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In this paper we present a new construction of the ternary Cantor set within
the context of Gromov hyperbolic geometry. Unlike the standard construction,
where one proceeds by removing middle-third intervals, our construction uses the
collection of the removed intervals. More precisely, we first hyperbolize (in the
sense of Gromov) the collection of the removed middle-third open intervals, then
we define a visual metric on its boundary at infinity and then we show that the
resulting metric space is isometric to the Cantor set.

1. The ternary Cantor set

The ternary Cantor set C is one of the most familiar fractals in mathematics. Recall
its standard construction, which is based on the Euclidean notion of length. Begin
with the closed unit interval C0 = [0, 1] ⊆ R, then remove the open middle-third
interval, constructing C1 =

[
0, 1

3

]
∪
[2

3 , 1
]
. We then remove the middle-third of

each resulting closed interval again, finding

C2 =
[
0, 1

9

]
∪
[2

9 ,
1
3

]
∪
[2

3 ,
7
9

]
∪
[ 8

9 , 1
]
.

Continuing in this manner, we construct C by taking the intersection of all C ′ks,

C=

∞⋂
k=1

Ck .

Graphically, C0 through C6 are shown in Figure 1. The ternary Cantor set has
many interesting properties. As the intersection of closed intervals in (R, | . |), it
is compact. It is also perfect (i.e., it contains no isolated points), uncountable and
totally disconnected. The complement of the ternary Cantor set in [0, 1], CS, is
called the Cantor string. It consists of the countable union of the removed open
middle-third intervals. Cantor strings are subjects of study in fractal geometry
[Lapidus and van Frankenhuijsen 2006].
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Figure 1. Sets C0 through C6.

2. Hyperbolic construction

We begin with a brief discussion of Gromov hyperbolic spaces. A metric space
(X, d) is called Gromov δ-hyperbolic (or δ-hyperbolic) if there exists a δ ≥ 0 such
that for all x, y, z, w ∈ X ,

d(x, y)+ d(z, w)≤max{d(x, z)+ d(y, w), d(x, w)+ d(y, z)}+ 2δ. (2-1)

For x, y, z ∈ X , the Gromov product of x and y with respect to z is defined by

(x |y)z = 1
2 [d(x, z)+ d(y, z)− d(x, y)]. (2-2)

Alternatively, the space (X, d) is δ-hyperbolic if

(x |y)v ≥min{(x |z)v, (z|y)v}− δ,

for all x, y, z, v ∈ X (see, for example, [Väisälä 2005]). A bounded metric space
X is always δ-hyperbolic with δ ≤ diam X , so only unbounded metric spaces may
have more interesting characteristics.

To each Gromov hyperbolic space X , we associate a boundary at infinity, ∂X
(also called the Gromov boundary). Fix a base point v ∈ X . A sequence {ai } in X
is said to converge at infinity if (ai |a j )v→∞ as i, j→∞. Two such sequences
{ai } and {bi } are equivalent if (ai |bi )v→∞ as i→∞. The boundary at infinity
is defined to be the equivalence classes of sequences converging at infinity. The
boundary at infinity supports a family of so-called visual metrics. A metric d on
∂X is called a visual metric if there exists a v ∈ X,C ≥ 1 and ε > 0 such that for
all x, y ∈ ∂X ,

1
C
ρε,v(x, y)≤ d(x, y)≤ Cρε,v(x, y), where ρε,v(x, y)= e−ε(x |y)v .

Here (x |y)v is the Gromov product on ∂X , defined by

(x |y)v = inf{lim inf
i→∞

(ai |bi )v : ai ∈ x, bi ∈ y}
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and we set e−∞ = 0. The boundary at infinity of any Gromov hyperbolic space
endowed with a visual metric is bounded and complete [Bonk and Schramm 2000].

Our goal is to produce the ternary Cantor set within the framework of Gromov
hyperbolic spaces. As mentioned above, we do this by hyperbolizing the collection
of the removed middle-third intervals. Let X be the collection of all such intervals.
Hence, X contains intervals such as

( 1
3 ,

2
3

)
,
( 1

9 ,
2
9

)
,
( 7

9 ,
8
9

)
and so on. Note that

C= [0, 1] \
⋃
I∈X

I.

