called ABC, standing for abstinence, being faithful, and use of condoms, to promote ways of preventing the spread of the virus through safer sexual behavior [Green et al. 2002; 2006]. The first part of the campaign, abstinence, promotes no sex until marriage. The being faithful portion supports those couples that only practice sex with one partner. Lastly, the use of condoms promotes safe sex for those with multiple partners. This three-pronged approach mirrors the recommendations of international organizations created throughout the world to help educate people on HIV/AIDS and slow its spread. But Uganda has been more successful than most countries; throughout the nineties, the prevalence of HIV in Uganda fell, and many observers credit this to the ABC prevention campaign. Over the last ten years the incidence of HIV/AIDS in Uganda has largely stabilized [Uganda 2010], even as the

MSC2010: 34K60, 35K55.
Keywords: SIRE model, ABC strategy, mathematical model.
country shifted its prevention policy away from ABC and towards abstinence-only programs, which many experts believe may lead to a rise in risky behavior.

Our goal in this paper is to model the effects of education on the dynamics of the HIV epidemic. In [Joshi et al. 2008], we modified the basic susceptible, infected, and removed (SIR) model to include an education class (we call the new model an SIRE model). The education class represents the proportion of organizations that are involved in spreading the ABC campaign. We split the susceptible class into three subclasses: the general susceptibles S who do not change their behavior due to the campaign, a class S_{AB} of susceptibles who have been influenced by the abstinence and being faithful portions, and a class S_C of susceptibles who begin to use condoms due to the campaign. Here we extend that work by further dividing S_{AB} into two subclasses S_A and S_B, consisting of those susceptibles who have chosen to practice abstinence and those who have chosen to be faithful to one partner as a result of the campaign.

We collected information such as the history of the HIV epidemic, government statistics, and behavioral records. We used this information in our SIRE model, a system of ordinary differential equations, in order to explain the effects of the ABC campaign. After estimating the parameters using collected data, we simulated the model using MATLAB. The educational influences should cause infection and HIV-related death rates to slow down.

The outline of this paper is as follows. Section 2 will provide an overview of the standard SIR model, as well as the modified SIRE model with the educational influences. Section 3 discusses parameter estimates. In Section 4, we simulate the SIRE model and compare the results to collected data. In Section 5, we present future directions and conclusions.

2. Modified SIRE model

A basic SIR model [Edelstein-Keshet 1988], with susceptible, infected, and removed classes, takes the form

\[
S' = -\beta SI + b(S + I) - dS, \quad I' = \beta SI - \gamma I, \quad R' = \gamma I, \quad (1)
\]

where d is the natural death rate, b is the birth rate, γ is the death rate due to infection, and β is the infection rate.

We will augment the basic SIR model (1) by introducing educational influence. We will take into account changes in behavior of some susceptibles in the adult population only (ages 15–49), since the promotional campaigns are designed to influence adult behavior. As a result of educational influence, our susceptible class will exhibit different behaviors. Figure 1 is schematic diagram of our model and it shows the connectivity of the different classes.
The influences of the educational information will break the susceptible population into four different types of behavior. The first will be the initial population in which there is no change in behavior due to education, denoted by S, the general susceptible population. The next part of the population counts those who have been influenced to choose abstinence, which will be denoted by S_A. Another type of change in behavior for the susceptible class will be choosing to be faithful, which will be indicated by S_B. The last type of behavior change is use of condoms, and those susceptibles will be denoted by S_C. In addition, an E class is needed to show the influence of the educational information given about the A, B, and C type behaviors. This E class causes some members of the susceptible class, S, to move into the A, B, and C categories. The size of the E class depends on the fraction of organizations providing the information on HIV. The proportions of the organizations providing the education on each of the three types of behaviors causes the split among the A, B, and C categories. Due to influence of E, people from class S will move into the S_A, S_B, and S_C classes at given rates. In addition, the entry rate for people into the general susceptible class, and death rates where people leave, must be taken into consideration.

The infection rate β for each class will vary due to the influence of education and change in behavior. Thus we will have four different infection rates for the four different susceptible classes. The infected class I will move to the removed class R at the rate γ, where the removed class is the number of people who have died from HIV/AIDS.

For the education class, E, we use a logistic model with a growth rate which will increase as the number of infective increase. We multiply the growth rate, r, by the ratio of the populations of the infected to the living.

