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We introduce the study of potentially eventually exponentially positive (PEEP)
sign patterns and establish several results using the connections between these
sign patterns and the potentially eventually positive (PEP) sign patterns. It is
shown that the problem of characterizing PEEP sign patterns is not equivalent to
that of characterizing PEP sign patterns. A characterization of all 2× 2 and 3× 3
PEEP sign patterns is given.

1. Introduction

A matrix A ∈ Rn×n is eventually positive if there exists a k0 ∈ Z+ such that for
all k ≥ k0, Ak > 0 (where the inequality is interpreted entrywise). A matrix A is
eventually exponentially positive if there exists some t0 ≥ 0 such that for all t ≥ t0,

et A
=

∞∑
k=0

tk Ak

k!
> 0.

Eventually exponentially positive matrices have applications to dynamical systems
in situations where it is of interest to determine whether an initial trajectory reaches
positivity at a certain time and remains positive thereafter [Noutsos and Tsatsomeros
2008]. There is a characterization of eventual exponential positivity in terms of
eventual positivity:

Theorem 1.1 [Noutsos and Tsatsomeros 2008, Theorem 3.3]. The matrix A∈Rn×n

is eventually exponentially positive if and only if there exists a ≥ 0 such that A+aI
is eventually positive (where I is the n× n identity matrix).
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A sign pattern is a matrix having entries in {+,−, 0}. For a real matrix A,
sgn(A) is the sign pattern having entries that correspond to the signs of the entries
in A. If A is an n×n sign pattern, the qualitative class of A, denoted Q(A), is the
set of all A ∈ Rn×n such that sgn(A)=A; such a matrix A is called a realization
of A. A sign pattern A is potentially eventually positive (PEP) if there exists some
realization A ∈ Q(A) that is eventually positive. PEP sign patterns were studied
in [Berman et al. 2010], and we adapt several techniques from that paper to study
potentially eventually exponentially positive sign patterns.

Definition 1.2. A sign pattern A is potentially eventually exponentially positive
(PEEP) if there exists some realization A ∈ Q(A) that is eventually exponentially
positive.

Since an eventually positive matrix is eventually exponentially positive, a PEP
sign pattern is PEEP. Theorem 1.1 leads naturally to consideration of a sign pattern
with positive diagonal entries.

Definition 1.3. Given an n×n sign pattern A = [αi j ], we denote by AD(+) =

[α̂i j ] the n×n sign pattern such that α̂i j = αi j for i 6= j and α̂i i = + for i, j ∈
{1, . . . , n}. AD(0) and AD(−) are defined analogously, with zero and negative
diagonal, respectively.

In [Berman et al. 2010] it is noted that if A is PEP then AD(+) is also PEP. This
observation together with Theorem 1.1 leads to the following observation.

Observation 1.4. If A is a PEEP sign pattern, then AD(+) is a PEP sign pattern
(and hence AD(+) is also PEEP).

Given a PEEP sign pattern, we can generate a PEP sign pattern by changing
every diagonal element to + . However, taking a PEP sign pattern and changing +
diagonal entries to 0 or − does not always yield a PEEP sign pattern. For example,

BD(+) =

+ − 0
+ + −

− + +

 (1)

is PEP [Berman et al. 2010], but in Example 2.3 below it is shown that the sign
pattern

BD(0) =

0 − 0
+ 0 −
− + 0

 (2)

is not PEEP. Thus the problem of determining which sign patterns are PEEP is not
equivalent to the problem of determining which sign patterns are PEP.

Section 2 presents general results on PEEP sign patterns, including those obtained
by perturbation analysis and connections with known results on PEP sign patterns.
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At the end of Section 2 the open question of the minimum number of positive
entries in an n×n PEEP sign pattern is discussed. In Section 3 small order PEEP
sign patterns are characterized. The remainder of this section contains information
on eventually exponentially positive matrices and terminology on digraphs and sign
patterns.