We now proceed to construct a metric h on X so that the space (X, h) is Gromov
hyperbolic. Let u H be a distance function defined on the set of all nonempty subsets
of [0, 1], defined by

u H (A, B)= sup{|x − y| : x ∈ A and y ∈ B}.

This distance function is called the upper Hausdorff distance (see, for instance,
[Hausdorff 1957; Ibragimov 2011a]). If I, J ∈ X with I = (a, b), J = (c, d) and
b < c, then u H = |a− d|. Note also that for each I, J ∈ X , we have

u H (I, J )≥ l(I )∨ l(J )≥
√

l(I ) · l(J ), (2-3)

where the first equality holds only if I = J and the second equality holds only if
l(I )= l(J ). Here, and in what follows, l(I ) denotes the Euclidean length of I ∈ X
and a ∨ b =max{a, b} for positive numbers a, b ∈ R.

Observe that since X consists of a disjoint collection of open intervals, it has a
natural order � induced by the usual order ≤ on R. Namely, we say that I � J if I
is to the left of J or if I = J . Observe also that if I � J � K , then

u H (I, K )≥ u H (I, J ). (2-4)

Now we define a distance function h on X . Given I, J ∈ X , let

h(I, J )= 2 log
u H (I, J )
√

l(I ) · l(J )
.

It is an immediate consequence of (2-3) that h is nonnegative, symmetric and
h(I, J )= 0 if and only if I = J . To show that h also satisfies the triangle inequality,
let I, J and K be arbitrary elements of X . Then the triangle inequality h(I, J )≤
h(I, K )+ h(K , J ) is equivalent to

2 log
u H (I, J )
√

l(I ) · l(J )
≤ 2 log

u H (I, K )
√

l(I ) · l(K )
+ 2 log

u H (K , J )
√

l(K ) · l(J )

= 2 log
u H (I, K ) · u H (K , J )

l(K )
√

l(I ) · l(J )
.
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This is true if and only if

l(K ) · u H (I, J )≤ u H (I, K ) · u H (K , J ). (2-5)

It is also a consequence of (2-3) and (2-4) that inequality (2-5) holds if either K � I
and K � J or I � K and J � K . Therefore, due to symmetry, it is enough to verify
the validity of (2-5) when I � K � J . In this case, since

u H (I, J )= u H (I, K )+ u H (J, K )− l(K ),

inequality (2-5) is equivalent to (u H (I, K )− l(K ))(u H (J, K )− l(K ))≥ 0, whose
validity follows from (2-3). Thus, h is a metric on X .

Next, we will show that h satisfies the Gromov hyperbolicity condition (2-1)
with δ = log 2. We will need the following lemma.

Lemma 2.6. For all I, J, K , L ∈ X , we have

u H (I, J ) · u H (K , L)≤ u H (I, K ) · u H (J, L)+ u H (I, L) · u H (J, K ).

Proof. Without loss of generality we can assume that I � J � K � L . Then
inequality (2-4) implies that

u H (I, K ) · u H (J, L)≥ u H (I, J ) · u H (K , L).

It also implies that

(u H (I, K )− u H (J, K ))(u H (J, L)− u H (J, K ))≥ 0,

which is equivalent to

u H (I, K ) · u H (J, L)≥ u H (J, K )((u H (I, K )+ u H (J, L)− u H (J, K )).

Since u H (I, L)= u H (I, K )+ u H (J, L)− u H (J, K ), we obtain that

u H (I, K ) · u H (J, L)≥ u H (J, K ) · u H (I, L).

Therefore, to prove the lemma it is enough to show that

u H (I, K ) · u H (J, L)≤ u H (I, L) · u H (J, K )+ u H (I, K ) · u H (J, L).