The following model is an extension of the one in [Joshi et al. 2008]. The main modification is the use of two separate equations for those with changed behavior.
due to abstinence and being faithful. Having two separate susceptible equations for these changes in behavior will result in two different infection rates. These infection rates will be cause members of the respective susceptible subclasses to be added to the infected class and will change the education class. With these parameters and alterations included, our new SIRE model is

\[
S' = -\alpha_1 ES - \alpha_2 ES - \alpha_3 ES - \beta_1 SI + b(S + S_A + S_B + S_C + I) - dS,
\]

\[
S'_A = \alpha_1 ES - \beta_2 S_A I - dS_A \quad (\alpha_1 = 0.02),
\]

\[
S'_B = \alpha_2 ES - \beta_3 S_B I - dS_B \quad (\alpha_2 = 0.08),
\]

\[
S'_C = \alpha_3 ES - \beta_4 S_C I - dS_C \quad (\alpha_3 = 0.8),
\]

\[
I' = \beta_1 SI + \beta_2 S_A I + \beta_3 S_B I + \beta_4 S_C I - \gamma I,
\]

\[
R' = \gamma I,
\]

\[
E' = \frac{I}{I + S + S_A + S_B + S_C} r E (1 - E),
\]

(2)

where \(\alpha_1, \alpha_2\) and \(\alpha_3\) are the transfer rates from \(S\) to \(S_A\), \(S_B\), and \(S_C\), respectively. The initial conditions for this system are \(S(0), S_A(0), S_B(0), S_C(0), I(0), R(0),\) and \(E(0)\). The entering adult rate is \(b\) and the general death rate is \(d\). For this case, new adults will enter the general susceptible class \(S\) only. Thus, there are four different susceptible classes for which four infection rates are needed: \(\beta_1, \beta_2, \beta_3, \beta_4\), for \(S, S_A, S_B, S_C\), respectively, as they relate to the infected class \(I\). A proportion of the susceptibles leave the general susceptible class \(S\) into \(S_A, S_B, S_C\) when the individuals in class \(S\) and the educational campaign class \(E\) interact. In addition, when the infected class interacts with the susceptible class, individuals leave according to their rates into the infected class. As a result of HIV, individuals from the infected class leave and are moved into the removed class \(R\) with death rate \(\gamma\).

3. Parameter estimations

The data needed for this model contained information about population, death rates, percentage of adults ages 15–64, the growth of the adult class, adult prevalence rates, and the percent of adult population infected [UNICEF 2010]. In order to determine the organizational estimates for the educational influence rates, we consulted literature, essays, subject matter experts, and surveys. These types of data will influence the relationship between the \(E\) and \(S\) classes, in addition to the split amongst the \(A, B,\) and \(C\) behavior types.

The initial conditions for the set of differential equations depend on the data provided. Since the first educational data collected occurred in 1996, we will begin with that year for the model and use the data to determine the initial conditions.
for $S(0)$ and $I(0)$. Thus we assume that, prior to 1996, no one followed the A, B, and C type behaviors. In addition, the removed class, R, accumulates the deaths from HIV only. In 1996, the entire population (July 1996 est.) of Uganda was 20,158,176 with adult population comprising 48% [CIA 1997]. Therefore the initial susceptible and infected classes $(S(0) + I(0))$ will have a total of 9,675,924 people for that year. The HIV prevalence rate for adults was estimated to be 12.1%; thus 1,161,110 people are in the infected $(I(0))$ class. As a result, there will be 8,365,991 people in the susceptible $(S(0))$ class. Note that, for $E(0)$, there was an initial estimate of 30% of organizations involved in the ABC campaign. This estimate is an approximation, so the numerical runs will vary. Thus, these are the initial conditions:

$$S(0) = 9.67, \quad S_A(0) = 0, \quad S_B(0) = 0, \quad S_C(0) = 0,$$

$$I(0) = 1.16, \quad R(0) = 0.11, \quad E(0) = 0.30.$$

(3)

4. SIRE model simulation

The time span for this model is 12 years (1996–2007). All rates, b, d, r, β_1, β_2, β_3, β_4, γ, were assumed to be constant for all our model simulations. Using data from this time period, we were able to calculate the number of new adults as a percentage of all adults. The entering adult rates for the 12 years were averaged to obtain an entry rate for the susceptible class. The natural death rate was also averaged from UN data, over each five year period. The adults for the general susceptible population had an entering rate $b = 0.055$ and death rate $d = 0.0176$. For γ, we took an average of the death rates due to HIV for a few years and found $\gamma = 0.14$.