The spectrum of A, denoted σ(A), is the multiset of the eigenvalues of A. The
spectral radius of A is defined as ρ(A)=max{|λ| : λ ∈ σ(A)} and an eigenvalue
λ ∈ σ(A) is a dominant eigenvalue if |λ| = ρ(A). A nonzero vector w is called
a left eigenvector of A if wTA = λwT for some λ ∈ σ(A) (or equivalently, w is a
(right) eigenvector of AT ). The matrix A is eventually positive if and only if A
has a unique dominant eigenvalue that is positive and simple, and A has positive
right and left eigenvectors for ρ(A) [Handelman 1981] (this is called the strong
Perron–Frobenius test for eventual positivity).

Definition 1.5. A real eigenvalue γ ∈ σ(A) is called the rightmost eigenvalue if it
is simple and for all λ ∈ σ(A), λ 6= γ implies Re(λ) < γ , where Re(α) denotes the
real part of a complex number α.

Not every matrix has a rightmost eigenvalue. Definition 1.5 was motivated by
the following test for eventual exponential positivity, which is implicit in the proof
of Theorem 3.3 in [Noutsos and Tsatsomeros 2008] (and also follows immediately
from that theorem, which is Theorem 1.1 above).

Proposition 1.6. Let A ∈ Rn×n . Then A is eventually exponentially positive if and
only if A has a rightmost eigenvalue having positive left and right eigenvectors.

An eventually positive matrix must have a positive entry in each row and column.
This need not be the case for an eventually exponentially positive matrix (for
example, an eventually exponentially positive matrix that realizes BD(−) in (3) will
not have a positive entry in each row and column). However, certain conditions
on the eigenvalues require an eventually exponentially positive matrix to have a
positive entry in each row and column.

Proposition 1.7. Let A be an eventually exponentially positive matrix.

1. If A has an eigenvalue with nonnegative real part, then each row and column of
A has a positive entry.

2. If A does not have an eigenvalue with positive real part, then each row and
column of A has a negative entry.

Proof. If A has an eigenvalue with nonnegative real part, then the rightmost
eigenvalue γ of A is nonnegative. By Proposition 1.6, A has positive right and left
eigenvectors corresponding to γ . Suppose that row k of A has no positive entry.
Since A is an eventually exponentially positive matrix, A is irreducible, so row k
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has a negative entry. But then if x > 0, (Ax)k < 0 and (γ x)k ≥ 0, so x is not a
(right) eigenvector. Thus every row of A has a positive entry. The result for column
k of A is established with the left eigenvector. Similarly, if A has no eigenvalue
with positive real part, then γ ≤ 0 and every row and every column of A has a
negative entry. �

A square sign pattern A (or matrix) is reducible if there exists a permutation
matrix P such that

PAPT
=

[
A11 0
A21 A22

]
,

where A11 and A22 are nonempty square sign patterns (or matrices) and 0 is a
(possibly rectangular) block consisting entirely of zero entries. If A is not reducible,
then A is called irreducible (note any 1×1 matrix is irreducible). Since an eventually
exponentially positive matrix must be irreducible, a PEEP sign pattern must be
irreducible.

For an n×n sign pattern A= [αi j ], the digraph of A, denoted 0(A), has vertex
set {1, . . . , n} and arc set {(i, j) :αi j 6= 0}. A nonnegative sign pattern A is primitive
if A is irreducible and the greatest common divisor of the lengths of the cycles of
0(A) is one; for a nonnegative matrix the definition of primitive is analogous. It is
well known that a primitive (necessarily nonnegative) matrix is eventually positive.

Let A= [αi j ], Â= [α̂i j ] be sign patterns. If αi j 6= 0 implies αi j = α̂i j , then A

is a subpattern of Â and Â is a superpattern of A. Define the positive part of A to
be A+ = [α+i j ], where

α+i j =

{
+ if αi j =+,

0 if αi j = 0 or αi j =−.

Note A+ is a subpattern of A.

2. PEEP sign patterns

In this section we establish general properties of PEEP sign patterns. Some of these
results will be used in Section 3 to determine which sign patterns of order at most 3
are PEEP.

Remark 2.1. If AD(+) is a PEP sign pattern, then AD(−) is a PEEP sign pattern,
because if A ∈Q(AD(+)) is eventually positive, there exists t > 0 such that A− t I ∈
Q(AD(−)).
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A PEP sign pattern must have a positive entry in each row and column. This need
not be the case for an eventually exponentially positive matrix. The sign pattern

BD(−) =

− − 0
+ − −

− + −

 (3)

is PEEP because the sign pattern BD(+) in (1) is PEP. But BD(−) does not have
a + entry in row 1 nor in column 3. If A ∈ Rn×n is an eventually exponentially
positive matrix with nonnegative trace, then A has an eigenvalue with nonnegative
real part. As a consequence of Proposition 1.7, we have the following observation.

