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We compute the Fl-Euler–Satake characteristics of an arbitrary closed, effective
3-dimensional orbifold Q where Fl is a free group with l generators. We focus
on the case of nonorientable orbifolds, extending previous results for the case
of orientable orbifolds. Using these computations, we determine examples of
distinct 3-orbifolds Q and Q′ such that χES

0 (Q) = χ
ES
0 (Q

′) for every finitely
generated discrete group 0.

1. Introduction

This paper completes a program to determine what information about the singular
set of an effective, low-dimensional orbifold is determined by the collection of
0-extensions of the Euler–Satake characteristic. For a finitely generated discrete
group 0 and an orbifold Q, the orbifold of 0-sectors of Q is a collection of orbifolds
of different dimensions containing Q as well as finite singular covers of the singular
strata of Q. The 0-extension of an orbifold invariant is defined by applying the
invariant to the orbifold of 0-sectors of Q.

The Euler–Satake characteristic χES(Q) of a closed orbifold Q is a rational
number that corresponds to χtop(M)/|G| in the case that Q is a global quotient
orbifold, i.e., is presented by the quotient of a closed manifold M by a finite group
G, where χtop denotes the usual Euler characteristic. It was defined in [Satake 1957]
where it is referred to as the Euler characteristic as a V -manifold and [Thurston
1997] where it is called the orbifold Euler characteristic. The 0-extensions of
the Euler–Satake characteristic of Q, denoted χES

0 (Q), include many interesting
orbifold invariants. When 0 = Z, χES

0 (Q) coincides with the Euler characteristic of
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the underlying topological space of Q. When 0=Z2, χES
0 (Q) is the stringy orbifold

Euler characteristic defined in [Dixon et al. 1985] for global quotients and [Roan
1996] for general orbifolds; see also [Adem and Ruan 2003]. Further extensions
corresponding to 0=Zl were suggested in [Atiyah and Segal 1989] and defined for
global quotients in [Bryan and Fulman 1998]. In [2001; 2003], Tamanoi introduced
and studied extensions of orbifold invariants for global quotients, including the
Euler–Satake characteristic, corresponding to arbitrary 0, and this definition was
extended to arbitrary orbifolds in [Farsi and Seaton 2010b; 2011].

In [Duval et al. 2010], it was demonstrated that the collection of Zl-extensions
of the Euler–Satake characteristic determine the diffeomorphism type of a closed,
effective, orientable 2-dimensional orbifold and that infinitely many were required to
do so. In addition, it was demonstrated that the χES

0 corresponding to any collection
of finitely generated discrete groups do not distinguish between certain effective,
nonorientable 2-orbifolds.

However, in [Schulte et al. 2011], it was shown that any infinite collection χES
Zl

along with any infinite collection of χES
Fl

determines the number and type of point
singularities of a closed, effective, nonorientable 2-orbifold and that an infinite
collection of both is required. In dimension 3, it is shown in [Carroll and Seaton
2013] that any infinite collection of the χES

Fl
determines the number and type of

point singularities of a closed, effective, orientable 3-orbifold and that infinitely
many are required to do so.

Here, we study the 0-Euler–Satake characteristics of effective, nonorientable
3-dimensional orbifolds and demonstrate that the above results do not extend to this
case. For a closed, effective 3-orbifold Q, we show that the χES

0 (Q) depend only on
the number and type of point singularities of Q and the Euler characteristic of the
(topological manifold) boundary of the underlying space of Q. In particular, these
invariants can be computed without determining the structure of the 2-dimensional
sectors of Q, which can be complicated and difficult to describe in general. We
detail a general computation of these invariants for 0 = Fl . This computation is
used to determine examples of closed, effective 3-orbifolds whose 0-Euler–Satake
characteristics coincide for every finitely generated discrete group 0, though the
point singularities and the topology of the underlying space are different.

This paper is organized as follows. In Section 2, we review the relevant back-
ground on orbifolds and 0-sectors as well as the structure of the singular set of a
closed 3-orbifold. In Section 3, we compute the Fl-Euler–Satake characteristics of
closed, effective 3-orbifolds. In particular, we demonstrate Proposition 3.6, which
reduces the computation of the χES

0 (Q) for any finitely generated discrete 0 to an
expression that does not involve the 2-dimensional sectors of Q. In Section 4, we
give an example of distinct orbifolds whose 0-Euler–Satake characteristics coincide
for every 0.
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2. Background and definitions

In this section, we review the relevant background material and fix notation. In
Section 2A, we recall the definition of an orbifold Q as well as the 0-sectors Q̃0 of
Q. Note that there are many definitions of orbifolds in the literature that are more
or less equivalent and suited to different purposes. Here, we consider an orbifold to
be the Morita equivalence class of a proper, étale, Lie groupoid, and the definition
of the 0-sectors is most natural from this perspective. However, we expect this
work to be accessible to readers with no knowledge of groupoids, and hence adapt
these definitions to the framework in which an orbifold structure is designated by
an atlas of orbifold charts. Though many of the required properties of 0-sectors are
developed elsewhere using groupoid language, we explain the ingredients we will
need in the language of charts below. In Section 2B, we review the classification of
finite subgroups of O(3), and in Section 2C, we use this classification to describe
the topology of a closed, effective 3-orbifold and its singular set.

The reader is referred to [Adem et al. 2007; Moerdijk and Mrčun 2003; Moerdijk
2002] for background on orbifolds from the perspective of Lie groupoids. See
[Thurston 1997; Chen and Ruan 2002; Satake 1957] for background from the
perspective of orbifold charts, [Boileau et al. 2003; Scott 1983] for more discussion
of 3-dimensional orbifolds and [Lerman 2010; Iglesias et al. 2010] for alternate
approaches to orbifolds. Note that some of the above references restrict their
attention to effective orbifolds. The 0-sectors of an orbifold are defined for global
quotient orbifolds in [Tamanoi 2001; 2003], and are defined for general orbifolds
in [Farsi and Seaton 2010b]; see also [Farsi and Seaton 2010a; 2011]. Note that the
0-sectors extend the definition of the inertia orbifold (see [Kawasaki 1978]) and
multi-sectors defined in [Adem et al. 2007; Chen and Ruan 2004].