As for the parameters, we had to make many assumptions and estimations. For the infection rate parameters, β_1, β_2, β_3, and β_4, we assumed that β_2, β_3, and β_4 were proportional to β_1, so we only needed to determine one infection parameter. We predicted that β_1 was larger than β_2, expecting that the A behavior led to a lower infection rate compared to the general susceptible class. For example, $\beta_2 = 0.01\beta_1$ ($\beta_2 \ll \beta_1$). As for the infection rate for the B behavior compared to the general susceptible class, we took $\beta_3 = 0.03\beta_1$ ($\beta_2 < \beta_3 \ll \beta_1$). Lastly, we took the infection rate for the C behavior as $\beta_4 = 0.4\beta_1$ ($\beta_2 < \beta_3 \ll \beta_4 \ll \beta_1$). We determined the range of values for β_1 that best fit observations, since this infection rate was the hardest to estimate. In addition, we varied r in increments to determine which value, together with β_1, gave a model best fitted for the data.

For the determination of β_1, we first fixed the bounds $0.0001 \leq \beta_1 \leq 0.1$, and let it vary in increments of 0.001, giving 100 values for β_1. Similarly the growth rate r was assumed to lie in the range $0.2 \leq r \leq 2$. We used increments for r of 0.01, giving 180 values. For each pair (β_1, r) we ran the set of differential equations with a MATLAB differential equation solver to give model estimates for the values for
Table 1. Historical data table (population numbers in millions).

<table>
<thead>
<tr>
<th>Year</th>
<th>Susceptible</th>
<th>Infected</th>
<th>Removed</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>9.99</td>
<td>1.046</td>
<td>0.1195</td>
<td>600/1,200</td>
</tr>
<tr>
<td>1998</td>
<td>10.42</td>
<td>1.021</td>
<td>0.1205</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>10.72</td>
<td>0.975</td>
<td>0.121</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>10.96</td>
<td>0.921</td>
<td>0.1215</td>
<td>700/1,200</td>
</tr>
<tr>
<td>2001</td>
<td>11.27</td>
<td>0.879</td>
<td>0.120</td>
<td>717/1,200</td>
</tr>
<tr>
<td>2002</td>
<td>11.61</td>
<td>0.824</td>
<td>0.118</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>12.05</td>
<td>0.807</td>
<td>0.113</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>12.47</td>
<td>0.773</td>
<td>0.104</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>12.82</td>
<td>0.756</td>
<td>0.089</td>
<td>778/1,200</td>
</tr>
<tr>
<td>2006</td>
<td>13.25</td>
<td>0.755</td>
<td>0.084</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>14.22</td>
<td>0.754</td>
<td>0.079</td>
<td></td>
</tr>
</tbody>
</table>

We next show our results after running the simulations against our data. Figure 2 represents the true total susceptible data versus the model prediction. The population for this graph is given in millions. The model for the S class has data points close, but a few data points are not as close as the others to the graph. For Figure 3, we graphed the model output alongside the infected data. This model shows similarities
Figure 3. Infected population, in millions: model prediction (solid line) and data (*).

Figure 4. Number of HIV related deaths, in millions: model prediction (solid line) and data (*).

with the graph. Figure 4 represents the data of deaths per year compared to the model. This model shows a similar shape as the majority of the data points above the model. Figure 5 shows the model for the education class, illustrating fairly close data points to the equation.
5. Conclusions and future research

This work illustrated altering the susceptible class based on behavior changes due to education. We found that, for the most part, the model’s predictions were close to the data. Finding more data and including other features to make this model more realistic is important.

Future research includes refining the S and I classes based on age, gender, and stages of the disease. Past research has shown that females have been more responsive to these educational campaigns than males. Therefore, gender differentiation would be interesting to consider for future modeling efforts. In addition, the involvement of different types of organizations could be studied in variants of the model.

References

The influence of education in reducing the HIV epidemic
RENEE MARGEVICIUS AND HEM RAJ JOSHI

On the zeros of \(\zeta(s) - c \)
ADAM BOSEMAN AND SEBASTIAN PAULI

Dynamic impact of a particle
JEONGHO AHN AND JARED R. WOLF

Magic polygrams
AMANDA BIENZ, KAREN A. YOKLEY AND CRISTA ARANGALA

Trading cookies in a gambler’s ruin scenario
KUEJAI JUNGHATURAPIT, TIMOTHY PLUTA, REZA RASTEGAR, ALEXANDER ROITERSHTEIN, MATTHEW TEMBA, CHAD N. VIDDEN AND BRIAN WU

Decomposing induced characters of the centralizer of an \(n \)-cycle in the symmetric group on \(2n \) elements
JOSEPH RICCI

On the geometric deformations of functions in \(L^2[D] \)
LUIS CONTRERAS, DEREK DESANTIS AND KATHRYN LEONARD

Spectral characterization for von Neumann’s iterative algorithm in \(\mathbb{R}^n \)
RUDY JOLY, MARCO LÓPEZ, DOUGLAS MUPASIRI AND MICHAEL NEWSOME

The 3-point Steiner problem on a cylinder
DENISE M. HALVERSON AND ANDREW E. LOGAN