Observation 2.2. If A is a PEEP sign pattern with no − on the diagonal, then A

has a + in each row and column.

The next example shows that the problem of determining which sign patterns
are PEEP is not equivalent to the problem of determining which sign patterns are
PEP, because the fact that AD(+) is PEP does not guarantee that A is PEEP.

Example 2.3. The sign pattern

BD(0) =

0 − 0
+ 0 −
− + 0


is not PEEP by Observation 2.2, because BD(0) has no − on the diagonal and no +
in row 1. Note that (BD(0))D(+) =BD(+) from (1) is PEP.

Related sign patterns are discussed in Corollary 3.4 and Theorem 3.5 below.
Matrix perturbations are used extensively in the study of potential eventual

positivity. It is well known that for any matrix A ∈ Rn×n , the eigenvalues of A
are continuous functions of the entries of A. For a simple eigenvalue, the same
is true of the eigenvector [Golub and Van Loan 1996, p. 323]. Because a matrix
is eventually positive if and only if it passes the strong Perron–Frobenius test,
eventual positivity is inherited by matrices that are small perturbations of eventually
positive matrices. That is, if A ∈ Rn×n is eventually positive and C ∈ Rn×n is any
matrix, then for ε sufficiently small, A(ε)= A+ εC is eventually positive (see, for
example, [Ellison et al. 2010] for applications of this technique). The analogous
result for eventually exponentially positive matrices follows from Proposition 1.6
and perturbation theory.

Theorem 2.4. If A ∈ Rn×n is eventually exponentially positive and C ∈ Rn×n is
any matrix, then for ε sufficiently small, A(ε)= A+ εC is eventually exponentially
positive.
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If Â is a superpattern of a PEEP sign pattern A, and A ∈ Q(A) is eventually
exponentially positive, then a matrix Â realizing Â can be obtained by a small
perturbation of A.

Corollary 2.5. If A is a PEEP sign pattern, then every superpattern of A is PEEP.
If Â is a sign pattern that is not PEEP, then no subpattern of Â is a PEEP sign
pattern.

If a sign pattern A has a primitive positive part, it is PEP. There is an analogous
result for PEEP sign patterns.

Theorem 2.6. Let A be a sign pattern such that A+ is irreducible. Then A is PEEP.

Proof. Let B be the matrix obtained from A+ by replacing + by 1. Since B+ I ≥ 0,
has positive entries on its diagonal, and is irreducible, B+ I is primitive and thus
eventually positive. So B is eventually exponentially positive and A+ is PEEP.
Since A is a superpattern of A+ , A is PEEP. �

The converse of Theorem 2.6 is false because the sign pattern BD(+) (1) is a
PEP sign pattern with reducible positive part.

Several necessary or sufficient conditions for PEP sign patterns were established
in [Berman et al. 2010]. The sign patterns

B1 =

− − ++ − −

− + −

 , B2 =

− − −+ − −

− + −


are PEEP and demonstrate that the following statements about PEP sign patterns
do not necessarily hold for PEEP sign patterns:

1. For n ≥ 2, an n×n sign pattern that has exactly one positive entry in each row
and each column is not PEP.

2. If n ≥ 2, the minimum number of + entries in an n×n PEP sign pattern is n+1.

3. If A is PEP, then 0(A) has a cycle (of length one or more) consisting entirely
of + entries.

Certain conditions that prevent a sign pattern from being PEP also prevent a sign
pattern from being PEEP:

Theorem 2.7 [Berman et al. 2010]. Let A = [αi j ] be an n×n sign pattern with
n ≥ 2 such that for every k = 1, . . . , n,

1. αkk =+ , and

2. (a) no off-diagonal entry in row k is + , or
(b) no off-diagonal entry in column k is + .

Then A is not PEP.
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Corollary 2.8. Let A= [αi j ] be an n×n sign pattern with n≥ 2 such that for every
k = 1, . . . , n,

(a) no off-diagonal entry in row k is + , or

(b) no off-diagonal entry in column k is + .

