
inv lve
a journal of mathematics

msp

Expected conflicts in pairs of rooted binary trees
Timothy Chu and Sean Cleary

2013 vol. 6, no. 3



msp
INVOLVE 6:3 (2013)

dx.doi.org/10.2140/involve.2013.6.323

Expected conflicts in pairs of rooted binary trees
Timothy Chu and Sean Cleary

(Communicated by Robert W. Robinson)

Rotation distance between rooted binary trees measures the extent of similarity of
two trees with ordered leaves. There are no known polynomial-time algorithms
for computing rotation distance. If there are common edges or immediately
changeable edges between a pair of trees, the rotation distance problem breaks
into smaller subproblems. The number of crossings or conflicts of a tree pair also
gives some measure of the extent of similarity of two trees. Here we describe
the distribution of common edges and immediately changeable edges between
randomly selected pairs of trees via computer experiments, and examine the
distribution of the amount of conflicts between such pairs.

1. Introduction

Binary trees are used in a broad spectrum of computational and mathematical
applications. Binary search trees, for example, are widely used in databases and can
be used to ensure efficient searches. The shape of a binary search tree is important
in guaranteeing this efficiency — a balanced binary tree guarantees worst-case
search time on the order of log(n), whereas a tree with a stringy shape will have
worst-case search time on the order of n, where n is the number of nodes in the
tree, or equivalently, items to be stored. Because of such applications, there has
been a great deal of interest in operations which preserve the left-to-right order
of the leaves of a tree while adjusting the shape of the tree. See [Knuth 1973]
for background and numerous algorithms related to tree shape and balance. One
widely studied approach to adjust tree shape uses rotations in binary trees where
there is a left-to-right order on the leaves. A rotation is a single move at a particular
node which promotes one of the grandchild nodes to a child node, switches another
grandchild to have a different parent, and demotes a child node to a grandchild
node, while preserving the order. Such an operation is pictured in Figure 1.

MSC2010: 05C05, 68P05.
Keywords: random binary tree pairs.
The authors gratefully acknowledge support from the National Science Foundation under
grant 0811002.

323

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2013.6-3
http://dx.doi.org/10.2140/involve.2013.6.323


324 TIMOTHY CHU AND SEAN CLEARY

N

A B
C

←→ N

A
B C

Figure 1. Rotation at a node N . Right rotation at N transforms
the left tree to the right one, and left rotation at N is the inverse
operation which transforms the right tree to the left one. A, B,
and C represent leaves or subtrees, and the node N could be at the
root or any other position in the tree.

Any shape tree of size n nodes can be converted to any other tree of the same size
via a sequence of rotations, as described in [Culik and Wood 1982]. The minimum
length of possible sequences of rotations converting a tree S with n nodes to a
tree T with n nodes is the rotation distance between S and T . Though there are
some properties of rotation distance that are well understood, there is no known
effective algorithm for computing rotation distance. Sleator, Tarjan and Thurston
[STT 1988] showed that the distance is never more than 2n− 6, and furthermore
that for very large n that bound is achieved.

Here, we investigate some measures of tree similarity which are related to rotation
distance. When there are common edges, described below, this reduces rotation
distance and allows breaking of the problem into smaller parts. When there are
one-off edges, described below, there is an immediate essential possible first move
which then results in a common edge, again allowing reduction into parts. Another
measure of tree similarity is the count of the number of conflicting edge pairs,
described below. For each of these quantities, we investigate with a large number
of computational experiments how quickly these quantities grow with tree size. In
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Figure 2. A common edge between a pair of trees. The green edge
is common to both trees and separates leaves 4–6 from the other
leaves in both trees. The root node interval is always [0, n], and
we do not consider that to represent a common edge.
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the case of common edges and one-off edges, the growth is linear with tree size and
in a manner consistent with the asymptotic behavior understood combinatorially.
In the case of conflicting edges, we see growth which appears to lie between linear
and quadratic.

By binary tree of size n, we mean a rooted binary tree with n leaves arranged
in a left-to-right order, with leaves numbered from 0 to n− 1. To each edge, we
associate an interval [i, j], where i is the leftmost leaf in the subtree attached to that
edge’s lower side, and similarly j is the rightmost such leaf. A pair of trees (S, T )
has a common edge if an edge [i, j] is present in both trees, as illustrated in Figure 2.
An edge [i, j] in S is a one-off edge with respect to T if it is itself not a common
edge of S with respect to T , but there is a single rotation in S which changes [i, j]
to a new edge which is now in common with T .