Let i, j, k, l denote the lengths of I, J, K , L and let a, b, c denote the distances
between I and J , J and K , K and L , respectively:

I J K L

cb
lk

a
i j
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Then

u H (I, K ) ·u H (J, L)

= (i+a+ j+b+k)( j+b+k+c+ l)

= (i+a+ j+b+k)( j+b+k)+(i+a+ j+b+k)(c+ l)

= (i+a+ j+b+k)( j+b+k)+(c+ l)( j+b+k)+(i+a)(c+ l)

< (i+a+k+b+ j+c+ l)( j+b+k)+(i+a+ j)(k+c+ l)

= u H (I, L) ·u H (J, K )+u H (I, J ) ·u H (K , L),

completing the proof. �

Theorem 2.7. The metric space (X, h) is Gromov δ-hyperbolic with δ ≤ log 2.

Proof. Let I, J, K , L ∈ X be arbitrary. Lemma 2.6 implies that

u H (I, J ) · u H (K , L)≤ 2
[
u H (I, K ) · u H (J, L)∨ u H (I, L) · u H (J, K )

]
.

Hence

h(I, J )+ h(K , L)= 2 log
u H (I, J )
√

l(I ) · l(J )
+ 2 log

u H (K , L)
√

l(K ) · l(L)

= 2 log
u H (I, J ) · u H (K , L)
√

l(I ) · l(J ) · l(K ) · l(L)

≤ 2 log
2
(
[u H (I, K ) · u H (J, L)] ∨ [u H (I, L) · u H (J, K )]

)
√

l(I ) · l(J ) · l(K ) · l(L)

= [h(I, K )+ h(J, L)] ∨ [h(I, L)+ h(J, K )] + 2 log 2,

as required. �

3. The boundary at infinity

We now discuss the boundary at infinity ∂X of the Gromov hyperbolic space (X, h).
Our goal is to construct a visual metric d on ∂X so that the space (∂X, d) is
isometric to the Cantor set C equipped with the standard Euclidean metric of the
real line. Denote the distance between real numbers x and y by |x − y|. Recall
that ∂X is the collection of equivalence classes of sequences in X converging at
infinity. Fix V =

( 1
3 ,

2
3

)
∈ X to be the base point. Observe that if the sequence {In}

converges at infinity, then lim j,k→∞(I j |Ik)V =∞.

Lemma 3.1. Given a ∈ ∂X , there exists unique xa ∈ C with the property that

lim
n→∞

u H (In, {xa})= 0 for each In ∈ a.
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Conversely, for each x ∈ C there exists a ∈ ∂X such that

lim
n→∞

u H (Jn, {x})= 0 for each Jn ∈ a.

Proof. Given {In} ∈ a, we have

(I j |Ik)V =
1
2

(
h(I j , V )+ h(Ik, V )− h(I j , Ik)

)
= log

u H (I j , V ) · u H (Ik, V )
l(V ) · u H (I j , Ik)

≤ log
2
3 ·

2
3

1
3 · u H (I j , Ik)

= log
4
3

u H (I j , Ik)
.

Since lim j,k→∞(I j |Ik)V = ∞, we obtain lim j,k→∞ u H (I j , Ik) = 0. For each n
choose some point xn ∈ In .

Next, given ε > 0, we can find n0 ∈ N such that

|x j − xk | ≤ u H (I j , Ik) < ε whenever j, k ≥ n0.

Hence the sequence {xn} is a Cauchy sequence in [0, 1]. Since [0, 1] is complete, it
converges to some point in [0, 1], call it xa . Now if we choose a different sequence
{yn}, where yn ∈ In , then

|yn − xa| ≤ |yn − xn| + |xn − xa| ≤ u H (In, In)+ |xn − xa|,

which implies that {yn} also converges to xa . Therefore, the point xa is well defined.
Finally, since

u H (In, {xa})≤ u H (In, {xn})+ u H ({xn}, {xa})≤ u H (In, In)+ |xn − xa|,

we obtain that limn→∞ u H (In, {xa})= 0, as required.
Now let {Kn} be another sequence converging at infinity and equivalent to {In},

i.e.,{Kn} ∈ a. Then we need to show that limn→∞ u H (Kn, {xa})= 0. Recall that the
equivalence of the two sequences {In} and {Kn} means that limn→∞(In|Kn)V =∞.
The latter implies, by the same argument as above, that limn→∞ u H (In, Kn)= 0.
Since

u H (Kn, {xa})≤ u H (Kn, In)+ u H (In, {xa}),

we obtain that limn→∞ u H (Kn, {xa})= 0. Thus, we have shown the existence and
uniqueness of xa .