2A. Orbifolds and 0-sectors. By an orbifold Q, we will mean a paracompact
Hausdorff space XQ that is homeomorphic to the orbit space |G| of a proper, étale
Lie groupoid G. We refer to a choice of G and homeomorphism between |G| and
XQ as a presentation of Q. For G, we may take an orbifold atlas for Q, consisting
of charts of the form {V,G, π} where V is an open neighborhood of the origin
in Rn equipped with the action of the finite group G, which may be taken to be a
subgroup of O(n) with respect to an inner product on Rn , and π : V → XQ is a
continuous function that induces a homeomorphism of G\V onto an open subset
of XQ . When a chart is labeled {Vp,G p, πp} for a point p ∈ XQ , we assume that
πp(0) = p and refer to {Vp,G p, πp} as an orbifold chart at p. An injection of
orbifold charts {V,G, π} → {V ′,G ′, π ′} is a pair ( f, λ) where λ : G→ G ′ is an
injective homomorphism and f : V → V ′ is a λ-equivariant open embedding such
that π ◦ f = π ′. Two charts {V,G, π} and {V ′,G ′, π ′} are said to be compatible if
for each p ∈ π(V )∩π ′(V ′), there is an orbifold chart {Vp,G p, πp} at p and a pair
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of injections of {Vp,G p, πp} into {V,G, π} and {V ′,G ′, π ′}, respectively. Then
an orbifold atlas is a collection of compatible charts whose images in XQ cover
XQ , and an equivalence of atlases can be defined which corresponds to Morita
equivalence for groupoid presentations. Diffeomorphic orbifolds are those presented
by Morita equivalent groupoids, e.g, equivalent orbifold atlases.

Note that any two injections ( f1, λ1) and ( f2, λ2) of orbifold charts {V,G, π}→
{V ′,G ′, π ′} are related by an element g of G ′; that is, f2(x) = g f1(x) for each
x ∈ V , and λ2(h) = gλ1(h)g−1 for each h ∈ G; see [Moerdijk and Pronk 1997,
Proposition A.1]. Applying this result to injections between a chart and itself, it
follows that the (isomorphism class of the) isotropy group G p of a point p ∈ XQ

does not depend on the choice of chart at p, and in fact can be defined as the
isotropy group of an arbitrary lift of p into an arbitrary chart. Moreover, though
the elements of G p depend on the choice of chart, their G p-conjugacy classes in a
chart at p are well-defined.

An orbifold Q is effective if it is presented by an effective groupoid G, or
equivalently if it is equipped with an atlas such that the group action in each chart is
effective. It is closed if XQ is compact and Q does not have boundary as an orbifold;
note that we have only considered orbifolds without boundary in the definitions
above. When Q is connected, the dimension of Q is the dimension of the object
space of an étale presentation G of Q, or equivalently the dimension of the domain
of each orbifold chart.

The Euler–Satake characteristic χES(Q) of a closed orbifold Q is defined in
terms of a triangulation of Q such that the isomorphism class of the isotropy group
is constant on the interior of each simplex. If T is such a triangulation and for each
σ ∈ T, Gσ denotes the isotropy group of a point on the interior of σ , then

χES(Q)=
∑
σ∈T

(−1)dim σ

|Gσ |
.

Let 0 be a finitely generated discrete group. The simplest description of the
0-sectors of Q is in terms of a proper étale Lie groupoid G presenting Q. In this
case the collection HOM(0,G) of groupoid homomorphisms from 0 to G inherits
the structure of a disjoint union of smooth manifolds, potentially of different
dimensions, as well as a smooth action of G. Then GnHOM(0,G) is itself a proper
étale Lie groupoid presenting the orbifold of 0-sectors Q̃0. Note that Q̃0 always
includes a connected component diffeomorphic to Q, called the nontwisted 0-sector
corresponding to the trivial homomorphisms; all other sectors are called twisted
0-sectors If Q is closed, then Q̃0 is a finite union of connected, closed orbifolds.

Alternatively, the 0-sectors of Q can be defined as follows. Let

XQ̃0
= {(p, (ϕp)G p) : p ∈ XQ, ϕp : 0→ G p},
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where (ϕp)G p denotes the G p-conjugacy class of ϕp. Given an orbifold chart
{Vp,G p, πp} for Q at a point p, define the orbifold chart {V 〈ϕp〉

p ,CG p(ϕp), π
ϕp
p }

for Q̃0 at (p, (ϕp)G p), where V 〈ϕp〉
p denotes the points in Vp fixed by the image

of ϕp, CG p(ϕp) denotes the centralizer of ϕp in G p, and πϕp
p : V 〈ϕp〉

p → XQ̃0
is

defined as follows. Given y ∈ V 〈ϕp〉
p , identify the isotropy group of πp(y) with

the isotropy group (G p)y ≤ G p, and then let ϕπp(y) : 0 → (G p)y denote the
homomorphism given by restricting the codomain of ϕp to this subgroup. Note
that the image Im(ϕp) of ϕp is contained in (G p)y precisely when y ∈ V 〈ϕp〉

p . Note
further that ϕπp(y) is well-defined only up to its Gπp(x)-conjugacy class. Then we
define πϕp

p (y)= (πp(y), (ϕπp(y))(G p)y ). The proof that the {V 〈ϕp〉
p ,CG p(ϕp), π

ϕp
p }

define an orbifold structure for XQ̃0
is omitted; it is given by translating the proof in

groupoid language given in [Farsi and Seaton 2010b] to this context. It is, as well,
a direct generalization of the proof of [Chen and Ruan 2004, Lemma 3.1.1] (see
also [Kawasaki 1978]), which is given in atlas language for the case 0 = Z. We
will, however, require an understanding of the injections between orbifold charts
for Q̃0, which we now describe.

Given an injection ( f, λ) of orbifold charts {Vq ,Gq , πq} → {Vp,G p, πp}, we
say that a homomorphism ϕq : 0→ Gq is locally covered by a homomorphism
ϕp : 0 → G p (with respect to the choice of charts and injection) if λ ◦ ϕq =

ϕp. Then it is easy to see that { f |
V
〈ϕq 〉
q
, λ|CGq (ϕq )} is an injection of the orbifold

chart {V 〈ϕq 〉
q ,CGq (ϕq), π

ϕq
q } into the orbifold chart {V 〈ϕp〉

p ,CG p(ϕp), π
ϕp
p }. Note

that if ϕp locally covers ϕq with respect to the injection ( f, λ) as above, then
for any other choice of injection ( f ′, λ′) : {Vq ,Gq , πq} → {Vp,G p, πp}, there
is a g ∈ G p such that g(λ ◦ ϕq)g−1

= ϕp; compare [Farsi and Seaton 2010b,
Definition 2.6]. In particular, if ϕp and ψp are both homomorphisms 0→G p, then
by the characterization of injections of a chart into itself given in [Moerdijk and
Pronk 1997, Proposition A.1] and recalled above, ϕp locally covers ψp if and only
if ϕp and ψp are G p-conjugate. By allowing finite sequences of local coverings (in
either direction), we extend the notion of local covering to an equivalence relation
on
⋃

p∈XQ
HOM(0,G p) and let ≈ denote this relation. We let (ϕp)≈ denote the

≈-class of a homomorphism ϕp and T 0
Q the set of equivalence classes. Note that

ϕp and ϕq are equivalent if and only if (p, (ϕp)G p) and (q, (ϕq)Gq ) are in the same
connected component of XQ̃0

.