An edge [i, j] is in conflict with an edge [l,m] if it is not possible for both
edges to exist simultaneously in the same tree. We can readily detect edge conflicts
by noting that each edge partitions the set of leaves into two sets, obtained by
considering connected components of the forest obtained by deleting that edge. If
the partitions of leaves are incompatible, the edges had a conflict. For example, in a
tree with six leaves, an edge with interval label [2, 5] conflicts with an edge [0, 3].
The edge [2, 5] partitions the leaves into two sets: {0, 1} and {2, 3, 4, 5} and the
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Figure 3. The tree pair (A, B) has two one-off edges in A, marked
in red and blue. The tree pair (A, B) has no edges in common,
but left rotation at the root of A gives tree C , which has the red
edge [0, 2] in common with B. Similarly, right rotation at the node
marked [3, 5] in A gives tree D which has the blue edge [4, 5] in
common with B.
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edge [0, 3] partitions the leaves into two sets: {0, 1, 2, 3} and {4, 5}. There is no
overall partition compatible with both such partitions, so that edge pair is in conflict,
as it would not be possible for those two edges to be present in the same tree
simultaneously. An example illustrating this particular edge pair in conflict is given
as trees A and B in Figure 3. Using the bijection between trees and triangulations
of regular polygons, described in [STT 1988], each conflict can be counted as an
intersection between edges of superimposed triangulations.

Since the number of trees of size n is the n-th Catalan number Cn , and Cn grows
exponentially on the order of 4nn−3/2, the number of pairs of trees of size n grows on
the order of 16nn−3. Thus, computing these quantities exhaustively is not possible
except for very small n. Instead, we use sampling techniques, experimenting
computationally by repeatedly choosing pairs of trees of size n uniformly at random
and computing and tabulating the results.

2. Conflicts and one-off edges

As described in [Cleary and St. John 2010], common edges permit the subdivision
of the rotation distance problem into smaller pieces. From [STT 1988], one-off
edges can be moved immediately to find a geodesic, and the resulting common
edge will then subdivide the problem as well.

The existence of common edges of a particular peripheral type was investigated by
Cleary, Elder, Rechnitzer and Taback, who showed in [CERT 2010], in connection
with using tree-pair diagrams to represent elements of Thompson’s group F , that a
randomly selected tree pair has at least one common peripheral edge. The number
of such common edges with respect to trees generated randomly by the Yule process
was investigated experimentally by Cleary, Passaro and Toruno [CPT 2013].

To understand the typical behavior of common edges, one-off edges, and con-
flicts between tree pairs, we performed a range of computational experiments to
investigate. In each case, we generated tree pairs of a particular size randomly
using Rémy’s bijection [Rémy 1985], which allows efficient generation of trees
of size n uniformly at random through an iterative process. After generating two
trees randomly, we collected the relevant information about common edges, one-off
edges, and conflicts and then iterated to collect large-sample data. As anticipated,
the various measures of complexity grew with tree size. We present summaries of
those experiments below.

We considered approximately 10 million tree pairs total of sizes ranging from
10 to 12,000. The bulk of the computational effort lay for trees of size 20 to 800.
These results are presented in Tables 1–3.

The number of common edges grows linearly with size as shown in Figure 4,
and the line of best fit for the data is an excellent match with the asymptotic exact
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Tree size range Average common edge fraction σ edge fraction

≤ 40 0.1361 0.09462
41–80 0.1052 0.04494
81–120 0.1004 0.03422

121–200 0.09720 0.02613
201–400 0.09534 0.01945
401–1000 0.09409 0.01358

1001–12000 0.09310 0.004324

Table 1. Fractions of tree common edges and their standard devia-
tions. The asymptotic fraction is known to be about 0.092958.
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Figure 4. The average number of common edges grows linearly
with tree size, with tight error bars from the large sample sizes
used over this range. The slope of this line is very close to the
expected 0.093 from the asymptotic analysis.

growth proven by Cleary, Rechnitzer and Wong in [CRW 2013].
The number of one-off edges grows linearly with size as shown in Figure 5,

and the line of best fit for the data shows very close agreement with the number
of common edges. This experimental, numerical observation led to renewed ef-
forts using asymptotic combinatorial methods, and that equivalence is now proven
asymptotically in [CRW 2013] by a delicate analysis of some of the relevant
generating functions. We note that though the means are asymptotically the same,
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Tree size range Average one-off fraction σ one-off fraction