Then A is not PEEP.

Proof. By Theorem 2.7, AD(+) is not PEP, so A is not PEEP. �

Corollary 2.9. If A is a PEEP sign pattern, then there exists k such that both row
and column k have an off-diagonal + . Hence, a PEEP sign pattern must have at
least 2 positive off-diagonal entries.

A square sign pattern A is a Z sign pattern if αi j 6= + for all i 6= j .

Corollary 2.10. If A is an n×n Z sign pattern with n ≥ 2, then A is not PEEP.

Proposition 2.11 [Berman et al. 2010]. Let

K=


[+] [−] [+] . . .

[−] [+] [−] . . .

[+] [−] [+] . . .
...

...
...

. . .


be a square checkerboard block sign pattern where the block [+] (respectively,
[−]) consists of entirely positive (respectively, entirely negative) entries, and the
diagonal blocks are square. Then −K is not PEP, and if K has a negative entry,
then K is not PEP.

Corollary 2.12. No subpattern of a checkerboard pattern K that contains a negative
entry is PEEP.

Remark 2.13. Provided the sign pattern K contains a negative entry,

−K=


[−] [+] [−] . . .

[+] [−] [+] . . .

[−] [+] [−] . . .
...

...
...

. . .


is PEEP because the positive part of (−K)D(+) is primitive.

For a PEP sign pattern A, Lemma 4.3 in [Berman et al. 2010] establishes the
existence of a standard form of a matrix C ∈ Q(A) with ρ(C)= 1 and C1= 1. We
have a related result for PEEP sign patterns.

Proposition 2.14. Let A be a PEEP sign pattern. There is an eventually exponen-
tially positive matrix C ∈ Q(A) such that the rightmost eigenvalue γ (C) lies in
{−1, 0, 1} and C1= γ (C)1.
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Proof. There exists A ∈ Q(A) that is eventually exponentially positive. Let γ (A) be
the rightmost eigenvalue of A and v = [v1, . . . , vn]

T be the corresponding positive
eigenvector. If γ (A) 6= 0, let B = (1/|γ (A)|)A; otherwise, B = A. Then B ∈Q(A),
B is eventually exponentially positive, γ (B) ∈ {−1, 0, 1}, and Bv = γ (B)v. Let
C = D−1 B D for D= diag(v1, . . . , vn). Then C ∈Q(A) is eventually exponentially
positive and γ (C) ∈ {−1, 0, 1} with C1= γ (C)1. �

We have only started the study of PEEP sign patterns and there are many open
questions. Here we highlight one particular question.

Question 2.15. What is the minimum number of positive entries in an n×n PEEP
sign pattern, or equivalently, what is the minimum number of positive entries in an
eventually exponentially positive n×n matrix?

This question is motivated by Corollary 4.5 in [Berman et al. 2010], which states
that the minimum number of positive entries in an n×n PEP sign pattern is n+ 1
(for n ≥ 2). An upper bound for the minimum number of + entries in a PEEP sign
pattern is given by the following example.

Example 2.16. Let Cn be the n×n sign pattern

Cn =


0 + 0 · · · 0
0 0 + · · · 0
...
...
...
. . .

...

0 0 0 · · · +
+ 0 0 · · · 0

 .

Since Cn is nonnegative and irreducible, it is PEEP; note that Cn has n positive
entries.

Corollary 2.17. The minimum number of positive entries in an n×n PEEP sign
pattern is at most n.

The sign pattern BD(−) in (3) is a 3×3 pattern that has only 2 positive entries,
and from Theorem 3.5 in the next section it follows that the minimum number
of positive entries in a 3×3 PEEP sign pattern is exactly 2. But we do not have
examples of PEEP sign patterns having fewer than n positive entries for n > 3.

3. Classification of small order PEEP sign patterns

In this section we classify all 2×2 and 3×3 sign patterns as to whether the pattern
is PEEP.

Two n×n sign patterns A and A′ are equivalent if A′= PT AP or A′= PT AT P
(where P is a permutation matrix). Throughout this section: ? is one of 0,+,−;
⊕ is one of 0,+; 	 is one of 0,−.
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It is clear that every 1×1 sign pattern is PEEP. The classification of 2×2 sign
patterns as to whether they are PEEP is immediate from the classification as to
whether they are PEP.