2B. The finite subgroups of O(3). In this section, we recall the classification of
finite subgroups G of O(3) given in [Benson and Grove 1971, Theorem (2.5.2)] as
well as the corresponding orbifold singularities. In each case, we fix a representation
of the group G to refer to in the sequel.

First, recall that every element of SO(3) acts as a rotation about a line in R3. Up
to conjugation in SO(3), the finite subgroups of SO(3) consist of the cyclic groups



350 RYAN CARROLL AND CHRISTOPHER SEATON

Z/nZ

(a)

Z/nZ

Z/2Z Z/2Z

(b)

Z/3Z

Z/2Z Z/3Z

(c)

Z/4Z

Z/2Z Z/3Z

(d)

Z/5Z

Z/2Z Z/3Z

(e)

Figure 1. Singular sets in the quotients of R3 by the finite sub-
groups of SO(3): (a) a cyclic group Z/nZ; (b) a dihedral group
D2n; (c) the tetrahedral group T; (d) the octahedral group O; (e) the
icosahedral group I.

Z/nZ, the dihedral groups D2n of order 2n, the tetrahedral group T of order 12,
the octahedral group O of order 24, and the icosahedral group I of order 60. The
quotient G\R3 is homeomorphic to R3 in each case; see [Boileau et al. 2003]. In
Zn\R

3 the singular set is a line fixed by the entire group Zn , while for the other
groups, the singular set is the origin as well as three rays fixed by cyclic groups;
see Figure 1. The 0-Euler–Satake characteristics of orientable 3-orbifolds, which
contain only these singularities, are studied in [Carroll and Seaton 2013].

Let J denote the negative identity element in O(3). A finite subgroup of O(3)
generated by J and a finite subgroup G of SO(3) is called a full group, denoted G∗.
Note that as J is central and J 2

= I is the identity in O(3), G∗ is isomorphic to
G×Z/2Z. There are five classes of full groups corresponding to the five classes of
subgroups of SO(3). See Figure 2 for diagrams of the quotient spaces and singular
sets in each case, and note that they refer to mixed groups and Pproj, which are
defined below. Note that the quotient space G∗\R3 is homeomorphic to closed
half-space in R3 except in the case of G = (Z/nZ)∗ with n odd, where (Z/nZ)∗\R3

is homeomorphic to the cone on RP2.

• A full cyclic group (Z/nZ)∗ has order 2n and is generated by An and J , where

An =

cos(2π/n) −sin(2π/n) 0
sin(2π/n) cos(2π/n) 0

0 0 1


satisfies An

n = I .
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Figure 2. Singular sets corresponding to the finite full subgroups
of O(3), where the lightly shaded boundary disks have generic
isotropy Z/2Z and the darkly shaded boundary disk is identified
via the antipodal map as indicated by curved arrows: (a) a full
cyclic group (Z/nZ)∗ for n even; (b) a full cyclic group (Z/nZ)∗

for n odd; (c) a full dihedral group D∗2n for n even; (d) a full
dihedral group D∗2n for n odd; (e) the full tetrahedral group T∗;
(f) the full octahedral group O∗; (g) the full icosahedral group I∗.

• A full dihedral group D∗2n has order 4n and is generated by An , B, and J ,
where An is as above and

B =

1 0 0
0 −1 0
0 0 −1


is a rotation about the x-axis through an angle of π . Note that An B = B An−1

n .
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• The full tetrahedral group T∗ has order 24 and is generated by C , D, and J ,
where

C =

−1 0 0
0 −1 0
0 0 1

 and D =

0 −1 0
0 0 −1
1 0 0

 .
Note that C2

= D3
= (C D)3 = I .

• The full octahedral group O∗ has order 48 and is generated by R, S, and J ,
where

R =

0 1 0
1 0 0
0 0 −1

 and S =

1 0 0
0 0 1
0 −1 0

 .
Note that R2

= S4
= (RS)3 = I .

• The full icosahedral group I∗ is generated by B, E , and J , where B is as above
and

E =

+φ/2 +φ/2 +1/2
+φ/2 +1/2 −φ/2
−1/2 +φ/2 +φ/2

 .
Here, φ = (1+

√
5)/2 and φ = (1−

√
5)/2. Note that B2

= E5
= (B E)3 = I .

A finite subgroup G<O(3) that is not full or contained in SO(3) is a mixed group.
A mixed group G is denoted H ]K , where H and K are finite subgroups of SO(3)
such that K is a subgroup of H of index 2. Then G is isomorphic to H as a group, but
the representation of G on R3 is given by multiplying those elements in the nontrivial
coset of H/K by J . The quotient spaces and singular sets of G\R3 for mixed
groups G are pictured in Figure 3. Again, each quotient space is homeomorphic
to closed half-space in R3 with the exception of (Z/2nZ)](Z/nZ)\R3 for n even,
which is homeomorphic to the cone on RP2. The four families of mixed subgroups
of O(3) are as follows:

• A mixed cyclic group (Z/2nZ)](Z/nZ) has order 2n and is generated by A2n J
where A2n is as above.

• A mixed dihedral group D4n]D2n of order 4n is generated by A2n J and B.

• A dihedral extending cyclic group D2n](Z/nZ) of order 2n is generated by An

and B J .

• The octahedral extending tetrahedral group O]T is generated by R J and S J .

Every finite subgroup of O(3) is conjugate to one of the groups listed above.
When referring to these groups, we will always mean the group as well as its
standard representation on R3 in coordinates as described above.
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Figure 3. Singular sets corresponding to the finite mixed sub-
groups of O(3), where the lightly shaded boundary disks have
generic isotropy Z/2Z and the darkly shaded boundary disk is
identified via the antipodal map as indicated by curved arrows: (a)
a mixed cyclic group (Z/2nZ)](Z/nZ) for n even; (b) a mixed
cyclic group (Z/2nZ)](Z/nZ) for n odd; (c) a mixed dihedral
group D4n]D2n for n even; (d) a mixed dihedral group D4n]D2n

for n odd; (e) a dihedral extending cyclic group D2n](Z/nZ) for n
of either parity; (f) the octahedral extending tetrahedral group O]T.

2C. Closed, effective 3-dimensional orbifolds. Let Q be a closed, effective 3-
orbifold. Then each point of Q is contained in a neighborhood that is homeo-
morphic to G\R3 where G is a finite subgroup of O(3). Inspecting the possible
homeomorphism classes of G\R3, it follows that there is a finite, possibly empty
collection Pproj = {p1, . . . , pk} of points in Q such that XQ rPproj is a topological
3-manifold, potentially with boundary. In particular, Pproj consists of those points
with isotropy group (Z/nZ)∗ for n odd or (Z/2nZ)](Z/nZ) for n even. Note that
Q is orientable if and only if Pproj =∅ and XQ is an orientable 3-manifold without
boundary. In the case that XQ has boundary as a topological manifold, we let ∂top Q
denote the boundary and caution the reader that Q does not have boundary as an
orbifold.
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The singular set of Q consists of ∂top Q ∪Pproj along with a disjoint collection
of circles in the interior of XQ r Pproj and a not-necessarily connected graph G

that is trivalent on the interior of XQ rPproj and has univalent vertices in Pproj and
∂top Q. Note that the (isomorphism class of the) isotropy group is constant on each
circle as well as the interior of each edge; however, it need not be constant on ∂top Q.
Rather, ∂top Q itself contains a union of circles and a (not necessarily connected)
graph with trivalent vertices as well as univalent vertices where G intersects ∂top Q.
The isotropy type is constant on the circles and the interiors of the edges of this
graph and is Z/2Z elsewhere in ∂top Q.