≤ 40 0.1362 0.04890
41–80 0.1053 0.02591
81–120 0.1004 0.01986

121–200 0.09725 0.01516
201–400 0.09536 0.01129
401–1000 0.09408 0.007932

1001–12000 0.09307 0.002619

Table 2. Fractions of tree one-off edges and their standard devia-
tions. The asymptotic fraction is known to be about 0.092958.
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Figure 5. The average number of one-off edges grows linearly
with tree size, again with tight error bars from the large sample
sizes used over this range and this quantity is very close to the
average number of common edges of similarly sized tree pairs.
The slope of this line is very close to the expected 0.093 from the
asymptotic analysis.

the distributions appear to be significantly different. The standard deviation for the
number of one-offs generally has a standard deviation of a little more than half that
of the number of common edges. The combinatorial analysis of [CRW 2013] only
applies to the means — it appears that the distributions are genuinely different.
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Tree size range Average conflicts per edge σ conflicts per edge

≤ 40 3.2418 0.9985
41–80 5.837 1.320

*81–120 6.968 1.409
121–200 8.321 1.533
201–400 9.768 1.628

*401–1000 11.71 1.792
*1001–12000 17.45 1.887

Table 3. Average number of conflicts per edge and their standard deviations.

The asymptotic analysis of [CRW 2013] shows that for large n, the expected
number of common edges is

16− 5π
π

n+
7π − 20
π

+ O
(

log n
n

)
,

which is approximately

0.092958n+ 0.633802+ O
(

log n
n

)
.

For the average number of common edges in a tree of size n, this experimental data
yields a best linear fit of 0.092950n+ 0.643, and similarly for the average number
of one-off edges, the experimental data yields a best linear fit of 0.092867n+0.711.

We now turn to the number of conflicts between randomly selected pairs of trees,
shown in Figure 6. It is apparent from this data that the typical number of conflicts
per edge grows quite slowly. Even in trees of size multiple thousands, where in
theory an edge could cross hundreds of other edges, typically the mean number of
conflicts per edge is quite small, for example about 17. This illustrates that a tree of
size n selected uniformly at random tends to be rather “stringy” rather than balanced
(see [Knuth 1969]), and a pair of such stringy trees is not likely to have edges that
conflict with large swaths of the other trees. Though it is possible to construct
tree pairs of increasing size whose number of conflicts grows quadratically, these
constructions do not represent typical behavior of randomly selected tree pairs.

This data shows that the average number of conflicts grows more than linearly
with n, but subquadratically. The maximum possible number of conflicts is bounded
above by a quadratic function — each edge could conflict with at most n− 1 other
edges, giving a crude upper bound of n2

− n. Since each unmatched edge gives
at least one conflict, the average number of conflicts thus is growing somewhere
between linearly and quadratically. It is difficult to ascertain the exact growth of
the mean number of conflicts. Using the data set over the range from 5 to 12,000, a
log-log analysis, as shown in Figure 7, suggests that the power law of best fit over
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Figure 6. The number of conflicts grows with tree size in a manner
which appears to be between linear and quadratic, with a slight
upward concavity apparent over this range.
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Figure 7. Log-log plot of the average number of conflicts against
size. This relationship appears to be slightly concave downward,
indicating that the asymptotic behavior is probably a lower-degree
power law than the straight-line fit analysis would indicate.
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the pictured range is 1.3173. There may also be logarithmic terms present in the
growth which are difficult to detect experimentally.

3. Discussion

For common edges and one-off edges, these experiments worked well to establish
the behavior for growing tree size. These computational experiments confirm close
agreement to the asymptotic behavior of common edges, with relatively quick
convergence to the asymptotic limit. Furthermore, if we ignore the smaller tree
pairs of size 16 and less, the agreement is even stronger with the asymptotic behavior.
These experiments also suggested that the average number of one-off edges was the
same as common edges, which in other work has now been proven asymptotically to
be the case. Again we saw close agreement with the asymptotic limit and relatively
quick convergence.

For conflicts between tree pairs, these experiments gave some indication of the
order of growth, with some insight coming from the relatively low overall average
conflicts between randomly selected tree pairs. But there was not conclusive enough
behavior to establish a likely asymptotic estimate for the growth of the number
of conflicts as tree size increases. The possibility of logarithmic terms in the
asymptotic terms suggests that it may be difficult to detect the asymptotic behavior
more precisely with experimental methods. With fixed computational resources
and computation time, investigating larger size trees gives a significant increase in
the resulting error bars. Nevertheless, the power-law behavior is apparent from the
analysis and we expect the possible logarithmic correction terms, for example, to
not be dramatic.
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