It remains to show that xa ∈ C. Assume by contrary that x ∈ [0, 1] \C. Then
xa ∈ I for some I ∈ X . Since

0<
l(I )

2
≤ u H (In, {xa}) and lim

n→∞
u H (In, {xa})= 0,

we obtain the required contradiction. Thus, xa ∈ C, completing the proof of the
first part.
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To prove the second part, we first show that there exists a sequence {Jn} in X
converging at infinity and such that limn→∞ u H (Jn, {x})= 0. To construct such a
sequence, index X as follows: let Ji, j ∈ X , where 3−i is the length of the interval
Ji, j and j represents each interval in X of length 3−i . Here

i = 1, 2, 3, . . . and j = 1, 2, . . . 2i−1.

Note that J1,1 = V and that u H ({x}, J1,1)≤ 2/3 while l(J1,1)= 1/3. We can then
find J2, j2 such that u H ({x}, J2, j2)≤

2
9 and l(J2, j2)=

1
9 . Continuing in this manner,

for each n ∈ N, there exists jn such that

u H ({x}, Jn, jn )≤
2
3n and l(Jn, jn )= 3−n.

Put Jn = Jn, jn . Then limn→∞ u H (Jn, {x}) = 0, as required. Observe that since
u H (J j , Jk)≤ u H (J j , {x})+ u H (Jk, {x}), we have lim j,k→∞ u H (J j , Jk)= 0. Also,
since

(J j |Jk)V = log
u H (J j , V ) · u H (Jk, V )

l(V ) · u H (J j , Jk)

and u H (J j , V ) · u H (Jk, V ) ≤ 4
9 , we obtain that the sequence {Jn} converges at

infinity.
Finally, we let a ∈ ∂X to be the equivalence class of sequences converging at

infinity and equivalent to {Jn}. Then it follows from the first part that

lim
n→∞

u H (Jn, {x})= 0 for each Jn ∈ a,

completing the proof of the lemma. �

Lemma 3.1 implies that the map f : ∂X → C, given by f (a) = xa , is a well
defined, bijective map. Now we define a metric d on ∂X by setting d(a, b) =
|xa − xb|.

Lemma 3.2. The metric d is a visual metric. More precisely,

1
3 e−(a|b)V ≤ d(a, b)≤ 3e−(a|b)V for all a, b ∈ ∂X .

Proof. Recall that V =
( 1

3 ,
2
3

)
and

(a|b)V = inf{lim inf
n→∞

(In|Jn)V : In ∈ a, Jn ∈ b}.

Given a, b ∈ ∂X , let In ∈ a and Jn ∈ b be arbitrary sequences. Then

(In|Jn)V = log
u H (In, V ) · u H (In, V )

l(V ) · u H (In, Jn)
.

Lemma 3.1 implies that

lim
n→∞

u H (In, {xa})= 0 and lim
n→∞

u H (Jn, {xb})= 0.
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In particular, since∣∣u H (In, Jn)− |xa − xb|
∣∣≤ u H (In, {xa})+ u H (Jn, {ba}),

we have
lim

n→∞
u H (In, Jn)= |xa − xb| = d(a, b).

Also, since ∣∣u H (V, In)− u H (V, {xa})
∣∣≤ u H (In, {xa}),

we have

lim
n→∞

u H (V, In)= u H (V, {xa}) and lim
n→∞

u H (V, Jn)= u H (V, {xb}).

Therefore, as the sequences {In} ∈ a and {Jn} ∈ b were arbitrary, we obtain

(a|b)V = log
u H (V, {xa}) · u H (V, {xb})

l(V ) · d(a, b)
.