By a point singularity of Q, we mean a point p∈XQ contained in a neighborhood
U such that the isotropy group of p is strictly larger than all points in U r {p}.
Equivalently, a point singularity corresponds to a 0-dimensional stratum of XQ with
respect to the stratification by orbit types. Note that the point singularities of Q
correspond to the vertices of the graphs described above.

In the sequel, we will let P denote the set of point singularities of Q and P∂

denote the set of point singularities that occur on ∂top Q. Note that Pproj is the set of
point singularities that occur on nonmanifold points of XQ . Then Pr (P∂ ∪Pproj)

is exactly the set of point singularities at which Q is locally orientable, i.e., with
isotropy group contained in SO(3).

The 0-sectors of a closed, effective 3-orbifold Q include the nontwisted 0-sector
of dimension 3 and may include twisted 0-sectors of dimensions 0, 1, or 2. Each
0-sector is a closed orbifold, and only the nontwisted 0-sector is effective. Sectors
of dimension 0 are points equipped with the trivial action of a finite group, and it is
easy to see that such sectors correspond to homomorphisms ϕp : 0→ G p where
p is a point singularity of the orbifold and the image of ϕp fixes a single point.
The only closed, effective 1-dimensional orbifolds are circles or mirrored intervals,
i.e., intervals with Z/2Z-isotropy at the endpoints, and so all closed 1-dimensional
sectors are given by circles with the trivial action of a finite group or noneffective
mirrored intervals.

The 2-dimensional sectors correspond to homomorphisms ϕp : 0→ G p where
p ∈ ∂top Q and the image of ϕp fixes a plane. However, the 2-dimensional sectors
of Q need not correspond to entire connected components of ∂top Q. In fact, the 0-
and 1-dimensional singular strata contained in ∂top Q divide ∂top Q into regions, and
the closures of these regions can be covered by distinct sectors. We illustrate this
with the following, considering an open orbifold for simplicity.

Example 2.1. Let n≥ 4 be even and let Q denote the orbifold given by the quotient
of R3 by the full dihedral group D∗2n; see Figure 2(c). Then Q is homeomorphic to
closed half-space, and the singular strata divide ∂top Q into three dense regions with
isotropy Z/2Z.



EULER–SATAKE CHARACTERISTICS OF NONORIENTABLE 3-ORBIFOLDS 355

Let0=Z, and then there are three 2-dimensional sectors. The first, corresponding
to homomorphisms that map 1 ∈ Z to the central element An/2

n J ∈ D∗2n , is given by
the quotient of a plane R2 by the action of D2n× (Z/2Z), where the D2n-factor acts
via the standard effective action of a dihedral group on R2, and the Z/2Z-factor
acts trivially. The resulting orbifold is homeomorphic to a closed quadrant in R2,
where the origin is a corner reflector with isotropy D2n × (Z/2Z), other points on
the (topological) boundary have isotropy (Z/2Z)2, and points on the interior have
isotropy Z/2Z. The map (p, (ϕp)G p) 7→ p is a bijection between this sector and the
single closed region in ∂top Q bounded by the two rays with isotropy D4](Z/2Z).

The other 2-dimensional sectors cover the respective closures of the other two
regions in ∂top Q. They corresponds to the two conjugacy classes of homomorphisms
that map 1 ∈ Z to Ak

n B J ∈ D∗2n where k 6= n/2. Each is given by the quotient
of R2 by 〈An/2

n , Ak
n B J, J 〉 ∼= (Z/2Z)3, where Ak

n B J acts trivially and the other
two factors act via the standard action of (Z/2Z)2 ∼= D4 on R2. These sectors are
also each homeomorphic to a closed quadrant in R2, where the origin is a corner
reflector with isotropy D4 × (Z/2Z), other points on the (topological) boundary
have isotropy (Z/nZ)2, and points on the interior have isotropy Z/2Z. The map
(p, (ϕp)G p) 7→ p is a bijection from each of these sectors to the closures of the
corresponding regions in ∂top Q.

From this example, it is clear that a description of the 2-dimensional sectors of
an arbitrary closed, effective 3-orbifold Q would require a detailed description of
the topology of ∂top Q as well as the configuration of the singular strata it contains.
As we will see in Section 3A, however, the sum of the Euler–Satake characteristics
of the 2-dimensional sectors of Q depends only on χtop(∂top Q) and the number
and type of point singularities in Q, and hence can be computed using only this
information.

3. Computation of χES
Fl
(Q)

In this section, we compute the Fl-Euler–Satake characteristics of a closed, effective
3-orbifold Q where Fl is the free group with l generators. In Section 3A, we
simplify this computation by demonstrating Proposition 3.6, which expresses the
0-Euler–Satake characteristic in terms of quantities involving only the number and
type of point singularities of Q as well as χtop(∂top Q). In Section 3B, we compute
these quantities for each of the finite subgroups of O(3) when 0= Fl . The formulas
for the Fl-Euler–Satake characteristics are given in Section 3C.

3A. General observations. Let 0 be a finitely generate discrete group and Q a
closed, effective 3-orbifold. The 0-Euler–Satake characteristic of Q is given by

χES
0 (Q)= χES(Q̃0),
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the usual Euler–Satake characteristic of the orbifold of 0-sectors Q̃0 of Q. We let
Q̃0,d denote the collection of 0-sectors of Q of dimension d , and then

Q̃0 = Q̃0,0 t Q̃0,1 t Q̃0,2 t Q̃0,3,

where Q̃0,3 = Q consists only of the nontwisted sector. By [Satake 1957, The-
orem 4], the Euler–Satake characteristic of an odd-dimensional closed orbifold
vanishes; note that Satake assumes that orbifolds do not have singular strata of
codimension 1, but his result can be applied to the orientable double-cover of an
orbifold and hence extended to arbitrary orbifolds. Therefore, we have that

χES
0 (Q)= χES(Q̃0,0)+χES(Q̃0,2). (3-1)

As was illustrated in Example 2.1 above, the structure of Q̃0,2 is complicated and
depends heavily on the graph structure of the singular strata in ∂top Q. However,
our first goal of this section is to indicate how χES

0 (Q) can be computed without
determining the structure or number of components of Q̃0,2. First, we have the
following.