Proposition 3.1. A 2×2 sign pattern is PEEP if and only if it is of the form[
? +
+ ?

]
. (4)

Proof. Sign patterns of the form (4) have A+ irreducible and so by Theorem 2.6,
they are PEEP. For the converse, let A be a 2×2 PEEP sign pattern. Then AD(+)

is PEP. In [Berman et al. 2010] it was shown that any 2×2 PEP sign pattern has
both off-diagonal entries equal to + , so A must also have both off-diagonal entries
equal to + . �

The classification of 3×3 sign patterns as to whether they are PEEP makes use
of the following classification as to whether they are PEP.

Theorem 3.2 [Berman et al. 2010]. A 3×3 sign pattern A is PEP if and only if
A+ is primitive or A is equivalent to a sign pattern of the form

B=

+ − 	+ ? −
− + +

 . (5)

Theorem 3.3. Let

B =

 x1 −b12 −b13

b21 x2 −b23

−b31 b32 x3

 , with bi j > 0 for all i, j = 1, 2, 3,

be an eventually exponentially positive matrix (note there is no restriction on the
signs of xi , i = 1, 2, 3). Then x2 <min{x1, x3}.

Proof. Let γ be the rightmost eigenvalue of B. Observe that B− γ I is eventually
exponentially positive with rightmost eigenvalue 0. By Proposition 1.7, B−γ I must
have a positive entry in each row and column, so x1, x3 > γ . Since the rightmost
eigenvalue of B− γ I is simple, 0> tr(B− γ I )= (x1− γ )+ (x2− γ )+ (x3− γ ).
The first and third term in this sum are positive, so tr(B − γ I ) < 0 implies that
x2 < γ . �

Corollary 3.4. A sign pattern equivalent to one of the forms

M1 =

− − −+ + −

− + −

 or M2 =

− − −+ + −

− + +


is not PEEP.
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Theorem 3.5. A 3×3 sign pattern is PEEP if and only if it is equivalent to one of
the following four forms:

A1 =

 ? + ?
? ? +
+ ? ?

 , A2 =

 ? + +
+ ? 	
+ 	 ?

 ,
A3 =

 ? − 	
+ − −

− + ?

 , A4 =

+ − 	+ ⊕ −

− + +

 .
Proof. The sign patterns A1 and A2 are PEEP by Theorem 2.6. Note that A4 is of
the form B from Theorem 3.2; therefore A4 is PEP and hence is PEEP. Let

A =

 0 −10 0
22 −33 −8
−16 22 0

 .
Since the spectrum of A is {−5,−14 + 2i

√
15,−14 − 2i

√
15}, γ = −5 is the

rightmost eigenvalue of A, and γ has the right and left eigenvectors [2, 1, 2]T

and [18, 25, 40]T respectively. Thus A is eventually exponentially positive by
Proposition 1.6. Note that A ∈ Q(A3(0)) where A3(0) is the form of A3 with all
flexible entries set to zero. Therefore A3(0) is PEEP, and by Corollary 2.5 every
superpattern of A3(0) is PEEP. Hence every sign pattern of the form A3 is PEEP.

Let A be a 3×3 PEEP sign pattern. Then by Observation 1.4, AD(+) is PEP.
By Theorem 3.2 either (AD(+))

+ is primitive or AD(+) is of the form B in (5). If
(AD(+))

+ is primitive, then A is of the form A1 or A2. Now suppose that (AD(+))
+

is not primitive. Then we must consider all possible sign patterns A such that

AD(+) =

+ − 	+ + −

− + +

 .
The sign patterns M1 and M2 in Corollary 3.4 and their subpatterns rule out all of
the sign patterns that could possibly have this AD(+) except for those of the form
A3 and A4. Therefore if A is a 3×3 PEEP sign pattern, it must be of one of the
forms A1,A2,A3 or A4. �

The symbols 	 and ⊕ are used in Theorem 3.5 so that the listed patterns are
disjoint classes. For example, if the (2, 2)-entry of A4 were changed to ?, then one
sign pattern of that form would be equivalent to one sign pattern of the form of A3.
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