Finally, since l(V )= 1
3 and since 1

3 ≤ u H (V, {x})≤ 2
3 for all x ∈ [0, 1], we have

1
3 d(a, b)≤ 3

4 d(a, b)=
1
3

2
3 ·

2
3

d(a, b)≤ e−(a|b)V ≤
1
3

1
3 ·

1
3

d(a, b)= 3d(a, b).

Equivalently,
1
3 e−(a|b)V ≤ d(a, b)≤ 3e−(a|b)V ,

completing the proof. �

As an immediate consequence of Lemma 3.2 we obtain our main result.

Theorem 3.1. The spaces (∂X, d) and (C, | − |) are isometric.

4. Further remarks

Although this particular geometric approach was successful, there is no guarantee
that any such construction will produce the desired results. Consider, for example,
the following seemingly natural distance function ĥ, defined for any I, J ∈ X by

ĥ(I, J )= 2 log
l(I ∪ J )
√

l(I ) · l(J )
.

Since the distinct intervals in X are disjoint, l(I ∪ J ) = l(I ) + l(J ) whenever
I 6= J , from which it follows that ĥ(I, J ) ≤ ĥ(I, K )+ ĥ(K , J ), for all I, J, K ∈
X . Hence the space (X, ĥ) is a metric space. In fact, it is Gromov hyperbolic.
Indeed, by setting µ(I, J )= l(I ∪ J ), we find that µ(I, I ) > 0, µ(I, J )= µ(J, I )
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and µ(I, J ) ≤ µ(I, K ) + µ(K , J ), for all I, J, K ∈ X . By [Ibragimov 2011a,
Lemma 3.7], we have

µ(I, J ) ·µ(K , L)≤ 4
[
(µ(I, K ) ·µ(J, L))∨ (µ(I, L) ·µ(J, K ))

]
,

for all I, J, K , L ∈ X . Hence the space (X, ĥ) is δ-hyperbolic with δ ≤ log 4 (see,
for example, the proof of [Ibragimov 2011b, Theorem 2.1(2)]).

Next, we investigate the boundary at infinity of (X, ĥ). Observe that

m(I, J )≤ ĥ(I, J )≤ m(I, J )+ log 4 for all I, J ∈ X,

where

m(I, J )= log
max{l(I ), l(J )}
min{l(I ), l(J )}

.

Fix V =
( 1

3 ,
2
3

)
∈ X to be the base point. Then we have the following estimates for

the Gromov products in (X, ĥ) with respect to V :

(I |J )V = 1
2 [ĥ(I, V )+ĥ(J, V )−ĥ(I, J )]≤ 1

2 [m(I, V )+m(J, V )−m(I, J )]+log 4,

for all I, J ∈ X and, similarly

(I |J )V = 1
2 [ĥ(I, V )+ĥ(J, V )−ĥ(I, J )]≥ 1

2 [m(I, V )+m(J, V )−m(I, J )]−log 2.

Since
1
2 [m(I, V )+m(J, V )−m(I, J )] = log

1
l(I )∨ l(J )

− log 3,

we find

log
1

l(I )∨ l(J )
− log 6≤ (I |J )V ≤ log

1
l(I )∨ l(J )

+ log
4
3
.

Hence a sequence {In} in (X, ĥ) converges at infinity if and only if

max{l(In), l(Ik)} → 0 as n, k→∞.

But all such sequences are equivalent and, consequently, we obtain that the boundary
at infinity of (X, ĥ) consists of a single point.

We would like to also point out that this geometric construction differs from a
topological approach. Topologically, the Cantor set can be viewed as the end space
of the infinite binary tree, known as the Cantor tree (Figure 2), when the latter
is endowed with a path metric. The end space of such a tree is the collection of
all possible infinite branches emanating from its root, and is an ultrametric space
when equipped with a visual metric (see [Hughes 2004] for details). As the end
space is an ultrametric space, it can not be isometric to the Cantor set, although it
is homeomorphic to it.
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(root)

Figure 2. The Cantor tree.

Figure 3. The standard Sierpiński carpet and some of its removed squares.

Finally, although we will not pursue it in this paper, many other fractals, such as
Sierpiński carpets, can also be isometrically identified with the boundary at infinity
of a similarly hyperbolized collection of removed squares (Figure 3).
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