Lemma 3.1. Let Q be a closed, effective, 3-dimensional orbifold with underlying
space XQ and let Pproj denote the finite set of projective points of Q. Then

χtop(XQ)=
1
2χtop(∂top Q)+ 1

2 |Pproj|.

Proof. For each p ∈ Pproj, choose a neighborhood Up of p homeomorphic to
G p\R

3 and small enough so that Up ∩Uq = ∅ for p 6= q, each Up ∩ ∂top Q = ∅,
and ∂(Up) is homeomorphic to G p\S

2, where by ∂(Up), we mean the boundary
of the manifold Up r {p}. Then the topological space X = XQ r

⋃
p∈Pproj

Up is a
topological 3-manifold with boundary given by ∂X = ∂top Q∪

⋃
p∈Pproj

∂(Up). Note
that each ∂(Up) is homeomorphic to RP2 and hence χtop(∂(Up))= 1. Expressing
XQ as X ∪

⋃
p∈Pproj

Up and noting that the intersection of each Up with X is ∂(Up),
we have

χtop(XQ)= χtop(X)+
∑

p∈Pproj

χtop(Up)−
∑

p∈Pproj

χtop(∂(Up)).

However, as Up is homeomorphic to the cone on RP2 and hence is contractible,
we have χtop(Up)= 1= χtop(∂(Up)). It follows that

χtop(XQ)= χtop(X).

As the Euler characteristic of a 3-manifold is half that of its boundary, we then have

χtop(XQ)= χtop(X)=
1
2χtop(∂X)= 1

2(χtop(∂top Q)+ |Pproj|)). �
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Using the fact that χtop(XQ)= χ
ES
Z (Q) (see [Farsi and Seaton 2011] or [Seaton

2008]), we have the following.

Corollary 3.2. Let Q be a closed, effective, 3-dimensional orbifold with underlying
space XQ and let Pproj denote the finite set of projective points of Q. Then

χES
Z (Q)= 1

2χtop(∂top Q)+ 1
2 |Pproj|.

In particular, as χES
Z (Q)= χES(Q̃Z,0)+χES(Q̃Z,2), we have

χES(Q̃Z,2)=
1
2χtop(∂top Q)+ 1

2 |Pproj| −χES(Q̃Z,0). (3-2)

Hence, using Corollary 3.2, we can compute the Euler–Satake characteristic of
the 2-dimensional Z-sectors in terms of the 0-dimensional Z-sectors and χtop(∂Q).
We can use this to compute the Euler–Satake characteristic of the 2-dimensional 0-
sectors for arbitrary 0 using the following. For p ∈ Q, let HOM(0,G p)d denote the
collection of homomorphisms 0→ G p whose image fix a d-dimensional subspace
in a chart at p.

Lemma 3.3. Let Q be a closed, effective, 3-dimensional orbifold and let 0 be a
finitely generated discrete group. Then the 2-dimensional 0-sectors of Q consist
of |HOM(0,Z/2Z)| − 1 identical copies of the 2-dimensional Z-sectors of Q. In
particular, the 2-dimensional Fl-sectors of Q consist of 2l

− 1 copies of the 2-
dimensional Z-sectors of Q.

Proof. By inspection, the only elements of O(3) that fix planes are reflections
that generate a subgroup isomorphic to Z/2Z. Hence each element in the union⋃

p∈Q HOM(0,G p)2 has image isomorphic to Z/2Z. Define the map

9 :
⋃
p∈Q

HOM(0,G p)2 −→
⋃
p∈Q

HOM(Z,G p)2

by sending ϕp ∈HOM(0,G p)2 to the homomorphism in HOM(Z,G p)2 that maps
the generator of Z to the unique generator of the image Im(ϕp) of ϕp. Then as
the image of a homomorphism Z→ Z/2Z uniquely characterizes the homomor-
phism, we have for each ψp ∈ HOM(Z,G p)2 that 9−1(ψp) consists of every
element of HOM(0, Im(ψp)) except the trivial homomorphism. Therefore, 9
is a (|HOM(0,Z/2Z)| − 1)-to-1 map. It is clear from its construction that 9 is
equivariant with respect to the G p-actions by conjugation on HOM(Z,G p)2 and
HOM(0,G p)2, and moreover that the centralizer of each ψp in G p coincides with
the centralizer of 9−1(ψp) in G p, so that 9 induces a (|HOM(0,Z/2Z)|−1)-to-1
map

9̃ : Q̃0,2→ Q̃Z,2, (p, (ϕp)G p) 7→ (p, (9(ϕp))G p).
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To complete the proof, we demonstrate that the restriction of 9̃ to each 2-
dimensional 0-sector of Q is a diffeomorphism onto a Z-sector of Q. In groupoid
language, this can be accomplished by extending 9 to a map HOM(0,G)2 →

HOM(Z,G)2, where HOM(0,G)2 denotes the groupoid homomorphisms corre-
sponding to points in 2-dimensional sectors, and then computing directly that the
resulting map is in fact equivariant with respect to the G-actions, and hence a Lie
groupoid isomorphism when restricted to each sector.

To demonstrate this in terms of an atlas, suppose (p, (ϕp)G p) and (q, (ϕq)Gq )

are points in XQ̃0
contained in orbifold charts for Q̃0 related by an injection.

Specifically, suppose ( f, λ) : {Vq ,Gq , πq}→{Vp,G p, πp} is an injection of orbifold
charts with respect to which ϕp : 0→ G p locally covers ϕq : 0→ Gq for ϕp ∈

HOM(0,G p)2 and ϕq ∈ HOM(0,Gq)2. Then

{ f |
V
〈ϕq 〉
q
, λ|CGq (ϕq )}

is an injection of the orbifold chart {V 〈ϕq 〉
q ,CGq (ϕq), π

ϕq
q } for Q̃0 at (q, (ϕq)Gq )

into the chart {V 〈ϕp〉
p ,CG p(ϕp), π

ϕp
p } for Q̃0 at (p, (ϕp)G p). As9 preserves images

of homomorphisms, it is easy to see that

V 〈ϕp〉
p = V 〈9(ϕp)〉

p and CG p(ϕp)= CG p(9(ϕp)).

Moreover, from λ ◦ ϕq = ϕp, it is easy to see that λ ◦9(ϕq)= 9(ϕp). It follows
that

{ f |
V
〈9(ϕq )〉
q

, λ|CGq (9(ϕq ))}

is an injection of the chart
{

V 〈9(ϕq )〉
q ,CGq (9(ϕq)), π

9(ϕq )
q

}
for Q̃Z at (q, (9(ϕq))Gq )

into the chart
{

V 〈9(ϕp)〉
p ,CG p(9(ϕp)), π

9(ϕp)
p

}
for Q̃Z at (p, (9(ϕp))G p). With this,

it follows that there is a bijection between orbifold charts and injections for each
connected component of Q̃0,2 and its image under 9̃, completing the proof. �

We conclude that for a 3-dimensional closed, effective orbifold Q, the 0-Euler–
Satake characteristics can be determined from the number and type of point singu-
larities of Q as well as the Euler characteristic χtop(∂top Q). We recall the following,
which was also observed in [Carroll and Seaton 2013, Proposition 2.1].

Lemma 3.4. Let Q be a closed, effective 3-orbifold, let P denote the collection of
point singularities of Q and let 0 be a finitely generated discrete group. Then

χES(Q̃0,0)=
∑
p∈P

|HOM(0,G p)0|

|G p|
.
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Proof. First, we have by definition of the Euler–Satake characteristic that

χES(Q̃0,0)=
∑
p∈P

∑
(ϕp)G p∈HOM(0,G p)0/G p

1
|CG p(ϕp)|

.

Using the fact that |CG p(ϕp)||(ϕp)G p | = |G p|, this is equal to∑
p∈P

∑
(ϕp)G p∈HOM(0,G p)0/G p

|(ϕp)G p |

|G p|
=

∑
p∈P

|HOM(0,G p)0|

|G p|
. �

Lemma 3.5. Let Q be a closed, effective 3-orbifold and let P∂ denote the set of
point singularities contained in ∂top Q. Then

χES(Q̃Z,0)=
1
2
|Pproj| +

∑
p∈P∂

|HOM(Z,G p)0|

|G p|
.

Proof. For each p ∈P such that G p ≤ SO(3), each element of G p is a rotation and
hence fixes a line. As the image of any element of HOM(Z,G p) must be cyclic,
it follows that HOM(Z,G p)0 =∅ for each such p. Recalling that all other point
singularities are elements of Pproj ∪P∂ and applying Lemma 3.4, we have

χES(Q̃Z,0)=
∑

p∈Pproj

|HOM(Z,G p)0|

|G p|
+

∑
p∈P∂

|HOM(Z,G p)0|

|G p|
.

If p ∈Pproj, then G p is given either by (Z/nZ)∗ for n odd or (Z/2nZ)](Z/nZ) for
n even. In the former case, it is easy to see that all elements of (Z/nZ)∗ of the form
Ak

n J fix a point, while nontrivial elements of the form Ak
n fix a line, so that

|HOM(Z, (Z/nZ)∗)0|

|(Z/nZ)∗|
=

n
2n
=

1
2
.

In the latter case, (Z/2nZ)](Z/nZ) is generated by A2n J , and odd powers of An J
fix a point while nontrivial even powers fix a line. We have again

|HOM(Z, (Z/2nZ)](Z/nZ))0|

|(Z/2nZ)](Z/nZ)|
=

n
2n
=

1
2
.

The claim follows. �

With this, combining Equation (3-2) and Lemma 3.5 yields

χES(Q̃Z,2)=
1
2
χtop(∂top Q)−

∑
p∈P∂

|HOM(Z,G p)0|

|G p|
.

Along with Equation (3-1) and Lemmas 3.3 and 3.4, this establishes the following.
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Proposition 3.6. Let Q be a closed, effective 3-orbifold and let 0 be a finitely
generated discrete group. Then

χES
0 (Q)= (|HOM(0,Z/2Z)| − 1)

(
1
2
χtop(∂top Q)−

∑
p∈P∂

|HOM(Z,G p)0|

|G p|

)

+

∑
p∈P

|HOM(0,G p)0|

|G p|
. (3-3)

In particular, χES
0 (Q) depends only on χtop(∂top Q) and the number and type of

point singularities of Q. For 0 = Fl , we have

χES
Fl
(Q)=

2l
− 1
2

χtop(∂top Q)+
∑

p∈PrP∂

|HOM(Fl,G p)0|

|G p|

+

∑
p∈P∂

|HOM(Fl,G p)0| − (2l
− 1)|HOM(Z,G p)0|

|G p|
.

3B. Counting point-fixing homomorphisms. In view of Proposition 3.6, to com-
plete the computation of the Fl-Euler–Satake characteristic of an arbitrary closed,
effective 3-orbifold Q, we need only determine the value of |HOM(Fl,G p)0|/|G p|

for each G p corresponding to p ∈ PrP∂ and that of(
|HOM(Fl,G p)0| − (2l

− 1)|HOM(Z,G p)0|
)
/|G p|

for p∈P∂ . To organize the computations of these quantities, we make the following
observations.

Given an arbitrary finitely generated discrete group 0, for each finite subgroup
G < O(3) corresponding to a point singularity, we have

HOM(0,G)= HOM(0,G)0+HOM(0,G)1+HOM(0,G)2+HOM(0,G)3.

Clearly, |HOM(0,G)3| = 1, as only the trivial homomorphism fixes all of R3.
Similarly, as the only plane-fixing elements of O(3) generate a subgroup isomorphic
to Z/2Z, and as a plane in R3 is fixed by exactly one nontrivial element of O(3),
HOM(0,G)2 contains c(|HOM(0,Z/2Z)| − 1) homomorphisms where c is the
number of planes in R3 fixed by an element of G. Finally, by inspection, any
1-dimensional singular stratum of G\R3 has isotropy group D2n](Z/nZ) or Z/nZ.
Hence, as each such subgroup fixes a unique line, we have

|HOM(0,G)1| =
∞∑

n=2

an|HOM(0, D2n](Z/nZ))1| + bn|HOM(0,Z/nZ)1|,

where an denotes the number of distinct lines in R3 with isotropy group D2n](Z/nZ)

and bn denotes the number of distinct lines in R3 with isotropy group Z/nZ.
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With this, we note that if 0 = Fl , then by considering the images of a chosen set
of generators for Fl , it is easy to compute that

|HOM(Fl,Z/nZ)1| = nl
− 1.

Recall that D2n](Z/nZ) is generated by An and B J , where An acts as a rotation
about the z-axis and B J as a reflection through the yz-plane. Then there are n
plane-fixing elements of the form Ak

n B J for 0 ≤ k ≤ n− 1, and hence n(2l
− 1)

elements of HOM(Fl, D2n](Z/nZ))2. Then as each element of D2n](Z/nZ) fixes
the z-axis, there are no point-fixing elements, so that

|HOM(Fl, D2n](Z/nZ))1| = (2n)l − n(2l
− 1)− 1.

We summarize these observations with the following.

Lemma 3.7. Let G be a finite subgroup of O(3). For each n ≥ 2, let an denote the
number of lines in R3 with isotropy group D2n](Z/nZ), let bn denote the number of
lines in R3 with isotropy group Z/nZ, and let c denote the number of planes in R3

fixed by a nontrivial element of G. Then for each l ≥ 1,

|HOM(Fl,G)0| = |G|l − c(2l
− 1)− 1−

∞∑
n=2

an
(
(2n)l − 2ln+ n− 1

)
+ bn(nl

− 1).

We will now apply this result to each of the point-fixing subgroups of O(3).
To simplify the notation, for a finite G < O(3) such that G\R3 has nonempty
topological boundary (i.e., G is the isotropy group of a point singularity p ∈P∂ ),
we let

S∂(G) :=
|HOM(Fl,G)0| − (2l

− 1)|HOM(Z,G)0|
|G|

denote the corresponding term of χES
Fl
(Q) in Proposition 3.6.

G = (Z/nZ)∗. Recall that (Z/nZ)∗ has order 2n, and first assume n is even. Then
(Z/nZ)∗ contains one plane-fixing element An/2

n J so that c = 1, and a point with
isotropy group (Z/nZ)∗ is contained in P∂ . The z-axis is the only line in R3 with
nontrivial isotropy Z/nZ, and so ak = 0 for each k, bn = 1, and bk = 0 for k 6= n.
Applying Lemma 3.7,

|HOM(Fl, (Z/nZ)∗)0| = (nl
− 1)(2l

− 1) (n even),

and in particular |HOM(Z, (Z/nZ)∗)0| = n− 1. Then

S∂
(
((Z/nZ)∗)0

)
=

2l
− 1
2

(nl−1
− 1), (n even). (3-4)

For n odd, (Z/nZ)∗ contains no plane-fixing elements so that c = 0, and a point
with isotropy group (Z/nZ)∗ is an element of PrP∂ . The z-axis is again the only
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line in R3 with nontrivial isotropy Z/nZ so the ak and bk vanish except for bn = 1.
Again applying Lemma 3.7,

|HOM(Fl, (Z/nZ)∗)0| = nl(2l
− 1) (n odd),

and so
|HOM(Fl, (Z/nZ)∗)0|

|(Z/nZ)∗|
=

2l
− 1
2

nl−1 (n odd). (3-5)

G = (Z/2nZ)](Z/nZ). We again have (Z/2nZ)](Z/nZ) has order 2n. Assume n
is even. Then (Z/2nZ)](Z/nZ) contains no plane-fixing elements, so c = 0, and
the corresponding point singularity is in PrP∂ . Other than the origin, only the
z-axis has nontrivial isotropy Z/nZ, so the computation is identical to the case of
(Z/nZ)∗ for n odd given in Equation (3-5) above. That is,

|HOM(Fl, (Z/2nZ)](Z/nZ))0|

|(Z/2nZ)](Z/nZ)|
=

2l
− 1
2

nl−1 (n even). (3-6)

If n is odd, then (Z/2nZ)](Z/nZ) contains one plane-fixing element (A2n J )n ,
and one line in R3 is fixed by Z/nZ. The point singularity is contained in P∂ , and
the computation is identical to the case of (Z/nZ)∗ for n even in Equation (3-4).
Hence,

S∂((Z/2nZ)](Z/nZ))=
2l
− 1
2

(nl−1
− 1) (n odd). (3-7)

G = D∗2n . Recall that D∗2n has order 4n. Suppose n is even. There are n+ 1 plane-
fixing elements given by An/2

n J and Ak
n B J for k= 0, . . . , n−1 so that c= n+1 and

the point singularity is an element of P∂ . The z-axis has isotropy D2n](Z/nZ), and
the n lines spanned by (cos(kπ/n), sin(kπ/n), 0) for 0≤ k ≤ n− 1 have isotropy
D4](Z/2Z). Therefore, a2 = n, an = 1, and the other ak and bk vanish, so that by
Lemma 3.7,

|HOM(Fl, D∗2n)0| = (2
l
− 1)

(
(2n)l − 2ln+ n− 1

)
, (n even).

Therefore,
S∂(D∗2n)= 2l−2(2l

− 1)(nl−1
− 1) (n even). (3-8)

If n is odd, there are n plane-fixing elements Ak
n B J for k= 0, . . . , n−1 so c= n.

A D2n](Z/nZ) subgroup fixes the z-axis, and n lines in the xy-plane have isotropy
〈Ak B〉 ∼= Z/2Z, so that an = 1, b2 = n, and all others vanish. This yields

|HOM(Fl, D∗2n)0| = (2
l
− 1)

(
(2n)l − n

)
, (n odd),

and so

S∂(D∗2n)=
2l
− 1
2

(
(2n)l−1

− 1
)
, (n odd). (3-9)
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G = T∗. In this case, the plane fixing elements are the three conjugates of C J . We
have c = 3, a2 = 3, b3 = 4, and all ak and bk vanish. Then Lemma 3.7 yields

|HOM(Fl,T∗)0| = (24)l − 3 · 4l
+ 3 · 2l

+ 3,

and
S∂(T∗)= 1

2(2 · 24l−1
− 4l−1

− 3l−1
− 2l−1

+ 1). (3-10)

G =O∗. Here, the plane fixing elements are the three conjugates of S2 J and the
six conjugates of R J . We have c = 9, a2 = 6, a3 = 4, a4 = 3, and all others vanish.
Applying Lemma 3.7,

|HOM(Fl,O∗)0| = 48l
− 3 · 8l

− 4 · 6l
− 6 · 4l

+ 27 · 2l
− 15,

and
S∂(O∗)= 2l−2(2 · 24l−1

− 4l−1
− 3l−1

− 2l−1
+ 1). (3-11)

G= I∗. The plane fixing elements are the fifteen conjugates of B J . We have c= 15,
a2 = 15, a3 = 10, a5 = 6, and the others vanish, so by Lemma 3.7,

|HOM(Fl, I∗)0| = 120l
− 6 · 10l

− 10 · 6l
− 15 · 4l

+ 75 · 2l
− 45,

and
S∂(I∗)= 2l−2(2 · 60l−1

− 5l−1
− 3l−1

− 2l−1
+ 1). (3-12)

G = D4n]D2n . Assume n is even, and then the plane fixing elements are (A2n J )k B
for k odd. Then c = n, an = 1, b2 = n, and the other ak and bk vanish. Hence

|HOM(Fl, D4n]D2n)0| = (2l
− 1)

(
(2n)l − n

)
(n even),

and

S∂(D4n]D2n)=
2l
− 1
2

(
(2n)l−1

− 1
)
(n even). (3-13)

If n is odd, then the plane fixing elements are (A2n J )n and (A2n J )k B for k odd.
Hence c = n+ 1, a2 = n, an = 1, and the other ak and bk vanish so that

|HOM(Fl, D4n]D2n)0| = (2l
− 1)

(
(2n)l − 2ln+ n− 1

)
, (n odd),

and
S∂(D4n]D2n)= 2l−2(2l

− 1)(nl−1
− 1), (n odd). (3-14)

G =O]T. In this case, the six plane fixing elements are the conjugates of R J . We
have c = 6, a2 = 3, a3 = 4, and the other ak and bk vanish. Therefore

|HOM(Fl,O]T)0| = 24l
− 4 · 6l

− 3 · 4l
+ 3 · 2l+2

− 6,

and
S∂(O]T)= 2l−2(2 · 12l−1

− 2 · 3l−1
− 2l−1

+ 1). (3-15)
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3C. The Fl -Euler–Satake characteristics of a closed, effective 3-orbifold. Com-
bining Proposition 3.6 with Equations (3-4) through (3-15) as well as [Carroll and
Seaton 2013, Theorem 3.1], which computes the terms associated to the finite
subgroups of SO(3), we have the following.

Theorem 3.8. Let Q be a closed, effective 3-orbifold with:

t point singularities with isotropy T;
o point singularities with isotropy O;
i point singularities with isotropy I;
d point singularities with isotropy D2n for each n;
ce∗

n point singularities with isotropy (Z/nZ)∗ for each even n;
co∗

n point singularities with isotropy (Z/nZ)∗ for each odd n;
t∗ point singularities with isotropy T∗;
o∗ point singularities with isotropy O∗;
i∗ point singularities with isotropy I∗;
de∗

n point singularities with isotropy D∗2n for each even n;
do∗

n point singularities with isotropy D∗2n for each odd n;
cem

n point singularities with isotropy (Z/2Z)](Z/nZ) for each even n;
com

n point singularities with isotropy (Z/2nZ)](Z/nZ) for each odd n;
dem

n point singularities with isotropy D4n]D2n for each even n;
dom

n point singularities with isotropy D4n]D2n for each odd n;
om point singularities with isotropy O]T.

Then

χES
Fl
(Q)= 2l

−1
2

χtop(∂top Q)+ t
2
(2 · 12l−1

− 2 · 3l−1
− 2l−1

+ 1)

+
o
2
(2 · 24l−1

− 4l−1
− 3l−1

− 2l−1
+ 1)

+
i
2
(2 · 60l−1

− 5l−1
− 3l−1

− 2l−1
+ 1)

+
t∗

2
(2 · 24l−1

− 4l−1
− 3l−1

− 2l−1
+ 1)

+2l−2o∗(2 · 24l−1
− 4l−1

− 3l−1
− 2l−1

+ 1)

+2l−2i∗(2 · 60l−1
− 5l−1

− 3l−1
− 2l−1

+ 1)

+om
[2l−2(2 · 12l−1

− 2 · 3l−1
− 2l−1

+ 1)]

+

(2l
−1
2

) ∞∑
n=1

(
dn (nl−1

− 1)+ ce∗
n (nl−1

− 1)+ co∗
n nl−1

+de∗
n 2l−1(nl−1

− 1)+ do∗
n
(
(2n)l−1

− 1
)
+ cem

n nl−1

+com
n (nl−1

− 1)+ dem
n
(
(2n)l−1

− 1
)
+ com

n 2l−1(nl−1
− 1)

)
.
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We note that a closed orbifold Q has a finite number of point singularities, and
hence there is a finite number of nonzero terms in the sum over n.

4. Indistinguishable orbifolds

Based on Theorem 3.8, it is easy to see that, in contrast with the orientable case, no
collection of the χES

Fl
(Q) determine the point singularities of the closed, effective

3-orbifold Q. In fact, in this section, we describe a pair of closed, effective 3-
orbifolds Q1 and Q2 such that χES

0 (Q1) = χ
ES
0 (Q2) for every finitely generated

discrete group 0.
Let n be an odd integer and let B 3 denote the closed unit ball in R3. Let Q1 be the

orbifold formed by gluing together two copies of (Z/nZ)∗\B 3 along (Z/nZ)∗\S2

so that Q1 has two point singularities with isotropy (Z/nZ)∗ connected by a segment
with isotropy Z/nZ. See Figure 4, left.

Let Q2 be the orbifold formed by gluing together two copies of

(Z/2nZ)](Z/nZ)\B 3

along (Z/2nZ)](Z/nZ)\S2 so that ∂top Q2 is homomorphic to S2 and contains two
point singularities with isotropy (Z/2nZ)](Z/nZ) connected by a segment with
isotropy Z/nZ contained in the complement of ∂top Q2. See Figure 4, right.

Let 0 be an arbitrary finitely generated discrete group. Note that ∂top Q1 is empty
so that Proposition 3.6 yields

χES
0 (Q1)= 2

|HOM(0, (Z/nZ)∗)0|

|(Z/nZ)∗|
=
|HOM(0, (Z/nZ)∗)0|

n
.

A nontrivial homomorphism ϕ : 0→ (Z/nZ)∗ corresponds to a 1-dimensional

............................................ ....... .............. ................. .................... ......................-- . .......... ........ ....... ........
...................

.........................................................................� . ................. .............. ........... ..............
...................................................................................�

............................................................... ......... ............ ............... ................. ...................-

(Z/nZ)∗

(Z/nZ)∗

Z/nZ

Q1


.........
.......
......
.....
......
.......

..........
...........................................................................................................................................

(Z/2nZ)](Z/nZ)

(Z/2nZ)](Z/nZ)

Z/nZ

Q2

Figure 4. The orbifolds Q1 and Q2. Note that the boundary of the
region describing Q1 is identified antipodally in horizontal planes
as indicated by the curved arrows, while Q2 has (topological)
boundary homeomorphic to S2.
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sector if its image is contained in (Z/nZ)∗ ∩SO(3)= Z/nZ. So using the fact that
(Z/nZ)∗ is isomorphic to Z/2nZ, we have

χES
0 (Q1)=

|HOM(0,Z/2nZ)| − |HOM(0,Z/nZ)|

n
.

In the case of Q2, we have ∂top Q2 = S2 so that χtop(∂top Q2) = 2. Therefore,
Proposition 3.6 yields

χES
0 (Q2)= (|HOM(0,Z/2Z)| − 1)

(
1− 2

|HOM(Z, (Z/2nZ)](Z/nZ))0|

|(Z/2nZ)](Z/nZ)|

)
+ 2
|HOM(0, (Z/2nZ)](Z/nZ))0|

|(Z/2nZ)](Z/nZ)|
.

Then HOM(Z, (Z/2nZ)](Z/nZ)) contains 2n elements, of which the n−1 nontrivial
elements of (Z/2nZ)](Z/nZ)∩SO(3)=Z/nZ correspond to 1-dimensional sectors,
so that |HOM(Z, (Z/2nZ)](Z/nZ))0| = n. It follows that

1− 2
|HOM(Z, (Z/2nZ)](Z/nZ))0|

|(Z/2nZ)](Z/nZ)|
= 0.

Therefore, as (Z/2nZ)](Z/nZ) is isomorphic to Z/2nZ,

χES
0 (Q2)=

|HOM(0,Z/2nZ)| − |HOM(0,Z/nZ)|

n
.

Hence χES
0 (Q1)= χ

ES
0 (Q2) for every finitely generated discrete group 0.
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